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ON EXISTENCE OF POSITIVE SOLUTIONS OF NEUTRAL 
DIFFERENCE EQUATIONS* 

J.H. SHEN, Z.C. WANG AND X.Z. QIAN 

Abstract. Consider the neutral difference equation 

£:i.(xn - CXn-,n) + PnXn-k = 0, n > N 
where c and Pn are real numbers, k and N are nonnegative integers, and m is 
positive integer. We show that if 

00 

L IPnl < 00 
n=N 

(**) 

then Eq.( *) has a positive solution when c -:/; 1. However, an interesting example 
is also given which shows that ( **) does not imply that ( *) has a positive solution 
when c = l. 

1. Introduction 

For the last few years the oscillation and nonoscillation of solutions of delay difference 
equations are being extensively investigated [1-3,5-8], for a recent survey, we refer to [4]. 
In particular, the oscillation of solutions of the neutral difference equation 

6(xn - CXn-m) + PnXn-k = 0, n 2:'. N (1) 

have been intestigated in (9-10], where c and Pn are real numbers, k and N are non 
negative integers, and m is positive integer. 6 denotes the forward difference operator 
6.xn = Xn+1 - Xn. However, the results for the existence of positive solutions of Eq.(1) 
are relatively scarce in the literature, we refer to [10,11], see also Cyori and Lada.s's book 
[4]. 
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Our aim in this paper is to study the existence of positive solutions of Eq.(l). In 
section 2 we show that 

00 

L IPnl < 00 
n=N 

(2) 

implies that Eq.(1) has a positive solution when c # 1. In section 3, an interesting 
example is given to show that it is possible that Eq.{1) has no positive solutions under 
the hypothesis (2) when c = 1. 

Let p = max{m, k}, by a solution of (1) we mean a sequence {xn} which is defined 
for n ~ -p and which satisfies Eq.{1) for n ~ N. Clearly, if 

Xn = An for n = -p, ... , -1, 0 (3) 

are given, then Eq.(1) has a unique solution satisfying the initial conditions (3). We 
assume throughout that Pn cannot be eventualy identically zero. A nontrivial solution 
{ Xn} of ( 1) is said to be oscillatory if for every N0 ~ N there exists a n ~ N0 such that 
XnXn+i ::; 0, otherwise it is nonoscillatory. 

2. Positive solutions of Eq.(1) 

In this section we study the existence of positive solutions of Eq.{1) with c # l. The 
main result in this section is the following theorem. 

Theorem 1. Assume that (2) holds with c #- 1, then Eq.(1) has a positiv.e 
solution. 

Proof. The proof of this theorem is rather too long and will be divided into five 
claims. 

Claim 1. Show Theorem 1 for the case O :::; c < 1. 
Indeed, choose a positive integer N0 ~ N sufficiently large such that No - p ~ N 

and 
~ 1-c 
L IPnl ~ -4- 
n=No 

Consider the Banach Space l~ of all real sequences x = {xn} where n ~ N with sup 
norm llxll = supn2>:N lxnl· We define a subset S in l~ as 

S = {x El! : 2(1 - c)/3:::; Xn::; 4/3, n ~ N} 

Then S is a bounded, closed and convex subset of l~. Now we define an operator 
T : S --+ l~. For x E S, 

n~ No, 
N::;n::;No. 
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Clearly, Tis continuous. For every x = {xn} ES, n ~ No, we have 

4 4 00 

Tx <1-c+-c+- ~IP·I n_ 3 3L..- i 

i=n 
4 4 1-c 4 

<1-c+-c+- · -- = - - 3 3 4 3 
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and 
Tx > 1 - c + i . c - 1 = 2(1 - c) 

n-:- 3 4 3 

Hence, 2(1 - c)/3:::; Txn:::; 4/3 for n ~ N, and so TS CS. 
Now we will show that Tis a contraction mapping on S. In fact, for any x,y ES 

and n ~ No, we have 
00 

ITxn -Tynl :::; clXn-m - Yn-ml + L !Pil · IXi-k - Yi-kl 
i=n 

1- C 1 + 3c 
~ (c + -4-)llx - YII = A llx - YII· 

It follows that 1 + 3c · 
IITx - Tyll :::; 4 llx - YII· 

Since O < (1 + 3c)/4 < 1, we see that Tis a contraction on S. Therefore, by the Banach 
contraction princile, T has a fixed point x E S, i.e., Tx = x. ·. It is easy to see that 

· x = {xn} is a positive solution of Eq.(1) and so the proof of Claim 1 is complete. 

Claim 2. Theorem 1 holds for the case c > 1. Let No ~ N be such that No + m - 
k ~ N and 

00 L IPnl:::; _ l-c 
n=No+m 4 

Consider the Banach Space l! as in the proof of Claim 1. Set 

S = { x E l! : c/2 :::; Xn :::; 2c for n ~ N} 

Then Sis a bounded, closed and convex subset of l!. Define a mapping T: S-+ L! as 
following 

Txn = { C- 1 + ~Xn+m - ~ · ~:n+mPiXi.;...k, n ~ No, 
TxN0, N ~ n :::; No. 

Clearly, T is continuous. For every x = { Xn} E S and n ~ N0, we have 

2c 1 
Txn :::;c - 1 + - + -2c 

C C i=n+m 
c-1 3c+l 

<c - 1 + 2 + 2-- = < 2c - · 4 2 
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and 
1 C 1 c-1 C 

Tx > c - l + - · - - - · 2c · -- = - for n > Nio n_ C 2 C 4 2' - 

Hence, c/2 $ Txn $ 2c for n 2:: N, and so TS C S. Now by a proof similar to the proof 
of Claim 1, we see that, for any x, y ES, 

3+c 
IITx-Tyll $ ~ · llx-yll 

Since O < (3 + c) / 4c < 1, it follows that T. is a contraction on S. Therefore, by the 
Banach Contraction Princile, T has a fixed point x = {xn} E S. It is easy to see that 
this x is a positive solution of Eq.(1} ~nd the proof of Claim 2 is complete. 

Claim 3. Prove Theorem 1 for the case -1 < c < 0. 
Let No 2:: N be such that N0 - p 2:: N and 

00 1 + C L IPnl $ -4- 
n=No 

Let l! be defined as in the proof of Claim 1. Clearly, the set 

S = {x Et! : 2(1 + c) $ Xn $ 4 for n 2:: N} 

is a bounded, closed and convex subset of l!. Define T : S -+ l! 

Clearly, Tis continuous. It is easy to see that T maps S into itself, and for any x, y E S, 

1-3c IITx - Tyl! $ 4 · llx - YII 

As O < (1 - 3c)/4 < 1, the Banach Contraction Priciple can be applied to obtain a fixed 
point x = {xn} of T. It is easy to see that this {xn} is a positive solution of Eq.(l). This 
completes the proof of Claim 3. 

Claim 4. Theorem 1 holds for the case c = -1. 
Indeed, let N0 2:: N be such that N0 + m - k ~ N and 

00 1 L IPnl $ 4 
n=No+m 

Let l! be defined as in the proof of Claim I.Then 

S = {x El! : 2 $ Xn $ 4 for n 2:: N} 
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is a bounded, closed and convex subset of l~. Now we deifne a mapping as following 

{ 
3 + '°'~ . '°'n+21nj-l . . Txn = ~J=l ~t=n+(2j-1)= PiXi-k, 
TXNo, 

n ~ No 
N::;n::;No 

Since, for any x = {xn} ES and n ~ No; 

oo n+2mj-1 

Txn ::;3 + L L 41Pil 
j=l i=n+(2j-l)m 

00 

i=No+m 
1 

<3 + 4 · - = 4 -, 4 l 

and 
00 n+2mj-1 00 

Txn~3-4·L L· 1Pil~3-4···'E IPil 
i=No+m j=l i=n+{2j~l)m· 

1 
>3-4 · - = 2 - 4 , 

it follows that T maps S into S. It is also not difficult to see that for ariY x, y E S we 
have . 1· . . . 

l!Tx - Tyll :::; 4 · llx - YII 

Therefore, the Banach Contraction Prindle can be applied to obtain a fixd point x E S 
of T, that is, 

{ 
3 + '"'00 '"'~+2=j-1 . . 

Xn = ~J=l ~t=n+{2j-l)m PiXi-k, 
XNo, , 

n~ No 
N ~ n::; No 

It follows that 

oo [ n-m+2mj-i , n+2mj-1 ] 

Xn + Xn-m =6 + L . . L PiXi-k + L. . PiXi-;-k , 
J=l i=n-m+{2j-l)m i=n+{2j_-l)m 

' - ,?; ·• ' . . . 

00 

=6 + LPiXi-k, for n ~No+ m, 
i=n 

From this we see that x = {xn} is a positive soluton of Eq.(1) on n ~ No+ m, and so 
the proof of Claim 4 is complete. 

Claim 5. Complete the proof of Theorem l when c < -1. 
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Let No ~ N be such that No + m - k ~ N and 
00 L IPnl $ -c-1 

n=No+m 

Let L! be defined as in the proof of Claim 1 and let 

S = {x EL!: -2(c + 1) ~ Xn $ -4c, n ~ N} 

Clearly, S is a bounded, closed and convex subset of L!. Define a mapping Ton S as 
following 

Txn = {-3c+ 1 + ~Xn+m + E:n+mPiXi-k, n ~ No 
TxN0, N$n$No 

By an argument similar to that in the proof of Claim 2 we can easily show that the all 
hypotheses of the Banach Contraction Principle are satisfied. Therefore, T has a fixed 
point x = {xn} E S. It is easy to see that this {xn} is a positive solution of Eq.(1) for 
n ~No+ m and the proof of Claim 5 is complete. 

Combining Claim 1-5, we see that the proof of Theorem 1 is complete. 

3. An example 

The aim in the section is to show by the folloing example that Theorem 1 does not 
hold when c = 1. 

Example 1. Consider the neutral difference equation · 

1 
.6(xn - Xn-d + l 2 Xn-1 = O,n ~ 2 nnn 

Herem= k = 1, c = 1, and Pn = 1/n ln2 n, Since 
(4) 

00 00 1 
~p = ~ 2 < oo, L..- n L..- nln n 
n=2 n=2 

it follows that (2) holds. Next we will prove that Eq.(4) has no positive solutions. 
Otherwise, assume that (4) has a positive solution = {xn} satisfying Xn-l > O,n ~ 
No~ 2, for some N0 ~ 2. Set 

Zn = Xn - Xn-1, for n ~ No 

Then by ( 4) we have 

1 
.6zn = - 2 Xn-1 < 0 for n ~ No 

nln n 
(5) 
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We consider the following two possible cases: 
(i) If Zn is eventually negative, then by (5) we see that there exist a > 0 and positive 

integer N1 ~ No, such that 

This is 
Xn $ -a + Xn-1, for n ~ N1 

By using the Induction Principle, we get 

Xn+N1 $ -na + XN1 -t -00 as n -t 00 

which contradicts the positivity of {xn}· 
(ii) If Zn is eventually positive, then there exists positive integer N2 ~ N1 such' that 

Zn > 0 for n 2:: N2. Now we let 

lim Zn= (3 E {O, oo) 
n-+OO 

and sum (5) from n 2:: N2 to oo, we have 

00 1 . 
f3 - Zn+ L 2 Xk-1 = 0 

k=n kln k 
(6) 

this implies that 
00 L ll2 Xn-1 < 00 

n=N2 n n n 

On the other hand, since Xn -Xn-l > 0, for n 2:: N2, it follows that there exists a positive 
constant M such that Xn ~ M for n ~ N2, Substituting this into (6) we find that 

00 1 100 1 
Zn ~(3 + M L 2 ~ (3 + M -2-dt 

k=n k ln k n t ln t 
M =/3 + -1 -, for n ~ N2 + 1, nn, 

that is, 
M 

Xn 2:'. Xn-1 + -1-, for n 2:'. N2 + 1 nn 
It follows that 

[ 
1 1 1 ] x >M -+ +···+ +xN 

n_ lnn ln(n-1) ln(n+l-(n-N2)) 2 

n-N2 2::M 1 , for n ~ N2 + 1 nn 
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Hence, we find that 

I n - N2 -1 
--2-Xn-1 > M 2 for n > N2 + 2 
nln n - nln nln{n - 1) - 

(7) 

00 

L l \ Xn-1 = 00 
n=N2 n n n 

This contradiction shows that the case (ii) is also impossible. The proof which Eq.( 4) 
has no positive solutions is complete. 

The following example 2 shows that it is also possible that Eq.(1) has a positive 
solution when (2) holds and c = 1. 

Example 2. Consider the neutral difference equation 

.6(xn - Xn-1) + PnXn-1 = 0, n -~ l 

Here Pn = n(n1+l) (I::i:/ t )-1 It is obvious that (2) holds, and this equation has a positive 
solution Xn = I::1 1/i, n = l, 2, · · · 

Remark. Combining the Theorem 1 and Example 1, we know that 

00 

L IPnl - 00 
n=N 

is an necessary condition for th~ oscillation of all solutions of Eq.(1) when c # l. 

References 
[l] G. Ladas, Recent developments in the oscillations of delay difference equations, in Differential 

Equations: Stability and Control, Dekker, New York, 1990. 
[2] L.H. Erbe and B.G. Zhang, "Oscillation of discrete analogues of delay equations," Differential and 

Integral Equations, 2, No.3 (1989), 300-309. 
[3] G. Ladas, "Explicit conditions for the oscillation of difference equations," J. Math. Anal. Appl., 

153(1990), 276-287. 
[4] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, 

Clarendon Press, Oxford, 1991. 
[5] G. Ladas et al., "Necessary and sufficient conditions for the oscillation of difference equations," 

Libertas Math., 9(1989), 121-. 
[6] G. Ladas et al., "Sharp conditions for the oscillations of delay difference equations," J. Appl. Math. 

Simulation, in press. 
[7] L.H. Erbe and B.G. Zhang, "Oscillation for first order linear differential equations with deviation 

arguments," Differential and Integral Equations,1988. 



POSITIVE SOLUTIONS OF NEUTRAL DIFFERENCE EQUATIONS 265 

[8] Jurang Yan and Chuanxi Qian, "Oscillation and comparison results for delay difference equations," 
J. Math. Anal. Appl., 165(1992), 346-357. 

[9] D.A. Georgiou et al., "Oscillations of neutral difference equations," Appl. Anal., Nos. 3-4, 33(1989), 
243-253. 

[10] B.S. Lalli et al., "On the oscillation of solutions arid existence of positive solutions of neutral 
difference equations," J. Math. Anal. Appl., 158(1991), 213-233. 

[11] B.S. Lalli and B.G. Zhang, "On existence of positive solutions and bounded oscillations for neutral 
difference equations," J. Math. Anal. Appl., 166 (1992), 272-287. 

Department of Applied Mathematics, Hunan University, Changsha, Hunan 410082, China. 


