CERTAIN CLASSES OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS

NAK EUN CHO AND JI A KIM

Abstract. Let \sum_{p} denote the class of functions of the form

$$
f(z)=\frac{a_{-1}}{z}+\sum_{k=1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0, \quad a_{-1}>0\right)
$$

which are analytic in the annulus $D=\left\{z|0<|z|<1\}\right.$. Let $\Sigma_{p, 1}$ and $\Sigma_{p, 2}$ denote subclasses of Σ_{p} satisfying $f\left(z_{0}\right)=\frac{1}{z_{0}}$ and $f^{\prime}\left(z_{0}\right)=-\frac{1}{z_{0}^{2}}\left(-1<z_{0}<1, z_{0} \neq 0\right)$, respectively. Properties of certain subclasses of $\Sigma_{p, 1}$ and $\Sigma_{p, 2}$ are investigated and sharp results are obtained. Also a new characterization for certain subclass of Σ_{p} is proved.

1. Introduction

Let Σ denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{a_{-1}}{z}+\sum_{k=1}^{\infty} a_{k} z^{k}\left(a_{-1} \neq 0\right) \tag{1.1}
\end{equation*}
$$

which are analytic in the annulus $D=\{z: 0<|z|<1\}$. The Hadamard product or convolution of two functions f, g in Σ will denoted by $f * g$. Let

$$
\begin{equation*}
D^{n} f(z)=\frac{1}{z(1-z)^{n+1}} * f(z)\left(z \in D, n \in N_{0}=\{0,1,2, \cdots\}\right) \tag{1.2}
\end{equation*}
$$

Uralegaddi and Ganigi [3] observed that

$$
\begin{equation*}
D^{n} f(z)=\frac{1}{z}\left(\frac{z^{n+1} f(z)}{n!}\right)^{(n)}\left(z \in D, n \in N_{0}\right) \tag{1.3}
\end{equation*}
$$

Received March 16, 1993, revised December 28, 1993.
1991 Mathematics Subject Classification. 30C45.
Key words and phrases. Hadamard product, extreme points, radius of convexity, closure theorems.

Also, we note that $D^{0} f=f$.
Let Σ_{p} be the subclass of Σ consisting functions of the form

$$
\begin{equation*}
f(z)=\frac{a_{-1}}{z}+\sum_{k=1}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0, a_{-1}>0\right) \tag{1.4}
\end{equation*}
$$

Let $\sum_{p}(n, A, B, \alpha)$ denote the class of functions $f \in \sum_{p}$ such that

$$
\begin{gather*}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=-\frac{1+[B+(A-B)(1-\alpha)] w(z)}{1+B w(z)} \tag{1.5}\\
\left(-1 \leq A<B \leq 1, A+B \geq 0,0 \leq \alpha<1, n \in N_{0}\right)
\end{gather*}
$$

where $z \in U=\{z:|z|<1\}$ and $w \in H=\{w$ analytic in $U, w(0)=0$ and $|w(z)|<$ $1, z \in U\}$.

For a given real number $z_{0}\left(-1<z_{0}<1, z_{0} \neq 0\right)$, let $\Sigma_{p, 1}$ and $\Sigma_{p, 2}$ be the subclasses of Σ_{p} satisfying $f\left(z_{0}\right)=\frac{1}{z_{0}}$ and $f^{\prime}\left(z_{0}\right)=-\frac{1}{z_{0}^{2}}$, respectively.

Let $\Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$ and $\Sigma_{p, 2}\left(z_{0}, n, A, B, \alpha\right)$ be the subclasses of Σ_{p} defined as follows:

$$
\begin{equation*}
\Sigma_{p, i}\left(z_{0}, n, A, B, \alpha\right)=\Sigma_{p}(n, A, B, \alpha) \cap \Sigma_{p, i}(i=1,2) \tag{1.6}
\end{equation*}
$$

In this paper we obtain necessary and sufficient conditions for functions to be in $\Sigma_{p}(n, A, B, \alpha)$ and $\Sigma_{p, i}\left(z_{0}, n, A, B, \alpha\right)(i=1,2)$. We determine extreme points and radius of conexity for the classes $\Sigma_{p, i}\left(z_{0}, n, A, B, \alpha\right)(i=1,2)$. Also closure theorems are proved for these subclasses. Further a new characterization theorem is proved for the class $\Sigma_{p}(n, A, B, \alpha)$. Techniques used are similar to those of Silverman [4].

Remarks. (1). Taking $n=0, \alpha=0$ and $a_{-1}=1$ in the class $\sum_{p}(n, A, B, \alpha)$, we can obtain the results studied by Cho [2].
(2). Taking $n=0, A=-\beta, B=\beta(0<\beta \leq 1)$ and $a_{-1}=1$ in the class $\Sigma_{p}(n, A, B, \alpha)$, we can get the results studied by Mogra, Reddy and Juneja [1].

2. The Main Results

We now introduce the following notations for brevity:

$$
\begin{aligned}
& D_{k}=(n+k+1)![(k+1)(B+1)+(A-B)(1-\alpha)] \\
& E_{k}=n!(k+1)!(B-A)(1-\alpha), F_{k}=D_{k}+E_{k} z_{0}^{k+1}
\end{aligned}
$$

Theorem 2.1. A function $f \in \Sigma_{p}$ is in $\Sigma_{p}(n, A, B, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{D_{k} a_{k}}{E_{k}} \leq a_{-1} \tag{2.1}
\end{equation*}
$$

Proof. Suppose $f \in \Sigma_{p}(n, A, B, \alpha)$. Then

$$
\begin{gather*}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=-\frac{1+[B+(A-B)(1-\alpha)] w(z)}{1+B w(z)} \tag{2.2}\\
(-1 \leq A<B \leq 1, A+B \geq 0, w(z) \in H, 0 \leq \alpha<1, z \in U)
\end{gather*}
$$

From (2.2), we get

$$
\begin{equation*}
w(z)=-\frac{z\left(D^{n} f(z)\right)^{\prime}+D^{n} f(z)}{B z\left(D^{n} f(z)\right)^{\prime}+[B+(A-B)(1-\alpha)] D^{n} f(z)} \tag{2.3}
\end{equation*}
$$

and $|w(z)|<1$ implies

$$
\begin{equation*}
|w(z)|=\left|\frac{\sum_{k=1}^{\infty} \frac{(n+k+1)!}{n!(k+1)!}(k+1) a_{k} z^{k}}{(B-A)(1-\alpha) \frac{a_{-1}}{z}-\sum_{k=1}^{\infty} \frac{(n+k+1)!}{n!(k+1)!}[(k+1) B+(A-B)(1-\alpha)] a_{k} z^{k}}\right|<1 \tag{2.4}
\end{equation*}
$$

Since $|\operatorname{Re}(z)| \leq|z|$, we have, from (2.4),

$$
\begin{equation*}
\operatorname{Re}\left(\frac{\sum_{k=1}^{\infty} \frac{(n+k+1)!}{n!(k+1)!}(k+1) a_{k} z^{k+1}}{(B-A)(1-\alpha) a_{-1}-\sum_{k=1}^{\infty} \frac{(n+k+1)!}{n!(k+1)!}[(k+1) B+(A-B)(1-\alpha)] a_{k} z^{k+1}}\right)<1 \tag{2.5}
\end{equation*}
$$

We consider real values of z and take $z=r$ with $0 \leq r<1$. Then, for sufficiently small r, the denominator of (2.5) is positive and so it is positive for all r with $0 \leq r<1$, since $w(z)$ is analytic for $|z|<1$. Then (2.5) gives

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{D_{k} a_{k} r^{k+1}}{E_{k}}<a_{-1} \tag{2.6}
\end{equation*}
$$

Letting $r \rightarrow 1$, we get (2.1).
Conversely, suppose $f \in \Sigma_{p}$ and f satisfies (2.1). For $|z|=r, 0 \leq r<1,(2.6)$ is implied by (2.1), since $r^{k+1}<1$. So we have

$$
\begin{align*}
& \left|\sum_{k=1}^{\infty} \frac{(n+k+1)!}{n!(k+1)!}(k+1) a_{k} z^{k+1}\right| \leq \sum_{k=1}^{\infty} \frac{(n+k+1)!}{n!(k+1)!}(k+1) a_{k} r^{k+1} \tag{2.7}\\
& <(B-A)(1-\alpha) a_{-1}-\sum_{k=1}^{\infty} \frac{(n+k+1)![(k+1) B+(A-B)(1-\alpha)]}{n!(k+1)!} a_{k} r^{k+1} \\
& \leq\left|(B-A)(1-\alpha) a_{-1}-\sum_{k=1}^{\infty} \frac{(n+k+1)![(k+1) B+(A-B)(1-\alpha)]}{n!(k+1)!} a_{k} z^{k+1}\right|
\end{align*}
$$

which gives (2.4) and hence follows that

$$
\begin{equation*}
\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}=-\frac{1+[B+(A-B)(1-\alpha)] w(z)}{1+B w(z)} \tag{2.8}
\end{equation*}
$$

$$
(-1 \leq A<B \leq 1, A+B \geq 0, w \in H, 0 \leq \alpha<1, z \in U)
$$

That is, $f \in \Sigma_{p}(n, A, B, \alpha)$.
Theorem 2.2. A function $f \in \Sigma_{p, 1}$ is in $\Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{F_{k} a_{k}}{E_{k}} \leq 1 \tag{2.9}
\end{equation*}
$$

Proof. Let $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$. Then for fixed $z_{0}\left(-1<z_{0}<1, z_{0} \neq 0\right)$, $f\left(z_{0}\right)=\frac{a_{-1}}{z_{0}}+\sum_{k=1}^{\infty} a_{k} z_{0}^{k}$. Since $f\left(z_{0}\right)=\frac{1}{z_{0}}$, we have $a_{-1}=1-\sum_{k=1}^{\infty} a_{k} z_{0}^{k+1}$. Since $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right), f \in \Sigma_{p}(n, A, B, \alpha)$ and so from Theorem 2.1 and the relation $a_{-1}=1-\sum_{k=1}^{\infty} a_{k} z_{0}^{k+1}$, we get (2.9).

Conversely, let $f \in \Sigma_{p, 1}$ and let (2.9) be satisfied. Since $f\left(z_{0}\right)=\frac{1}{z_{0}}$, we get $\sum_{k=1}^{\infty}$ $a_{k} z_{0}^{k+1}=1-a_{-1}$. Substituting for (1-a-1) in (2.9), we get (2.1). By Theorem 2.1, we have $f \in \Sigma_{p}(n, A, B, \alpha)$ and hence $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$.

Corollary 2.3. If $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$, then

$$
\begin{equation*}
a_{k} \leq \frac{E_{k}}{F_{k}}\left(k \in N_{0}-\{0\}\right) \tag{2.10}
\end{equation*}
$$

with equality for the function

$$
\begin{equation*}
f(z)=\frac{D_{k}+E_{k} z^{k+1}}{z F_{k}}\left(k \in N_{0}-\{0\}\right) \tag{2.11}
\end{equation*}
$$

Theorem 2.4. A function $f \in \Sigma_{p, 2}$ is in $\Sigma_{p, 2}\left(z_{0}, n, A, B, \alpha\right)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{\left(D_{k}-k E_{k} z_{0}^{k+1}\right)}{E_{k}} a_{k} \leq 1 \tag{2.12}
\end{equation*}
$$

Proof. Suppose $f \in \Sigma_{p, 2}\left(z_{0}, n, A, B, \alpha\right)$. Then, for fixed $z_{0}\left(-1<z_{0}<1, z_{0} \neq 0\right)$, $f^{\prime}\left(z_{0}\right)=-\frac{a_{-1}}{z_{0}^{2}}+\sum_{k=1}^{\infty} k a_{k} z_{0}^{k-1}$. Since $f^{\prime}\left(z_{0}\right)=-\frac{1}{z_{0}^{2}}$, we have $a_{-1}=1+\sum_{k=1}^{\infty} k a_{k} z_{0}^{k+1}$. Since $f \in \Sigma_{p, 2}\left(z_{0}, n, A, B, \alpha\right), f \in \Sigma_{p}(n, A, B, \alpha)$ and so Theorem 2.1 holds for f. Hence, substituting $a_{-1}=1+\sum_{k=1}^{\infty} k a_{k} z_{0}^{k+1}$ in (2.1), we get (2.12).

Conversely, let $f \in \Sigma_{p, 2}$ and let (2.12) be satisfied. Since $f^{\prime}\left(z_{0}\right)=-\frac{1}{z_{0}^{2}}$, we have $\sum_{k=1}^{\infty} k a_{k} z_{0}^{k+1}=a_{-1}-1$. Substituting the value of $\sum_{k=1}^{\infty} k a_{k} z_{0}^{k+1}$ in (2.12), we get (2.1). From Theorem 2.1, $f \in \Sigma_{p, 2}\left(z_{0}, n, A, B, \alpha\right)$.

3. Closure Theorems

Theorem 3.1. The class $\Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$ is closed under convex linear combination.

Proof. Let the functions $f_{i}(z)=a_{-1, i} \frac{1}{z}+\sum_{k=1}^{\infty} a_{k, i} z^{k}\left(a_{k, i} \geq 0, a_{-1, i}>0\right)$ be in the class $\Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$ for $i=1,2, \cdots, m$. We have to show that if the function h is defined by $h(z)=\sum_{i=1}^{m} b_{i} f_{i}(z)\left(b_{i} \geq 0\right)$, where $\sum_{i=1}^{m} b_{i}=1$, then h also belongs to the class $\Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$. From the definition of $h(z)$, we have

$$
\begin{equation*}
h(z)=\frac{d_{-1}}{z}+\sum_{k=1}^{\infty} d_{k} z^{k} \tag{3.1}
\end{equation*}
$$

where $d_{k}=\sum_{i=1}^{m} b_{i} a_{k, i}$. Since $f_{i}(z)$ are in $\Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$ for $i=1,2, \cdots, m$, we have from Theorem 2.2,

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{F_{k} a_{k, i}}{E_{k}} \leq 1, i=1,2, \cdots, m \tag{3.2}
\end{equation*}
$$

Therefore we have

$$
\begin{align*}
\sum_{k=1}^{\infty} \frac{F_{k}}{E_{k}}\left(\sum_{i=1}^{m} b_{i} a_{k, i}\right) & =\sum_{i=1}^{m} b_{i}\left(\sum_{k=1}^{\infty} \frac{F_{k}}{E_{k}} a_{k, i}\right) \\
& \leq \sum_{i=1}^{m} b_{i}=1 \tag{3.3}
\end{align*}
$$

This show that the function h belongs to the class $\Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$ and the theorem is proved.

By the similar method of Theorem 3.1, we can prove the following.
Theorem 3.2. The class $\Sigma_{p, 2}\left(z_{0}, n, A, B, \alpha\right)$ is closed under convex linear combination.

Theorem 3.3. Let $f_{0}(z)=\frac{1}{z}$ and

$$
\begin{equation*}
f_{k}(z)=\frac{D_{k}+E_{k} z^{k+1}}{z F_{k}}(k=1,2, \cdots) \tag{3.4}
\end{equation*}
$$

Then $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$ if and only if it can be expressed in the form $f(z)=$ $\sum_{k=0}^{\infty} \mu_{k} f_{k}(z)$, where each $\mu_{k} \geq 0$ and $\sum_{k=0}^{\infty} \mu_{k}=1$.

Proof. Suppose $f(z)=\sum_{k=0}^{\infty} \mu_{k} f_{k}(z)$, where $\mu_{k} \geq 0$ and $\sum_{k=0}^{\infty} \mu_{k}=1$. Then

$$
\begin{equation*}
f(z)=\mu_{0} f_{0}(z)+\sum_{k=1}^{\infty} \mu_{k} f_{k}(z) \tag{3.5}
\end{equation*}
$$

$$
\begin{aligned}
& =\mu_{0} \frac{1}{z}+\sum_{k=1}^{\infty} \mu_{k} \frac{D_{k}+E_{k} z^{k+1}}{z F_{k}} \\
& =\left(\mu_{0}+\sum_{k=1}^{\infty} \frac{D_{k}}{F_{k}} \mu_{k}\right) \frac{1}{z}+\sum_{k=1}^{\infty} \frac{E_{k}}{F_{k}} \mu_{k} z^{k} .
\end{aligned}
$$

Now

$$
\begin{align*}
\sum_{k=1}^{\infty} \frac{F_{k}}{E_{k}} a_{k} & =\sum_{k=1}^{\infty} \frac{F_{k}}{E_{k}} \frac{E_{k}}{F_{k}} \mu_{k}=\sum_{k=1}^{\infty} \mu_{k} \\
& =1-\mu_{0} \leq 1 \tag{3.6}
\end{align*}
$$

Also by definition, we have $f_{k}\left(z_{0}\right)=\frac{1}{z_{0}}$. Therefore

$$
\begin{equation*}
f\left(z_{0}\right)=\sum_{k=0}^{\infty} \mu_{k} f_{k}\left(z_{0}\right)=\sum_{k=0}^{\infty} \mu_{k} \frac{1}{z_{0}}=\frac{1}{z_{0}} . \tag{3.7}
\end{equation*}
$$

This implies $f \in \Sigma_{p, 1}$. By Theorem 2.2, $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$.
Conversely, let $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$. Then $a_{-1}=1-\sum_{k=1}^{\infty} a_{k} z_{0}^{k+1}$. Define

$$
\begin{equation*}
\mu_{k}=\frac{F_{k}}{E_{k}} a_{k}, k \geq 1 \text { and } \mu_{0}=1-\sum_{k=1}^{\infty} \mu_{k} \tag{3.8}
\end{equation*}
$$

From Theorem 2.2, we have $\sum_{k=1}^{\infty} \mu_{k} \leq 1$ and so $\mu_{0} \geq 0$.
Now

$$
\begin{align*}
f(z) & =\frac{R a_{-1}}{z}+\sum_{k=1}^{\infty} a_{k} z^{k}=\mu_{0} \frac{1}{z}+\sum_{k=1}^{\infty} \mu_{k} \frac{1}{z}\left[1+\frac{z^{k+1}-z_{0}^{k+1}}{\mu_{k}} a_{k}\right] \\
& =\mu_{0} \frac{1}{z}+\sum_{k=1}^{\infty} \mu_{k} \frac{D_{k}+E_{k} z^{k+1}}{z F_{k}} \\
& =\mu_{0} f_{0}(z)+\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)=\sum_{k=0}^{\infty} \mu_{k} f_{k}(z) . \tag{3.9}
\end{align*}
$$

This completes the proof of the theorem.
In a similar manner, we can prove the following theorem.
Theorem 3.4. Let $f_{0}(z)=\frac{1}{z}$ and

$$
\begin{equation*}
f_{k}(z)=\frac{D_{k}+E_{k} z^{k+1}}{z\left(D_{k}-k E_{k} z_{0}^{k+1}\right)}(k=1,2, \cdots) \tag{3.10}
\end{equation*}
$$

Then $f \in \Sigma_{p, 2}\left(z_{0}, n, A, B, \alpha\right)$ if and only if it can be expressed in the form $f(z)=$ $\sum_{k=0}^{\infty} \mu_{k} f_{k}(z)$, where each $\mu_{k} \geq 0$ and $\sum_{k=0}^{\infty} \mu_{k}=1$.
4. The radius of convexity of the classes $\Sigma_{p, i}\left(z_{0}, n, A, B, \alpha\right)(i=1,2)$

Theorem 4.1. Let $f \in \sum_{p}$. If $f \in \sum_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$, then f is meromorphically convex in the disk $|z|<r$, where

$$
\begin{equation*}
r=\inf _{k}\left[\frac{D_{k}}{k(k+2) E_{k}}\right]^{\frac{1}{k+1}} . \tag{4.1}
\end{equation*}
$$

The bound is sharp for the function given by (3.4).
Proof. To prove the theorem, it is sufficient to show that

$$
\begin{equation*}
\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \tag{4.2}
\end{equation*}
$$

for $|z| \leq r$. Then we have

$$
\begin{align*}
\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| & =\left|\frac{\sum_{k=1}^{\infty} k(k+1) a_{k} z^{k-1}}{-\frac{a-1}{z^{2}}+\sum_{k=1}^{\infty} k a_{k} z^{k-1}}\right| \\
& \leq \frac{\sum_{k=1}^{\infty} k(k+1) a_{k}|z|^{k+1}}{\left|a_{-1}-\sum_{k=1}^{\infty} k a_{k} z^{k+1}\right|} \tag{4.3}
\end{align*}
$$

Consider the values of z for which

$$
\begin{equation*}
|z| \leq \inf _{k}\left[\frac{D_{k}}{k(k+2) E_{k}}\right]^{\frac{1}{k+1}}, \tag{4.4}
\end{equation*}
$$

that is,

$$
\begin{equation*}
|z|^{k+1} \leq \frac{D_{k}}{k(k+2) E_{k}} \tag{4.5}
\end{equation*}
$$

holds. Then

$$
\begin{equation*}
\sum_{k=1}^{\infty} k a_{k}|z|^{k+1} \leq \sum_{k=1}^{\infty} \frac{D_{k}}{(k+2) E_{k}} a_{k} . \tag{4.6}
\end{equation*}
$$

Now

$$
\begin{equation*}
\sum_{k=1}^{\infty} k a_{k}|z|^{k+1}<a_{-1}, \tag{4.7}
\end{equation*}
$$

provided

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{D_{k} a_{k}}{(k+2) E_{k}}<a_{-1} . \tag{4.8}
\end{equation*}
$$

Now if $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$, then

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{F_{k} a_{k}}{E_{k}} \leq 1 \tag{4.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{D_{k}}{E_{k}} a_{k}<1-\sum_{k=1}^{\infty} a_{k} z_{0}^{k+1}=a_{-1} \tag{4.10}
\end{equation*}
$$

and since

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{D_{k} a_{k}}{(k+2) E_{k}}<\sum_{k=1}^{\infty} \frac{D_{k} a_{k}}{E_{k}} \tag{4.11}
\end{equation*}
$$

(4.8) holds. Therefore we can rewrite the denominator of the right hand side of inequality (4.3) for the considered values of z, using the fact that

$$
\begin{equation*}
a_{-1}>\sum_{k=1}^{\infty} k a_{k}|z|^{k+1} \tag{4.12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \frac{\sum_{k=1}^{\infty} k(k+1) a_{k}|z|^{k+1}}{a_{-1}-\sum_{k=1}^{\infty} k a_{k}|z|^{k+1}} \leq 1 \tag{4.13}
\end{equation*}
$$

if

$$
\begin{equation*}
\sum_{k=1}^{\infty} k(k+2) a_{k}|z|^{k+1} \leq a_{-1} \tag{4.14}
\end{equation*}
$$

If $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right),(4.14)$ is equivalent to

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left[k(k+2)|z|^{k+1}+z_{0}^{k+1}\right] a_{k} \leq 1 \tag{4.15}
\end{equation*}
$$

By Theorem 2.2, $f \in \Sigma_{p, 1}\left(z_{0}, n, A, B, \alpha\right)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{D_{k}}{E_{k}}+z_{0}^{k+1}\right) a_{k} \leq 1 \tag{4.16}
\end{equation*}
$$

Hence the inequality (4.15) is true if

$$
\begin{equation*}
k(k+2)|z|^{k+1}+z_{0}^{k+1} \leq \frac{D_{k}}{E_{k}}+z_{0}^{k+1} \tag{4.17}
\end{equation*}
$$

for all k, that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{D_{k}}{k(k+2) E_{k}}\right]^{\frac{1}{k+1}} \tag{4.18}
\end{equation*}
$$

for all k. This result is sharp for the extremal function

$$
\begin{equation*}
f_{k}(z)=\frac{D_{k}+E_{k} z^{k+1}}{z F_{k}} \quad\left(k \in N_{0}-\{0\}\right) \tag{4.19}
\end{equation*}
$$

Similarly, we can prove the following theorem.
Theorem 4.2. Let $f \in \Sigma_{p}$. If $f \in \Sigma_{p, 2}\left(z_{0}, n, A, B, \alpha\right)$, then f is meromorphically convex in the disk $|z|<r$, where

$$
\begin{equation*}
r=\inf _{k}\left[\frac{D_{k}}{k(k+2) E_{k}}\right]^{\frac{1}{k+1}} \tag{4.20}
\end{equation*}
$$

The bound is sharp for the function given by (3.10).
5. New criteria for $\Sigma_{p}(n, A, B, \alpha)$

In order to prove our new characterization theorems, we shall need the followinng lemma due to Mogra, Reddy and Juneja [1].

Lemma 5.1. A function $f(z)$ of the form (1.4) is meromorphically starlike of order β if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}(k+\beta) a_{k} \leq(1-\beta) a_{-1}(0 \leq \beta<1) \tag{5.1}
\end{equation*}
$$

Theorem 5.2. A function $f(z)$ of the form (1.4) is in the class $\Sigma_{p}(n, A, B, \alpha)$ if and only if $(f * g)(z)$ is meromorphically starlike of order β for the function

$$
\begin{equation*}
g(z)=\frac{1}{z}+\sum_{k=1}^{\infty} \frac{(1-\beta) D_{k}}{(k+\beta) E_{k}} z^{k} \quad(0 \leq \beta<1) \tag{5.2}
\end{equation*}
$$

Proof. In view of Lemma 5.1, a function $f(z)$ of the form (1.4) is starlike of order β if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(\frac{k+\beta}{1-\beta}\right) a_{k} \leq a_{-1} \tag{5.3}
\end{equation*}
$$

Thus, using Theorem 2.1, we have

$$
\begin{align*}
f(z) & \in \Sigma_{p}(n, A, B, \alpha) \Leftrightarrow \sum_{k=1}^{\infty} \frac{D_{k} a_{k}}{E_{k}} \leq a_{-1} \tag{5.4}\\
& \Leftrightarrow \sum_{k=1}^{\infty}\left(\frac{k+\beta}{1-\beta}\right)\left(\frac{(1-\beta) D_{k}}{(k+\beta) E_{k}}\right) a_{k} \leq a_{-1} \\
& \Leftrightarrow(f * g)(z) \text { is meromorphically starlike of order } \beta
\end{align*}
$$

This completes the proof of Theorem 5.2.

Acknowledgement.

The authors are thankful to the referee for his helpful comments.

References

[1] M.L. Mogra, T.R. Reddy and O.P. Juneja, "Meromorphic univalent functions with positive coefficients, "Bull. Austral. Math. Soc., 32(1985), 161-176.
[2] N.E. Cho, "On certain class of meromorphic functions with positive coefficients," Math. Japonica, 34(1989), 901-907.
[3] B.A. Uralegaddi and M.D. Ganigi, "A new criterion for meromorphic convex functions," Tamkang J. Math., 19(1988), 43-48.
[4] H. Silverman, "Extreme points of univalent with two fixed points", Trans. Amer. Math. Soc., 219(1976), 387-395.

Department of Applied Mathematics, National Fisheries University of Pusan, Pusan 608-737, Korea.

