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SELF-FOCUSING AND SELF-TRAPPING OF SPHERCIAL BEAMS 
IN A NONLINEAR MEDIUM 

KIN-CHUNG NG 

Abstract. Self-focusing and self-trapping of optical beams are studied by obtain 
ing the asymptotic solution of the nonlinear reduced wave equation 

in three dimensional space where the incident waves are assumed to be spherical 
waves . In order to discuss diffraction effects and self-focusing effects of the beam, 
the concepts of diffraction length and focal length are introduced. It is shown 
that diffraction effects and self-focusing effects occur in different regions. This 
means that diffraction cannot, in general, influence self-focusing. In the special 
case where diffraction effects and self-focusing effects are balanced, a self-trapped 
beam is shown to exist. 

1. Introduction 

In the theory of nonlinear optics (see [1]), one is led to consider a nonlinear reduced 
wave equation 

(1) 

where k is the wave number and n = n(lul2) is a function of intensity of the field and is 
called the index of refraction. 

We consider the case when the optical beam propagates in a quadratic index media 
so that n2(lul2) can be written as 

(2) 
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where no and n1 are constants. 
With lul = O(k-d), d > 0, and following the discussion of this equation in two 

dimensional space (see [2]), we write 

u = :d aeik<f>. (3) 

Substituting (3) into (1) and equating real and imaginary parts, we obtain 

{[(v'</>)2 - n~]a - k!dn1a3 - k!dn2a5 + · · ·} - :2 v'2a = 0 (4) 
and 

(5) 

The most interesting cases ford are d = 1 and d = !- If d = 1 then lul = O(k-1) and we 
have a self-trapped beam which is the analog of the solitary wave in unsteady problems. 
We discuss that case in section 3. In the first part of this paper, we consider the case 
when d = ! . Then we expand </> and a as 

{ </> _ E;o </>~k~: (6) 
a-Ei=0a1k . 

On substituting (5) and (6) into (4) and equating coefliccents of like powers of k-1, we 
obtain 

(V </>o )2 = n5 
2v'</>o · v'ao + ao v'2</>o = 0 
2V </>o · V </>1 == n1 a~ 
2v'¢o · Va1 + a1 v'2</>o = -2v'</>1 · Vao - ao v'2</>1 

4 1 2 2a1 en )2 2\7</>o · v'</>2 = n2a0 + 3n1aoa1 + -V ao - -v'</>o · v'</>1 - v </>1 
ao ao 

(7) 

(8) 

(9) 
(10) 

(11) 

and 

2\7 </>o · Va2 + a2 \72 </>o = -2"v </>2 · "v ao - ao \72 </>2 - 2V </>1 · v' a1 - a1 \72 </>1. ( 12) 

Here we will not try to obtain the general solutions of these equations. (For the 
plane wave case in two dimensional space, a detailed discussion of the solution can be 
found in [2].) We will discuss the behavior of a spherical beam u(r, z) propagating in a 
nonlinear medium for large distances. 

2. Self-focusing of a spherical beam 

We now consider the case where the incoming wave is spherical with an amplitude 
which has axial symmetry with respect to the z-axis. Introducing cylindrical coordinates, 
the phase term </>o of the incoming wave can be written as 

</>o = </>o(r, z) = J(z + R)2 + r2 (13) 
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where we have assumed that the focal point is located at z = -R and r = 0 and that 
the unperturbed index of refraction no equals 1. Then 

(V,i.. )2 = (o</>o )2 + (o</>2 )2 = r2 + (z + R)2 = 1 
""
0 or Oz </>5 </>5 . 

Near the axis of the beam where r ~ 0 we can approximate </>o as 
r2 

</>o ~ z + R + 2( z + R) . 

(14) 

(15) 

Because of the assumed axial symmetry we write ao = ao(r, z)·and obtain from (8) 

2 oao oao · 
</>o[(z+R) oz +r or +ao] =0 

The general solution of (16) with the arbitrary function J[1_;.~.] determined from the 
R 

form of the incident wave at z = 0 is 

(16) 

ao(r, z) = RJ[1: Ji)/ .,/(z + R)2 + ,2. (17) 

Thus a0 = RJ(r)/v'R2 + r2 at z = 0, and hence a0 - f(r) as R - oo. Then our 
problem reduces to the plane wave case in three dimensional space. By setting f[1_;i] = 
E exp[- 

0
2({:i-)2] and x = 0, we readily see that our result agrees with the known result 

for the plane wave case in two dimensional space (see [21). In order that the incident 
wave represents a beam we assume that f(r) - 0 as r -t oo and that f'(O) = 0 with 
f"(O) < 0 so that the amplitude has a maximum at r = 0. From (9) we have 

(z + R) 8:,• + r 8f: = ~n1R2j2 / ./(z + R)2 +r2. (18) 

Since we require that ¢1(r,O) = 0 so that the incident wavefront is spherical, we have as 
a solution of (18) 

,i.. (r z) - !n 12 Rz 'f"l ' - 2 1 -y'-;::(=z =+=R=)2 + r2 

As R - oo the above result tends to </>1 = !n1f2(r)z which gives the result for plane 
wave incidence. For small r that is near the axis of the beam, (19) can be expanded as 

(19) 

1 2 z l r2 z 
</>i = 2nif [1 + 1. - 2 (1 + ~)(z + R) + · · ·]. 

From (10) the equation for a1 becomes 

2 8a1 8a1 2 
</>o [(z + R) oz + r or + a1] = -2V</>1 · "'vao - a0 V ¢1. 

(20) 

(21) 
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It is possible to solve (21) with a1(r, O) = 0 exactly, but the result is fairly complicated. 
Our main interest is to determine the self-focusing length for the beam, which results 
from the secular behavior of the asymptotic expansion and is determined by the behavior 
of a1 for large z and small r. The main contribution to the right side of (21) for large z 
and small r can be shown to come from the terms 1a0 88P

1 and a0 88
2
~1• Since r r r 

{J' ~ ~ ~] - /'(o)}/ l; ~ ~ /"(O) 
R R 

(22) 

' as r is small, and f'(O) = 0, we have 
!' 
r 

!' 1 
r · z ~ /"(O)___!!_ . 
Hf I+ R z + R 

(23) 

We find that (21) is approximated as 

2_[(z + R) Ba1 + r 8a1 + ai] = _ 2REBz 
¢0 Bz Br 

where E = f(O) and B = n1Ef"(O)R3 - !n1E2 R. Equation {24) can be written as 

8a1 8a1 EBR EBR2 

(z + R) az + r Br + a1 = - , . ~"' + , --~. 

Solving (25) with a1 (r, 0) = 0, we obtain 
EBz2 

a1(r,z)=-_, --~· 

For small r and large z, a0(r, z) can be written as 

(24) 

(25) 

(26) 

RE 
ao(r, z) ~ z + R (27) 

In order to determine the value of z at which the asymptotic series becomes disordered, 
we set !jt ~ a0• From (26) and (27) we conclude that 

2 
-Bz ~R. (28) 

(28) can be written as 
n1E2 n1EF11(0) 1 
4kR2 - 2k - R. (29) 

We note that if 
(30) 
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then (29) becomes 
(31) 

For finite R there are two possible focal points as was found by Akhmanov et al. [3], but 
the term n1E2 /4kR2 does not appear in their result. If we assume that the beam is thin 
in the sense that O <a~ 1, then we find that -;& ~ -p, and hence the focal length (s) 
determined from {29) or (31) reduces to the results of plane wave case, i.e., we have 

(32) 

To determine the diffraction length for the spherical beam, we have to know a2(r, z). 
In the absence of nonlinear effects, (11) becomes 

1 2 2v'</>o · v'</>2 = -V ao. ao 
(33) 

2 If we set f = E exp(- 
0
2c{+n:P], substitute (13) and (17) into (33), and keep only the 

most significant terms, we obtain 

2R2 
(34) 

Solving (34) with condition </>2(r, 0) = 0, we have 
2Rz (35) 

a2(z + R) · 

In the ·absence of nonlinear effects, (12) becomes 

(36) 

Substitute (13), {17) and {35) into (36), and keep the most significant terms, we have 

(37) 

Solving (37) with condition a2(r, 0) = 0, we obtain 
4R4E R 1 1 

a2(r, z) ~ - a4 [2(; ~,., - / ...... \,; + n/ .. ' n\ n1 

2R3Ez2 
a4(z + R)3 · 

(38) 
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For a linear medium, the asymptotic expansion of the amplitude a can be written as 

1 1 
a(r, z) ~ao + ka1 + k2 a2 

RE 1 2R3Ez2 
~ z + R - k2 a4(z + R)3 · 

Thus the secular effects occur when 

RE I 2R3Ez2 

z + R ~ k2 a4(z + R)3 
which implies 

(39) 

(40) 

ka2 z 
z ~ ../2 (1 + R). 

When R - oo, (41) reduces to the plane wave case. The diffraction length is given by 

(41) 

(42) 

From (32) and (42), we conclude that self-focusing effects and diffraction effects occur 
in different regions. In general, diffraction cannot influence self-focusing. But in some 
special situations diffraction and self-focusing might happen in the same region; then they 
do influence each other. To see this, we express the amplitude a(r, z) as a combination of 
ao, a1 and a2, where ao and a2 are obtained for the linear case and a1 is from a nonlinear 
medium. Thus we have the following asymptotic expansion 

1 1 
a(r, z) ~ao + ka1 + k2 a2 

RE 1 n1E3R3z2 1 2R3Ez2 ~ +- ---~~- z+R k a2(z+R)3 k2 a4(z+R)3" (43) 

When 
RE I n1E3R3 1 2R3E 2 

-= ~ [k a2(z+R)3 - k2 ~At-' D\:l]z' 

the asymptotic expansion of a(r, z) becomes disordered, so we have 

(44) 

(45) 

According to (32) and (42), (45) can be written as 

(46) 
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where Zs is called the self-focusing length of the beam in the spherical wave case. If 
z} > zd2 or E2 < 

0
2!

1
k, .self-focusing is impossible because Zs becomes a complex 

number. If z1
2 < zd2, ihen we may have two focal points when O < J-A - -1- < - R1 , and 

. . . Z f Zd2 

only one focal point when J-A - -1- > - R1 > 0. We will discuss the situation when 
Zf Zd2 

2 2 E2 . 2 • th t t· Z j = zd or = a2n1k 1Il e nex sec 10n. 

3. Self-trapping of a spherical beam · 

From the previous results, the asymptotic expansion of the phase ¢(r, z) is given by 
1 1 

cp(r, z) ~ ¢0 + k:¢1 + k2 ¢2. (47) 

If we use (15), (35) and (19) with /2 = E2exp[020~~p] ~ E2[1 - 02
2C.:~pJ, (47) 

becomes 
r2 1 1 n1E2 Rz n1E2 R3r2 z 

cp(r,z)~(z+R)+'lf;+R) +k:[2 , n - _?/_, n\:l] 

1 2R3r2 z 2Rz · 
+ k2 [a4(z + R)3 - a2(z + R}· (43) 

With E2 = 02!1k, (48) can be simplified as 

r2 1 zR 
cp(r, z) ~ (z + R) + 2(z + R) - k2 [ _?1 _ ' oJ· (49) 

From (41) we know that 02(~~R) = O(k) in the diffraction region. We now present 
a boundary layer analysis of the field in the region where diffraction effects become 
important. We set 

r2 1 A 

cp(r, z) = (z + R) + 2(z + R) + kcp 

where~= 0(1). According to (39) we have 

RE R ~ I 
a(r, z) ~ -R ~ ( R) ./k = 0( 11-). 

Z + Z + o:y'n1 k y k 

(50) 

(51) 

We also set 
a(r, z) = ~a (52) 

· where a= 0(1). Substituting (50) and (52) into (4) and (5), with d = !, we obtain 
2 A A 

r 1 8¢ 2 r I 8¢ 2 ] 1 2 [(1 - + - -) + ( + - -) - 1 - -n1a + · · · 
<}/ _ ' D\2 k .az Z + R k Br k 

1 1 82 a 1 1 1 a Ba - - - - - - - -( r-) = 0 (53) k2 a 8z2 k2 a r 8r . 8r · 
and 
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r2 1 8¢ aa r 1 8¢ . aa ar2 
2(1 - "" - · R)2 + k 8z) 8z + 2( z + R + k Br) Br + -_ - · - 

a 82 ¢ 2a a 1 8 8¢ 
+ k 8z2 + z + R + k;: Br (r Br) = O. 

To simplify the above equations, we set 

(54) 

z = k~; R= kRo. (55) 

Then gz = /; tr. so that (53) and (54) become respectively 

and 

The leading terms in the expansions of ¢ and a which we denote by ¢0 and a.0 satisfy 

28¢0 2r 8¢0 (8¢0)2 - 2- ! ~( 8ao)- ~2 - 0 
8~ + ~+Ro 8r + 8r ao r ar r 8r niao - (58) 

and 

2 8a0 2r Bso 2 8¢0 Bao ao 8 ( 8¢0 ) 2ao _ 0 (59) -+ -+ --+--r- + - . 8~ ~ + Ro Br Br Br r 8r Br ~ + Ro 

Let ¢0 = Ar.:.t where.Xis an arbitrary constant and substitute it into (59). We obtain 

(60) 

Solving (60), we obtain 

(61) 

where Fis an arbitrary function we need to determine. Substituting ¢0 and a.0 into (58), 
and letting t = f. ~~o , we have 

F"(t) + f P'(t) - 2.xP(t) + n1F3(t) = o. 

The approximate solution of equation (62) is known (see (4)) and is given by 

{62) 

~ f!;.X 2 F(t) = -{0.85 exp[-0.25{2,\)t2] + 1.32 exp(-1.18(2,\)t ]}. 
n1 

(63) 
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From (52), (55), (61) and (63), we have 

I R f!;.X R2r2 a(r,z) = IT( R) -{0.85exp[-0.50.X( )2] vk z + n1 z + R 
R2r2 

+l.32exp[-2.36.X,_, n\2]}. (64) 

A R2 
Thus, using (3), (50), (64) and </>o = .X~, the field u(r, z) can be written as 

I R f!;.X R2r2 u(r,z)=-k(-R) -{0.85exp[-0.50.X( R)2] z + n1 z + · 
W~ ~· .X W 

+l.32exp[-2.36.X 1 _ , 0,2]} exp{ik[(z+R)+ ( R) + k2 -R]} (65) . ?. z+ . z+ 
2 

According to Akhmanov et al., a field with spherical phase term ¢( r, z) = ( z + R) + ... r , 

and amplitude term a2 = (l!~)F[a(l~-u], where F determines the field, is called a 
spherical beam. For example, if F(z) = e-z2, it is called a Gaussian beam. Thus, (65) is 
obviously a beam with spherical wavefront propagating in a nonlinear medium. Because 
the diffraction effects and self-focusing effects are balanced, there will be no spreading 
and focusing under this situation. This means that the shape of the beam will not 
change as it propagates over a long distance. The solution (65) may be referred to as a 
self-trapped spherical beam. 
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