UNIVALENT FUNCTIONS WITH POSITIVE COEFFICIENTS

B.A. URALEGADDI* ${ }^{*}$, M.D. GANIGI** AND S.M. SARANGI*

Abstract. Coefficient inequalities, distortion and covering Theorems and extreme
points are determined for univalent functions with positive coefficients.

1. Introduction

Let S denote the class of functions of the form $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ that are analytic and univalent in the unit disk $E=\{z:|z|<1\}$, A function $f \in S$ is said to be starlike of order $\alpha, 0 \leq \alpha<1$, denoted by $f \in S^{*}(\alpha)$, if $\operatorname{Re} z f^{\prime}(z) / f(z)>\alpha$ for $z \in E$ and is said to be convex of order $\alpha, 0 \leq \alpha<1$, denoted by $f \in K(\alpha)$, if $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)>\alpha$ for $z \in E . S^{*}(0)=S^{*}$ and $K(0)=K$ are respectively the classes of starlike and convex functions in S.

For $1<\beta \leq 4 / 3$ and $z \in E$, let $M(\beta)=\left\{f \in S: \operatorname{Re} z f^{\prime}(z) / f(z)<\beta\right\}$ and $L(\beta)=\left\{f \in S: \operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)<\beta\right\}$. Further let V be the subclass of S consisting of functions of the form $f(z)=z+\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}$.

Let $V^{*}(\alpha)=S^{*}(\alpha) \cap V, V_{K}(\alpha)=K(\alpha) \cap V$ and $V(\beta)=M(\beta) \cap V, U(\beta)=L(\beta) \cap V$. $V^{*}(0)=V^{*}$ and $V_{K}(0)=V_{K}$ are respectively the classes of starlike and convex functions in V.

In this paper coefficient in equalities, distortion and covering Theorems and extreme points are determined for classes $V(\beta)$ and $U(\beta)$. Further order of starlikeness and convexity are obtained for the classes $V(\beta)$ and $U(\beta)$ respectively.

In [2] H. Silverman has studied the univalent functions with negative coefficients.

2. Coefficient inequalities.

Theorem 2.1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in S. If $\sum_{n=2}^{\infty}(n-\beta)\left|a_{n}\right| \leq \beta-1$ then $f \in M(\beta)$.

Received December 29, 1992.
1991 Mathematics Subject Classification. Primary 30C45.
Key words and phrases. Univalent, starlike, convex.

Proof. Let $\sum_{n=2}^{\infty}(n-\beta)\left|a_{n}\right| \leq \beta-1$. It sufficies to show that

$$
\left|\frac{z f^{\prime}(z) / f(z)-1}{z f^{\prime}(z) / f(z)-(2 \beta-1)}\right|<1, \quad z \in E
$$

We have

$$
\begin{aligned}
& \left|\frac{z f^{\prime}(z) / f(z)-1}{z f^{\prime}(z) / f(z)-(2 \beta-1)}\right| \\
\leq & \frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right||z|^{n-1}}{2(\beta-1)-\sum_{n=2}^{\infty}(n-2 \beta+1)\left|a_{n}\right||z|^{n-1}} \\
& \leq \frac{\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right|}{2(\beta-1)-\sum_{n=2}^{\infty}(n-2 \beta+1)\left|a_{n}\right|}
\end{aligned}
$$

The last expression is bounded above by 1 if

$$
\sum_{n=2}^{\infty}(n-1)\left|a_{n}\right| \leq 2(\beta-1)-\sum_{n=2}^{\infty}(n-2 \beta+1)\left|a_{n}\right|
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=2}^{\infty}(n-\beta)\left|a_{n}\right| \leq \beta-1 \tag{2.1}
\end{equation*}
$$

But (2.1) is true by hypothesis. Hence

$$
\left|\frac{z f^{\prime}(z) / f(z)-1}{z f^{\prime}(z) / f(z)-(2 \beta-1)}\right|<1, \quad z \in E
$$

and the theorem is proved.
Corollary 2.2. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be in S. If $\sum_{n=2}^{\infty} n(n-\beta)\left|a_{n}\right| \leq \beta-1$ then $f \in L(\beta)$.

Proof. Since $f \in L(\beta)$ if and only if $z f^{\prime} \in M(\beta)$, the result follows.
For functions in $V(\beta)$ the converse of Theorem 2.1 is also true.
Theorem 2.3. A function $f(z)=z+\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}$ is in $V(\beta)$ if and only if $\sum_{n=2}^{\infty}(n-\beta)\left|a_{n}\right| \leq \beta-1$.

Proof. In view of Theorem 2.1, it suffices to show the only if part. Suppose

$$
\begin{equation*}
\operatorname{Re} z f^{\prime}(z) / f(z)=\operatorname{Re} \frac{z+\sum_{n=2}^{\infty} n\left|a_{n}\right| z^{n}}{z+\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}}<\beta, \quad z \in E \tag{2.2}
\end{equation*}
$$

Choose values of z on the real axis so that $z f^{\prime}(z) / f(z)$ is real. Upon clearing the denominator in (2.2) and letting $z \rightarrow 1$ through real values we obtain $1+\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq$ $\beta\left(1+\sum_{n=2}^{\infty}\left|a_{n}\right|\right)$. Thus we have $\sum_{n=2}^{\infty}(n-\beta)\left|a_{n}\right| \leq \beta-1$, and the proof is complete.

Corollary 2.4. A function $f(z)=z+\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}$ is in $U(\beta)$ if and only if $\sum_{n=2}^{\infty} n(n-\beta)\left|a_{n}\right| \leq \beta-1$.

Proof. The proof follows as that of Corollary 2.2.
Remark. The above corollary is true even if $1<\beta \leq 3 / 2$.

3. Distortion and Covering Theorems

Theorem 2.3 enables us to prove the following
Theorem 3.1 If $f \in V(\beta)$ then

$$
r-\frac{\beta-1}{2-\beta} r^{2} \leq|f(z)| \leq r+\frac{\beta-1}{2-\beta} r^{2} \quad(|z|=r)
$$

with equality for $f(z)=z+\frac{\beta-1}{2-\beta} z^{2} \quad(z= \pm r)$
Proof. From Theorem 2.3, we have

$$
\begin{aligned}
& \quad(2-\beta) \sum_{n=2}^{\infty}\left|a_{n}\right| \leq \sum_{n=2}^{\infty}(n-\beta)\left|a_{n}\right| \leq \beta-1 . \text { Thus } \\
& |f(z)| \leq r+\sum_{n=2}^{\infty}\left|a_{n}\right| r^{n} \leq r+r^{2} \sum_{n=2}^{\infty}\left|a_{n}\right| \leq r+\frac{\beta-1}{2-\beta} r^{2} .
\end{aligned}
$$

Similarly

$$
|f(z)| \geq r-\sum_{n=2}^{\infty}\left|a_{n}\right| r^{n} \geq r-r^{2} \sum_{n=2}^{\infty}\left|a_{n}\right| \geq r-\frac{\beta-1}{2-\beta} r^{2}
$$

Corollary 3.2. If $f \in U(\beta)$ then

$$
r-\frac{\beta-1}{2(2-\beta)} r^{2} \leq|f(z)| \leq r+\frac{\beta-1}{2(2-\beta)} r^{2} \quad(|z|=r)
$$

with equality for $f(z)=z+\frac{\beta-1}{2(2-\beta)} z^{2} \quad(z= \pm r)$
Theorem 3.3. The disk $|z|<1$ is mapped on to a domain that contains the disk $|w|<(3-2 \beta) /(2-\beta)$ by any $f \in V(\beta)$ and on to a domain that contains the disk $|w|<(5-3 \beta) / 2(2-\beta)$ by any $f \in U(\beta)$. The theorem is sharp for the extremal functions $z+\frac{\beta-1}{2-\beta} z^{2} \in V(\beta)$ and $z+\frac{\beta-1}{2(2-\beta)} z^{2} \in U(\beta)$.

Proof. By letting $r \rightarrow 1$ in Theorem 3.1 and Corollary 3.2 the results are obtained.
Theorem 3.4. If $f \in V(\beta)$ then

$$
1-\frac{2(\beta-1)}{2-\beta} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(\beta-1)}{2-\beta} r \quad(|z|=r)
$$

with equality for $f(z)=z+\frac{\beta-1}{2-\beta} z^{2} \quad(z= \pm r)$
Proof. We have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1} \leq 1+r \sum_{n=2}^{\infty} n\left|a_{n}\right| \tag{3.1}
\end{equation*}
$$

In view of Theorem 2.3 we have

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \beta-1+\beta \sum_{n=2}^{\infty}\left|a_{n}\right| \leq \beta-1+\frac{\beta(\beta-1)}{2-\beta}=\frac{2(\beta-1)}{2-\beta} \tag{3.2}
\end{equation*}
$$

From (3.1) and (3.2) it follows that $\left|f^{\prime}(z)\right| \leq 1+\frac{2(\beta-1)}{2-\beta} r$.
Similarly

$$
\left|f^{\prime}(z)\right| \geq 1-\sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1} \geq 1-r \sum_{n=2}^{\infty} n\left|a_{n}\right| \geq 1-\frac{2(\beta-1)}{2-\beta} r
$$

This completes the proof.
Corollary 3.5. If $f \in U(\beta)$ then

$$
1-\frac{\beta-1}{2-\beta} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{\beta-1}{2-\beta} r \quad(|z|=r)
$$

Equality holds for $f(z)=z+\frac{\beta-1}{2(2-\beta)} z^{2} \quad(z= \pm r)$

4. Order of Starlikeness and Convexity

Theorem 4.1. If $f \in V(\beta)$ then $f \in V^{*}((4-3 \beta) /(3-2 \beta))$
Proof. Since $\sum_{n=2}^{\infty}\left|a_{n}\right|(n-\alpha) /(1-\alpha) \leq 1$ [2] is a sufficient condition for $f \in S$ to be in $S^{*}(\alpha)$, in view of Theorem 2.3 we must prove that

$$
\sum_{n=2}^{\infty} \frac{(n-\beta)}{\beta-1}\left|a_{n}\right| \leq 1 \text { implies } \sum_{n=2}^{\infty} \frac{n-(4-3 \beta) /(3-2 \beta)}{1-(4-3 \beta) /(3-2 \beta)}\left|a_{n}\right| \leq 1
$$

It suffices to show that

$$
\begin{equation*}
\frac{n-\beta}{\beta-1} \geq \frac{n-(4-3 \beta) /(3-2 \beta)}{1-(4-3 \beta) /(3-2 \beta)}=\frac{(3-2 \beta) n-4+3 \beta}{\beta-1}, n=2,3, \ldots \tag{4.1}
\end{equation*}
$$

But (4.1) is equivalent to $(\beta-1)(n-2) \geq 0, n=2,3, \ldots$ and the theorem is proved.
Corollary 4.2. $V(\beta) \subset V(4 / 3) \subset V^{*}$.

Thus all functions in $V(\beta)$ are starlike. There is no converse to Theorem 4.1. That is a function in $V^{*}(\alpha)$ need not have $\operatorname{Re} z f^{\prime}(z) / f(z)<\beta$. To show this we need only to find the coefficients $\left|a_{n}\right|$ for which

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq 1 \text { and } \sum_{n=2}^{\infty}(3 n-4)\left|a_{n}\right|>1 \tag{4.2}
\end{equation*}
$$

Note that the function $f(z)=z+z^{2} / 6+z^{3} / 6$ satisfies both inequalities in (4.2).
Corollary 4.3. If $f \in U(\beta)$ then $f \in V_{K}((4-3 \beta) /(3-2 \beta))$
Corollary 4.4. $U(\beta) \subset U(4 / 3) \subset V_{K}$.
The above corollary is comparable to the following results of S. Ozaki [1] and R.Singh and S.Singh [3], for wider class of functions.

Theorem A. [1]. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is analytic in E and satisfies $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)<3 / 2$ then f is univalent in E.

Theorem B. [3]. If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ is analytice in E and satisfies $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)<3 / 2$ then f is starlike in E.

Theorem 4.5. If $f \in U(\beta)$ then $f \in V(2 /(3-\beta))$.
Proof is similar to that of Theorem 4.1.
Putting $\beta=4 / 3$ in Theorem 4.5 we have
Corollary 4.6. $U(4 / 3) \subset V(6 / 5)$.
From Corollary 4.6 and Theorem 4.1, we have
Corollary 4.7. $U(4 / 3) \subset V^{*}(2 / 3)$.
Since Theorem 4.5 is true even if $1<\beta \leq 3 / 2$ the following Corollary is obtained.
Corollary 4.8. If $f(z)=z+\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} \in V$, satisfies $\operatorname{Re}\left(1+z f^{\prime \prime}(z) / f^{\prime}(z)\right)<$ $3 / 2$ then $\operatorname{Re} z f^{\prime}(z) / f(z)<4 / 3$ i.e. $f \in V(4 / 3)$.

5. Extreme Points

In view of Theorem 2.3 the class $V(\beta)$ is closed under convex linear combinations. We shall determine the extreme points of $V(\beta)$.

Theorem 5.1. Let $f_{1}(z)=z$ and $f_{n}(z)=z+\frac{\beta-1}{n-\beta} z^{n}, n=2,3, \ldots$. Then $f \in V(\beta)$ if and only if it can be expressed in the form $f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)$.

Proof is similar to that of Theorem 9 in [2].
Corollary 5.2. The extreme points of $V(\beta)$ are the functions $f_{n}(z), n=$ $1,2, \ldots$

Corollary 5.3. The extreme points of $U(\beta)$ are the functions $f_{1}(z)=z$ and $f_{n}(z)=z+\frac{\beta-1}{n(n-\beta)} z^{n}, n=2,3, \ldots$

References

[1] S. Ozaki, "On the theory of multivalent functions II," Science Reports of the Tokyo Bunrika Daigaku Section A, 4(1941), 45-87.
[2] H. Silverman, "Univalent functions with negative Coefficients," Proc. Amer, Math. Soc., 50 (1975), 109-115.
[3] R. Singh and S. Singh, "Some sufficient conditions for Univalence and Starlikeness," Colloquium Mathematicum, XLVII (1982), 309-314.

* Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka, India.
** Department of Mathematics, Karnatak Arts College, Dharwad-580 001, Karnataka, India.

