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LINEAR AUTONOMOUS NEUTRAL FUNCTIONAL 
DIFFERENTIAL EQUATIONS IN THE PHASE SPACE OF 

REGULATED FUNCTIONS 

LUIZ FICHMANN 

Abstract. We extend the natural description of the spectrum for the flow of the 
linear equation jt Dxt = Lxt from the context of continuous functions to the 
context of regulated right-continuous functions. 

1. Introduction 

This paper intends to present a result contained in [3], namely, the. extension of the 
spectral results of [6] for the flow of the Linear Autonomous NFDEs to the context of 
regulated right-continuous functions. 

If [a, b] is an interval of the real line and X is a Banach space, we write G([a, b], X) 
for the space of the functions '1/J : [a, b] --t X for which there exist the limits '1/J( t+) for 
every t E [a, b.[ and '1/J( t-) for ey~ry t E]a, b). Such functions are called regulated functions. 

In [3] we extend some results obtained by .J. Hale ([41) and D, He11ry ([61) for the so 
called Neutral Functional Differential Equations (NFDEs), which have the form it (x(t) 
J(t, _xt)) = g(t, xt), from the context of continuous functions to the context of regulated 
functions. The motivation for this extension is the fact that the fundamental matrix, 
which appears in the variation-of-constants formula of the linear non-homogeneous NFDE 
([4], [6]),· is regulated and not continuous int. So, the space of regulated functions appears· 
as a natural context to include the fundamental matrix or the resolvent, in the case we 
consider a generic Banach space X. In this general context, Honig {[8],[9]) studied the 
Volterra-Stieltjes linear Integral Equations. We applied these results, since the initial 
value problem of a linear NFDE leads to such an integral equation ([21). 

Another extension of the phase-space C of continuos functions, for which the variation 
-of-constants formula has a functional analytic sense, was done by Diekmann in [1] for 
retarded equations (NFDEs with f = 0), where the author developed the theory called 
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"sun-star calculus". This theory consists of considering the adjoint of the flow of the 
linear equation in the dual space and taking the restriction to the maximal subspace 
where strong-continuity holds and again taking the adjoint. In this way C is embedded 
into the product space M00 ~ Rn x L00, a nice space to include the fundamental matrix, 
and one can use the variation-of-constants formula in the weak-* sense. 

Another possible approach is to choose Mp= Rn x LP as the phase-space. This was 
done in [IO] for a certain class of NFDEs. 

2. The main result 

Let !En denote the Euclidean space of real or complex n-vectors and let r be a fixed 
positive number. g+ = c+([.:...r,O],En) is the space of the regulated right-continuous 
functions cp: [-r,0]-+ En, which is complete with the norm ll'PII = sup_r<O<o llcp(B)!I. 
We call C = C([-r,O],IEn) the closed subspace of g+ of continuous functions. If Xis 
a regulated right-continuous map of [a - r, b] into !En, then Xt E g+ is given, for each 
a S t Sb, by Xt(B) = x(t + 8), -r S 8 S 0. 

Let n, L be fixed continuous linear functionals from g+ into !En, with integral rep 
resentations given by nc.p = c.p(O) - f~r dµ(O)c.p(O) and Lc.p = f~r df/(O)c.p(O) for cp E g+; 
where µ,T/ are matrix-valued functions (from [-r,O] into £(!En)) of bounded variation 
which vanish at' 8 = 0 and are left-continuous. For these represrentations, we utilize the 
Interior Integral which extends the Riemann-Stieltjes Integral (see [8]). We assume here 
that µ has_ no singular part, i.e., f~r dµ(O)c.p(O) = 2::~1 Akc.p(-rk) + f~r A(O)c.p(O)dO, 
Vcp E g+, where OS rk Sr and Ak E £(!En) fork EN and A E L1([-r,O],£(En)). 

In this situation, the initial value problem is well posed for the NFDE: 

t?:O (N) 

that is, for cp E g+ we have the unique regulated right-continuous solution x = x(O, c.p) 
of (N) for t ?: 0 with xo = <.p. We have, then, well defined the flow of (N), {T(t)}t>o, 
semigroup of bounded linear operators on g+ given by T(t)c.p = Xt(O, c.p) for cp E g+ and 
t?: 0. 

Let n° be the jump part of n, that is, n°c.p = c.p(O) - 2::~1 Akc.p(-rk) for cp E g+. 
We denote by 9""%,o the kernel of n°. The initial value problem is also well posed for the 
difference equation (n)o : n°xt = 0, t ?: 0. This defines the flow of (n)o, {T0(t)}t~o, 
semigroup of bounded linear operators on 9""%,0• 

We known that C is invariant under T(t) (t ?: 0) and Cvo def·gt,0 n C is invariant 
under T0(t) (t ?: 0), that is, the solution of (N) or (n)o is continuous whenever the 
initial data is a continuous function. 

Daniel Henry ([6], [7]) gives a complete description of the spectrum of the operators 
T0(t)icvo and T(t)ic for t ?: 0, using the infinitesimal generator AO of {T0(t)icvo }t~o 
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and A of {T(t)1ch2:o· The restriction of each fl.ow, as above, is a strongly continuous 
semigroup of linear operators which admits a closed infinitesimal generator with dense 
domain in Cvo and C, respectively. Namely V(A0) = {cp E Cvo I cp' E Cvo} with 
A 0cp = cp' for cp E V(A 0), and V(A) = { cp E C I cp' E C and Dcp' = Lcp} with Acp = cp' 
for cp E V(A). For the spectrum of these generators, we have: 

u(A0) = Pu(A0
) = {.-\ E q det H(.-\) = O} 

u(A) = Pu(A) = {.-\ E Cl det .6.(.,\) = O} 
where det H(.-\) = 0 and det .6.(.-\) = 0 are the respective characteristic equations of (D)o 
and (N), i.e.: 

00 

H(.-\) = I - L Ake->.rk = D0(e>.·I) 
k=l 

and .6.(.,\) = .-\H(.-\)-.,\ f~r A(O)e>.Od()- f~r d11(0)e>.8 = .-\D(e>.·I)-L(e>.1). Henry shows 
that: 

u(T0(t) lcvo )\ {O} = etu(A0
)\ {O} a.e. in t 2: 0 

and T(t)1c - T0(t) o '111c : C -+ C is a compact operator for each t 2: 0, (where the map 
\JI above is a continuous projection from g+ onto Ybo such that \J!(C) C Cvo, defined in 
the next section), and with these facts he concludes that: 

u(T(t)1c)\{O} = etu(A)\{O} a.e .. int 2: 0. 

The flows of (D)o and (N) are neither strongly continuous nor something like "strongly 
regulated", for if we have a jump T(t)cp(O) - T(t)cp(O-) = 21, with lllll > 0, for some 
t 2: 0 and O E] - r, O], then IIT(t + t:i}cp - T(t + t:2)<PII > 11111 for any t:1 -1- t:2 in ]O, 6[, for 
some small 6 > 0. Then, we cannot extend the infinitesimal generators to dense domains 
in Ybo and g+ respectively. Nevertheless, we still can show that the results obtained by 
Henry are extensible for Ybo and g+ respectively. This is done in the next sections. 

3. The difference equation 

Let £+ cg+ be the space of step-functions, that is:. 

k 

£+={cp E g+lcp= LCiX[e,,o] for some k E N*,ci E lEn and -r ~Bi~ O,i=l,2,·· ·,k,} 
i=l 

where, for JC [-r, O], XJ((}) = 1 if O E J and XJ(O) = 0 if O </. J. 
£+ is a dense subspace of g+ (see [8]). 
Let c- BV0 = c- BV0([-r, O], (JEn)') be the space of applications a : [-r, O] -+ 

(JEn )' = .C(lEn, IE) with bounded variation which vanish at (J = 0 and are left-continuous. 
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We have the following immediate lemmas: 

Lemma 1. For each cp E £+, there is a sequence {cpm}mEN, <pm E C, such 
that cpm(O) = cp(O), llcpmll = lie.pl! Vm E N and 

Vo. E G-BVo. 

Proof. 1) Suppose first n = 1 and cp = X[9,oJ E £+, -r ~ (} ~ 0. If (} = -r take 
cpm = <p = 1 and if(}# -r, form> r!o take 

{ 

0 if -r < /3 < (} - .l. 
(m} def. 1 . I - m 

cpm(/3) = X[o,o)(/3) = m(/3 - (} + ~) if (} - ~ ~ /3 ~ (} 
1 if (} ~ /3 ~ 0. 

Then, for a E a- BV0 we have 

10 18 . 1 
-r do.(/3)xf;iJ1(/3) = }9_-1. da.(f3)[m(/3-0)] - a.(fJ - ~) 

"' 

m~ - o.(O) = 1-: da.(f3)X[9,oJ(/3), 
since I fo~-1. da.(/3)[m(/3- fJ)JI ~ Var[o-,!,,91[a.Jm~O. 

"' 

2) For the general case, we remember first that, for a E a- BV0, we have the scalar func 
tions O.j E a-BVo([-r,O],JE),j = 1,2,···,n, such that for each p = (p1,···,Pn) E 
!En and (} E [-r, OJ we -have a.(O)p = E7=I O.j(fJ)pj, and for <p E g+, cp(O) 
(cp1 (0), · · ·, cpn(fJ)) E !En, we also have f~r da.(O)cp(O) = E7=l f~r da.j(O)cpj(O). 
So, for cp = L~=l CiX[o,oJ in £+, Ci = (cf, cf,···, cf) E .]En, we can take <pm 
'°'k (m) . C 
L..ti=l CiX[oi,o] m · 
Then, for a E a- BV0 we have 

0 n k 0 L do(/3 ),Pm (/3) · 'f. 'f. c; L do j (/3) xi; !.1 (/3) 
n k O 0 

m..:::,oo f. 'f. e. L do;(/3)x1 •••• 1(/3) = L da(/3),p(/3) (by item 1)) 

We see that for the <pm above we have cpm(O) = cp(O) and llcpmll = llcpll Vm E N 

Lemma 2. For cp E g+, if f~r da(f3)cp(/3) = 0 Vo. E a- BV0, then cp(O) = 0 for 
-r ~ 0 < Os 
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Proof. As in lemma 1, we can suppose, without loss of generality, that n = 1. 
If we have for some 8 -::j:. 0 that cp(O) -::j:. 0, then 36 > 0 such that c.p(O + t) -::j:. 0 for 

0 St S 6. Take a = X[-r,o+!l and we will have f~r da(/3)c.p(/3) = -c.p(B + 0;) -::j:. 0, which 
is a contradiction. 

For a linear operator L, we denote by N(L) and 'R(L) the kernel and the range, 
respectively. 

Remark 1. In [4], ch. 12.3, there is given a continuous projection 'I>' : C -+ Cv0 

such that '¥ = le - if! n° where '¥ = ( </>1, · · · , <l>n), </>i E CI satisfies n°if! = J, J is the 
n x n-identity matrix, and le is the identity of C. 

So, C = Cvo EB N(w) and dimN(w) = n because N(w) =· 'R(if!n°) has if! 
( ¢1, · · ·, </>n) as a basis. Putting cp0 = W<.p, we have, for cp E C: 

c.p = c.p0 + if!n°c.p = c.p0 + t(n°c.p)i<Pi = c.p0 + t(c.p(O)i - f O dµi(B)c.p(B))</>i 
i=l i=l -r 

where (D0cp)i is the i-th component of the vector n°c.p E lEn and µi(B) is the i-th line of 
the matrix µ(B) = - 2::~1 AkX]-oo,-ri.:](B). Thus, µi E c- BVo, i = l, 2, · · ·, n. 

For cp E g+ it is also true that D0(c.p - if!D0c.p) = D0c.p - D0it!D0c.p = 0. Therefore 
we can extend w : g+ -+ 9to as w = lg+ - if!D0, lg+ being the identity of g+, and we 
will have g+ = 9"I,o EB N(w), where the kernel N(w) remains the same n-dimensional 
subspace of C, that is, N(w) = 'R(it!D0

). 

From this remark and lemma l, it follows easily the: 

Lemma 3. For <.p E £+, let 'Pm E C, m E N, as in lemma 1. Then t da (fl)<P?. (fl),;,_--=::' t da(fl)<P" (fl) Va E c- BVo, 

where c.p0 = \J!c.p as in remark 1. We also have c.p?n(O)m~c.p0(o). 

Proof. As in remark 1, 

Then, for a E c- BVo, 
O O n( 0 ) 0 · L dc,(fl)<P?.(fl) = L do(fl)<P=(fl) - tr <P=(O), - L afi,(9)<P=(9) L do(fl)</>,(fl). 

Considering that 'Pm(O)i = cp(O)i, and "fli E c- BVo and using lemma 1, we have: 
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and also 

,p~(O) = 'l'=(O) - t. ( 'l'=(O), - L aµ,(8),p=(D)) ¢,(0) 
=,p(O) - t. ( ,p(O); - f. aµ, ( 8),p= ( 8)) </!, (0) =...::'..'/" ,p°(O) 

Note that Ebo def.'11(£+) is dense in Ybo, since£+ is dense in g+ (see [8]) and \JI is 
continuous from g+ onto Ybo = \JI(<]+). 

Lemma 4. If T E £(9bo, <]+) with (Tcp)(O) = f~rd13K(O - /3)cp(/3), where 
we have -r ~ -r < 0 and K : [-r, r] -+ C(lEn) has bounded variation and is 
right-continuous; then, for each a E c- BV0, there is a a E c- BVo, such that: 

_[

0

r da(O)(Tcp)(O) = [
0
r da(f3)cp(/3) 

Proof. We use the theorem 2.4 of [9], which says that: 

t da(D) J-: dpK(D - /J),p(/J) = J-: dp r1.: da(8)K(8 - ,6)] ,p(/J) 
to construct a suitable a E a- BV0• 

Remark 2. In [3] we show that the variation-of-constants formula for the linear 
NFDEs ([4], [6]) remains the same in the context of regulated functions. For cp E Ybo, 
the solution y for {D)0, fort 2: 0, with Yo = cp is given by 

y(t) = - t.1.:. dpX(t - ,6 - r•)A•,p(,6), t ::>: 0, (pvo) 

where Xis the fundamental matrix given by the conditions D0 Xt = I fort 2: 0, X{O) = I 
and X(t) = 0 fort< 0. 

We have, by [6], lemma 3.5, the following result: if a E IR is such that det H(.-\) #- 0 
in some strip IRe.,\ - al ~ 6, 6 > 0, then we may decompose X(t) = XP(t) + XQ(t) (if 
a = 0 we will have X(t) = XP(t) + XQ(t)+ constant), XP can be extended for t ~ 0 
and we have the estimates: 

Var[t-r,t] [XQ] ~ M e(cx-c)t 
Var[t-r,t][XP] ~ Me(a+c)t 

for t 2: 0 
for t 2: 0 

for some constant M. 
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Theorem 1. Suppose a E IR is such that det H(>-.) # O in some strip IRe>-. - 
al 5 fJ, fJ > 0. Then there exist closed subspaces P, Q of 9to, invariant under 
r0(t), t 2'.: O, such that 9'JJo = PtJJQ, where$ means the direct sum. The semigroup 
{T0(t)1p }t~o may be extended uniquely as a group (-oo < t < oo) of operators on 
P. There exists a constant M' such that : IIT0(t)1QII ~ M'.e(a-E,)t fort 2'.: 0 and 
IIT0(t)IPII ~ M'.e(a+E,)t fort~ 0. 

Proof. As in remark 2, we have the split of matrix X and, for cp E 9'JJo, we have 
the solution of (D)0,, y(t), given by formula (pvo ). We may write: y(t) = yP(t) + yQ(t), 
where 

CX) 0 

YP,Q(t)def. - L 1 d{JxP,Q(t - /3 - Tk)Akcp(/3), t 2'.: 0, 
k=I -r1.; 

and we can take -oo < t < oo for yp. Since X P : IR --t .C(JEn) and XQ : IR+ --t .C(JEn) are 
right-continuous and of bounded variation in each compact interval of t (see [6] lemma 
3.5), we have that yP,Q are well defined and are right-continuou~ regulated functions 
because: I) each Interior Integral f~r,., d13 · · · in the formula defines a .right-continuous 

regulated function oft (see [9] §2), so y~,Q (t)def. - Ef=l f~r,., d13X P,Q(t - /3- rk)Akcp(/3) 
is also_ right-continuous regulated in t, for each N E N, and II) {Yt} NEN and {yi} NEN 

are Cauchy-sequences in the space of right-continuous regulated functions when we take 
t in any compact interval, with the uniform-norm, since E~=l IAk I < oo, and then they 
converge as these spaces are complete (see (8]). 

From remark 2, we also obtain the estimates: 

{ 

IIYQ(t)II ~ (E~1 IAkl).M.e<a-E,}tllcpll 

IIYP(t)II ~ (E~=l IAkl).M.e(aH)tllcpll 

fort 2'.: 0 

fort~ 0 

Define T0(t)Pcp = yr fort E JR and T0(t)Qcp = y~ fort 2'.: r. By the majorations above 
we see that T0(t)P,Q E .C(9'Eo, g+). Let 1rp def"T0(o)P E .C(9'Eo, g+). 

In [6] theorem 3.1, it is shown that 1rplcvo E .C(Cvo) and it is idempotent. 
We will show that 1r p E .C(Qt0) and is also idempotent. 
We begin with the step-functions. Let <p E £+ and <pm E C, m E N, as in lemma 

1. By remark 1, we have: <p = cp0 + E~~1 (cp(O)i - f~r aµi(O)cp(O))<Pi· Using the formula 
of 1rpcp0• = yB (now y is the s~~t!n 

0
of (D)0 with initial value_cp0) and lemmas 3 and 4 

we obtam f _r da.(/3)1rpcp?n(/3) -+ f _r da.(/3)1rpcp0({3) Vo. E G BVo. By the formula of 
1rpcp?n(O), for each(} E (-r,O], and the fact that llcpmll = lie.pl! (and then llcp?nll ~ 11'1!11.llcpll 
'vm E N), we obtain 1rpcp?n(O)m~1rpcp0(0) and, in particular, 1rpcp?n(O)m~1rpcp0(o). 
Since <p?n = '1!(cpm) E Cvo, we have, by [6] theorem 3.1, that 1rp<p?n E Cvo, so O = 
no(1rpcp?n) = 7rpcp?n(O) - I~r aµ(/3)(1rpcp?n)(/3)m~1[p<po(o) - I~r aµ(/3)(1rp<po)(/3) = 
D0(1rpcp0). Then 1rpcp0 E 9'Eo, that is, 1rp(£E0) C 9'JJo and taking the closure of £to, 
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we have 1rp E £(91°>0). Now it makes sense to take 1ri. To show that 1rp is a projec 
tion, we note first that f~r da(/3)(1ric.p?n)(/3)m~ f~r da(/3)(1ricp0)((3), Va E c- BV0, a 
consequence of the formula of 1ricpo (-/3) and lemma 4. Note that 

We know that 1r~cp~ = 1r p<.p?n, since cp~ E C vo. Therefore, f~r da(/3) [1ri - 1r p ]cp0 (/3) = 0 
Va E c- BV0 and from lemma 2 we have 1ricp0(8) = 1rpc.p0(B) for -r s (} < 0. For 8 = 0, 
observe that D0(1ricp0) = 1ricp0(0)- f~r aµ(8)1ric.p0(8) = 1ric.p0(0)-1rpc.p0(o)+D0(1rpc.p0), 
but D0(1ric.p0) = D0(1rpc.p0) = 0 since 1rp E £(9~o), that is, 1rp(YiJo) C 9iJo = N(D0). 

This completes the pr"oof that ·1rp is idempotent in £""%,0 and so in 9""%,0• 
Then we have the closed subspaces of 9""%,0 : P = 'R(1rp ), Q = N(1rp ); Yi,o = P EB Q 

and 1rp is a projection on P along Q. 
By [6] theorem 3.1, we have T0(t)1rpc.p?n(B) = 1rpT0(t)c.p?n(O) = T0(t)Pc.p?n(B) Vt?: 0, 

VB E [-r, O] and each of these expressions converges when m -+ oo to the respec 
tive expression with cp0 instead of cp~ ( this can be shown by using the formulas of 
1rp, T0(t), T0(t)P and lemma 4). Therefore, T0(t)1rp = 1rpT0(t) = T0(t)P in £""%,0 and in 
Yi)o, fort ?: 0. Fort E R, we also obtain O = D0(T0(t)P cp?n)m~ D0(T0(t)P c.p0) and this 
allows us to define T0(t) = T0(t)P in P fort s O and to obtain the group of isomorphisms 
{T0(t)IP heR; for, when we have the backward continuation of the solution of equations 
like (D)o in the whole line, this continuaiton is unique (see [5]). 

The inequalities stated in the theorem follow immediately from inequalities in ( * ). 

Remark 3. The subspaces PnCvo and QnCvo are characterized in [6] theorem 3.1, 
in terms of generalized eigenspaces corresponding to the eigenvalues of the infinitesimal 
generator AO which have the real parts bigger than a and smaller than a, respectively. 
We can extend, now , the theorem 3.2 of [6), 

Theorem 2. Assume that ,\ 1-+ detH(,\) has zeros; then, fort?: 0, we have: 

{ eAtldetH(,\) o} C o-(T0(t)) C {µ 11µ1 = e€t, { E Z} U {O}, 

where Zdef.{Re,\ I det H(,\) = O} and Z is the closure of Z. 
If a </. Z and Yi,o = P EB Q is the decomposition given by theorem 1, then 

o-(T0(t)ip) c{µ 11µ1 = eet,( E Z and (>a} 
o-(T0(t)1Q) c{µ I lµj = eet,( E Z an·d {<a} 

both for t ?: 0. 
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If Z is empty, then o:(T0(t)) = {O} fort > O; in fact, T0(t) = O fort 2: r.n. 
Proof. It is the same as for theorem 3.2 of [6], using now theorem 1. We recall that 

for cp E £+ and <Pm EC, m E N, as in lemma 1, we ~ill have T0(t)r.p~(O)rn~ooTo(t)cpo(O) 
and then T0{t)1c00 = 0:::} T0(t) = 0. 

Remark 4. We have from [7] theorem 5.1 that if V is any subset of the complex 
plane and U = { x E IR I :l sequence { zk} kEN, Zk E V with Re zk -+ x and II m zk I - oo 
ask-+ oo}, then for almost all real t, the inclusion et(U+iJR) C etV holds, where U +ilR = 
{z E CIRe z E U}. To see that this inclusion may not hold for all t, let us consider 
V = {O, ±i, ±2i, ±3i, · · ·} so U = {O}, et(ilR) is the unit circle fort#- 0 and we note that 
et(iR) c etV if and only if t/1r is irrational. 

Since <let H(>..) is an analytic almost periodic function of>.., we have from [6] lemma 
3.2 that if det H(.-\) = 0 for some.,\ EC, then there exists a sequence {.-\dkeN such that 
det H(.-\k) = 0, l.-\k I -+ oo and Re>..k -t Re.,\ as k -+ oo. If we take V = u(A 0) = { .,\ E 
C I det H(.-\) = O}, then we have U = Z and et(Z+iR} = {µ 11µ1 = e~t, ~ E Z} and from 
theorem 2 and the above result from (7], we conclude that 

u(T0(t))\{O} = etu(A0)\{0} 

for almost all t 2: 0. 

4 The Neutral FDE 

Passing now to equation (N) of section 2, we first generalize the lemma 4.1 of [6]. 

Lemma 1. For the equations (N) and (D)o and their flows, given in section 
2, we have: T(t) -T0(t) o \JI : g+ -+ g+ is a compact operator for each t 2: 0, where 
\JI is the projection given in remark 1 of section 3. 

Proof. Analogous to the lemma 4.1 of [6]. Recall that R(I9+ - \JI) has finite 
dimension. 

We denote by Pu(L), Ru(L) and Cu(L) the point, the residual and the continuous 
parts of the spectrum of a linear operator L. 

We generalize now the theorem 4.1 of [6]. 

Theorem 1. With the notation of section 2, for the flow of equation (N), 
we have: 
i) Pu(T(t))\{O} = Pu(T(t)1c)\{O} = {e>.tldet.6.(.-\) = O} 
ii) Ru(T(t)) U Cu{T(t)) C {µ 11µ1 = e~t, ~ E Z} U {O} where Z is given in theorem 

2 of section 3. 
-- 

iii) a(T(t))\{O} = etO'(A)\{O} a.e. int 2: 0. 
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Proof. i) Suppose t0 > 0, Ao E C and <p E g+ such that T(t0)cp = e>..otocp # 0. 
We show that there is a c E ]En such that z(t) = c.e>..t # 0 is the solution of (N) 

with initial data '1/J(fJ) = c.e>..9, where A= Ao+ 2~!m for some m EN, that is; we find a 
continuous (in fact, exponential) eigenvector for the eigenvalue e>..oto of T(t0). 

Let Xt·= T(t)cp, t ~ 0. The function t 1-+ e->..otx(t) is periodic of period t0 and then 
there is am E N such that them-th Fourier coefficient is nonzero, that is, 

1 1to -2,rim s 1 1to c = - e to x(s)e->..0sds = - i(s)e->..sds =j:. 0 
to o to o 

and we have 

1 1to ce>..(t+O} =- x(s)e>..(t+O-s)ds 
to o 
1 1to =- x(t + u + O)e->..udu 
to o 
1 1to =- [T(t)xu](fJ)e->..udu 
to o 

1 1to =[T(t)(- xu(·)e->..udu)](O) = [T(t)(c.e>..·)](O). 
to o 

To prove the last equalities, let Li be any partition of interval [O, to] (0 = uo < u1 · · · < 
Uk = to, Ui E [ui-1, ui], Liui = Ui - Ui-d and we have: 
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1 to - k - - 
=IIT(t)llt _ sup II lo Xu(B)e->.udu - I:xui(B)e->.u,lluill 

0 OE[-r,O] 0 i=l 

S IIT(t)II_!_ sup lle>.811 · sup II to x(u + O)e->.(u+o)du 
to OE[-r,OJ BE(-r,OJ lo - K 

k 

- L x(ui + O)e->.(u;+o) lluil! 
i=l 

Since the function t 1-+ y(t)def.x(t)e->.t is periodic of period t0, we have 

to k 
M(ll) = _ sup II lo y(s)ds - L y(ui + O)L'luill- 

OE(-r,oJn]-to,o) O i=l 

For each B E [-r, O)n) - t0, OJ, let us call L'l + 7f the translation of L'l to the interval 
[O, to+ 0)(0 = uo + 8 < u1 + 8 · · · < Uk+ 0 =to+ 8). Define l = l(O) E {1, 2, · · ·, k} such 
that u1-i + 0 s O < u1 + 8. We have the following situation (where we delete the first 
summation on the right hand side if l = I and the last summation if l = k): 

k 

LY(Ui + 8).6..ui 
i=l 
l-1 k 

= LY(ui + 7J + to)Aui + y(u1 + B)Au1 + I: y(ui + O)Aui 
i=l 

k 

= L 
j=k-l+2 

y(sj(°lJ))Asj(8) + y(to) [to - (u1-1 + 8 + to)] +y(O) [u1 + 8 - O] ....______..... 
As1 (0) As1.:+1 (0) 

k-l+l 

+ [y(u1 + 0) - y(O)][u1 - u1-1] + L y(sj(lJ))llsj(O) 
j=2 

k+I 

= LY(sj(8))L'lsj(O) + [y(u1 + B) - y(O)]L'lu1. 
j=l 

This defines the partition A9 of interval [O, to] (0 = so(B) < s1 (0) · · · < sk+t (8) 
to,sj(B) E [sj-i(B),sj(B)],Asj(8) = sj(°O)- Sj-1(0)) as shown in the figure 
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Therefore 
to k+l 

M(.6.) ~ sup 111 y(s)ds - LY(s"j(B)).6.si(B)II + 2 sup lly(s)II · ll.6.ll- 
'ee[-r,O}n]-to,OJ O j=l sE[O,to] 

Since ll.6.811 ~ ll.6.II for any 7J in [-r, O], we see that M(.6.) goes to zero when ll.6.11 -+ 0. 
We have also t~ 1;0 xu(O)e->.udu = ;

0 
1;0 x(u + O)e->.(u+fJ)du.e>.9 = c.e>.9• 

By the same arguments as for theorem 4.1 of [6] we prove ii), using the result of 
Gohberg and Krein in the version of lemma 2 of [6] and using theorem 2 of section 3 and 
lemma 1. 

For iii) we use theorem 5.1 of [7]. 

In the same way as theorem 4.2 of [6] we can show that: 

Theorem 2. Suppose a(/_ Reu(A), i.e., det .6.(X) i= 0 in some strip IRe..\ - 
al < 6, 8 > 0. Then g+ = P EB Q, where P, Q are closed subspaces invariant under 
T(t). 

The restriction of the semigroup to P may be extended to a group {T(t)1p heIR 
of isomorphisms of P. Finally, there exists a constant M such that IIT(t)1QII ~ 
M e<a-c)t for t 2: 0 and IIT(t)1PII ~ M e<o:+c)t for t ~ 0 (see also [3], chap.11,§4, 
theorems 3 and 4.) 

We now study the corresponding decomposition for the nonhomogeneous equation 

(N)H 

for a given regulated right-continuous forcing function H. 
For each t, to E IR, t 2: to, we have a bounded linear operator K.(t, to) E 

C(G+([t0,tJ,JEn), <]+) such that the solution of (N)H fort 2: to with Xt0 = cp E g+ is 
given by Xt(t0, cp, H) = T(t - t0)cp + K.(t, t0)H, where {T(t)}t2:;o is the flow of (N) as in 
section 2. 

From [3] we have that K.(t, to)H = xoH(t)-T(t-to)xoH(to)- ft: duT(t-u)xoH(u) 
where, for p E lEn, we have xop(O) = 0 for -r ~ 0 < 0 and xop(O) = p and 
(ft: duT(t - u)xoH(o-))(0) = ft: duX(t + 0 - u)H(u), the integral being in lEn, and the 
fundamental matrix X(t) E .C{lEn) given by X(t)p = T(t)x0p(O). 

In [3] (see chap.II, §4, remark 7), we generalize the theorem 4.3 of [6] as a consequence 
of theorem 2 and the variation-of-constants formula for equation (N)H. Then we have: 

Theorem 3 Suppose a (/_ Reu(A) and g+ = P EB Q is the _decomposition 
provided by theorem 2. We write cp = cpP + cpQ E P EB Q. Then, there exist 
matrix-functions of bounded variation X P and XQ, such that: 

x~(to, cp, H) =T(t - to)<PQ + (xoH(t))Q -T(t - to)(xoH(to))Q 

- f duT(t - u)[xoH(u)JQ lto 
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and 
xf(to,cp,H) =T(t - to)cpP + (xoH(t))P -T(t- to)(xoH(to))P 

-it duT(t - O")[xoH(O")]P 
to 

fort 2: t0, where 

<it duT(t - O")[xoH(O")]P,Q)(B) = it daXP,Q(t + (} - O")H(O") 
~ ~ 

for(} E [-r,O]. 

Remark 2. The matrix functions XQ and XP are the same as in theorem 4.3 
of [6] (our xP,Q(t + 0) are his T(t)x:·Q(O)) and we obtain the estimates given in that 
theorem. 
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