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EIGENVALUE ESTIMATES FOR HIGHER ORDER 
ELLIPTIC EQUATIONS* 

HSU-TUNG KU, MEI-CHIN KU AND XIN-MIN ZHANGt 

Abstract. In this paper, we obtain good lower bound estimates of eigenvalues for 
various Dirichlet eigenvalue problems of higher order elliptic equations on bounded 
domains in Rn. 

1. Introduction 

Let M be a bounded domain in the Euclidean n-space Rn with smooth boundary 
BM, n ~ 2, and .6 be the Laplace operator defined by 

n a2u 
.6u= -I::axr 

i=l 

u E C2(M). 

Let {Ai}, 0 < >.1 ::; >.2 ::; · · ·, be the eigenvalues of the Dirichlet eigenvalue problem ( a 
classical membrane problem) 

{ 
.6u = ~u 
u=O 

The Weyl's asymptotic formula asserts that 

in M, 
on BM. 

(1.1) 
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where Cn = 41r2/(wn)2fn,wn is the volume of the unit disk Rn and IMI denotes the 
volume of M. A consequence of (1.1) is the following (cf. [7]): 

(1.2) 

Thus, any good estimate of the eigenvalue Ak should be compatible with the Weyl's 
formula (1.1) or (1.2). The famous Polya conjecture states that 

k = 1,2, .... (1.3) 

This conjecture holds for some special domains in the plane [10}. In 1983 [8], Li and Yau 
verified that (1.3) holds in the average sense (cf. (1.2)), that is, 

k ( k )2/n 
Lji ~ nn: 2Cn IMI ' 
i=l 

k = 1,2, .... (1.4) 

Now let T(x) and R(x) be polynomials of degrees t and r respectively with non-negative 
coefficients, say 

t 

T(x) = L am-rXm, 
m=r+l 

r 

at-r = 1, and R(x) = L b1x1. 
j=O 

In this paper we shall consider the following general eigenvalue problem: 

E(T,R): { T~61u _ µ(T,R)R(6)u in M, _ C,) u-0 onoM,s-0,1,···,t-1, 

with eigenvalues {µk}, 0 < µ1 ::; µ2 ::; · · ·, where µk = µk(T, R), and fv denotes the 
unit outward normal derivative on 8M. Let p 2:: 0 be a fixed integer, p::; r. If b1 = 0 for 
j::; p - 1 in R(x), then R(x) = Rp(x), where 

r 

Rp(x) = L b1x1. 
j=p 

Hence. if we set 
µk,p = µk(T, Rp), k = 1, 2, · · ·, 

then 
µk = µk,o, and µk,p = µk,p-1 = · · · = µk,O· 

We propose the following general eigenvalue estimates: 

(1.5) 
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Generalized Polya Conjecture. The eigenvalues {µk,p} satisfy the inequalities 

{ 

t-r 2 / }(t-r)/(t-p) 
/-'k,p 2 i I=. Om(Cn)m (i!

1
) m n , k = 1, 2, ... , 

where b = Rp(l). 

Set 

and 
Ak,p == µk(T, xP), k = l, 2, · · ·, 

We shall verify that the Generalized Polya Conjecture holds in the average sense for 
many domains M in Rn. More precisely we have 

Theorem A.Let a and /3 be any positive real numbers and A1,p ~ l. Then 
k 

i) I: µf.v ~ k{ Qk,p(M)}'\ k == 1, 2, · · · .. (1.6) 
i=l 
k 

ii) I:) :Sk{Qk,p(M)}-a,k==l,2,···. (1.7) 
i=l ,.p 
~k 

···) L,, 1 µ';,l' {Q (M)}a+fJ k - 1 2 . . . (1 s·) 111 I:k -/3 ~ k,p , - , , . . 
µ. i=l ... ,, 

The estimates of µk,p for some special cases are also contained in (3] (4] (6] [7]. 

The generalized ratio of the consecutive eigenvalues µk+I,p and µk,p is defined as 
the quotient µk+i,p/ µt~t-r). We have the following interesting estimate of the upper 
bounds of the generalized ratio which is independent of the integer k. 

Theorem B. If 1JI,p ~ 1, then 

µk+l,P < br/(t-r) {1 + ±_ ~ m(n + 2m - 2)am-r}, 
t/(t-r) - n2 L.J µk m=r+l ,p 

(1.9) 

The hypotheses Ai,p ~ 1 and 1Jl,p ~ 1 in Theorems A and B respectively are unnecessary 
if µi,p = Ai,p, i.e. R(x) == Rp(x). As an immediate corollary of Theorem B we obtain the 
following inequality: 

1Jk+l,p < 1 + ±-(p + l)(n + 2p). 
p+l - n2 

Tlk,p 
(1.10) 
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This gen~alizes the follo~ing inequality of Payne, Polya and Weinberger (10) because 
1Jk+1,o = Ak+l and T/k,o = Ak: 

2. Eigenvalue Estimates 

For any fixed integer p, 0 ::; p ::; r, set 

< u, v >= JM u(x) _6.P v(x)dx. 

A function u is said to satisfy the condition ( *ffi) if 

a 
(-) s u = 0 on 8M for s = 0 1 · · · m - 1 8v ' ' ' · 

Suppose the function u satisfies ( *t) and < u, u >= l. Then we can verify the following 
inequality (cf.[3]): 

(2.1) 

Lemma 2.1 (cf. [3]) Fork~ l, we have 

t 

Ak,r ~ L am-r(rJk,r)m-r. 
m=r+l 

(2.2) 

Thus Ak,r ~ l if 1]1,r ~ l. 

Proof. The inequality (2.2) follows easily from (2.1), maxi-mini principle and the 
Rayleigh Theorem. 

Lemma 2.2 (cf. [3]) For any k = 1, 2, · · ·, 
i) µk,p ::; t>-k,p if 1]1,p ~ 1; 
ii) µk > l(>.k )(t-r)/(t-p) zj Ak > 1. ,p - b ,p ,P - 

Proof. Let 
(u, v) = JM u(x)Rv(6.)v(x)dx. 

and { ui} t (resp. { Vi H) be a set of orthonormal eigenfunctions associated with the 
eigenvalues {>.i,p}} (resp. {µi,vH). By maxi-mini method, there exists v = L;=I CjUj 
such that (v, vi) = 0 for i = 1, 2, · · ·, k - 1, and < v, v >= l. From (2.1) we have 

( < v, 6.v > )i-p ::;< v, 6_i-vv >, j = p + 1, · · ·, r, (2.3) 
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and (2.3) also holds for j = p because 1 =< v, v >. Moreover from Rayleigh Theorem 
and hypothesis we obtain 

< V, 6v >= JM V 6P+l V 2:: 1/1,p 2:: 1. 

Hence it follows from (2.3) and (2.4) that ( v, v) 2:: b, and so, 

< IM vT(6)v < EJ=1 CiCj IM UiT(6)u1 < EJ=1 c;.X1,p < !_x 
µk,p - (v,v) - b - b - b k,p 

(2.4) 

because EJ=1 c; = 1. This proves (i). The proof of (ii) is similar. 

If R(x) = Rp(x) = xP and µk,p = Ak,p, Lemma 2.2 holds trivially. Hence the 
assumptions 1/l,p 2:: 1 and .X1,P 2:: 1 are unnecessary. Observe that (ii) also holds under 
the hypothesis 1/l,O 2:: 1 by Lemma 2.1. 

Lemma 2.3 If 1}1,0 ~ 1, then 

Ak,p ::; Ak,o ::; (.Xk,p/l<t-p). 

Proof. Let Rp(x) = xP. Then Ak,p = µk,p· Notice that b = Rp(l) = 1. Since 
1/1,0 ~ 1, by Lemma 2.2 we have 

(2.5) 

But µk,p = µk,o by (1.5). Hence µk,o = Ak,p· This p:roves the Lemma by (2.5). 

Proof of Theorem A. Let 

It was proved in [4] (and [6] for p even) that 

k L Ai,p 2:: kPk,p(M), k = 1, 2, · · ·. 
i=l 

{2.6) 

Hence we can show as in [6] using [4], that for any positive real number d > 0, we have 
k 

L.Xf,P 2:: k{Pk,p(M)}d,k= 1,2,···. 
i=l 

(2.7) 

and 

{2.8) 
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i) Since Ai,p ~ 1, it follows from Lemma 2.2 that µi,p ~ t(Ai,p)(t-r/(t-p), hence by 
(2.7), we obtain 

k k "µ~ > ~"(A. )a(t-r)/(t-p) > !._{P, (M)}a(t-r)/(t-p) L.J i,p - ba L.J i,p - ba k,p 
i=l i=l 

== k{Qk,p(M)}a. 

ii) Since A1,p ~ 1, again by Lemma 2.2 we have 

1 ba 
-<----- µa - Aa(t-r)/(t-p)' i,p i,p 

hence by (2. 7), 

k 1 k 1 "_ < ba" < kba{P, (M)}-a(t-r)/(t-p) = k{Q (M)}-a. L.J µ~ - L.J \ a(t-r)/(t-p) - k,p k,p 
i=l i,p i=l "'i,p 

iii) 
k 

Lµfp ~ k{Qk,p(M)}0 == k{Qk,p(M)}-(3{Qk,p(M)}a+(3 
i=l 

2 {t. ,,t} {Q,,,(M))°+P by(ii). 

from which the desired inequality follows. 
As a corollary of Theorem A we have: 

Theorem 2.4. Let O :S p :S r be as above, and let A1,p ~ l. 
k == 1,2,· · ·, 

Then for 

(2.9) 

Proof. Set 

Theorem A implies 

(2.10) 

Moreover, from [3, Theorem 7] we have 

k k t-r 

Lµi,p ~LL am(i,m+r· 
i=l i=l m=l 

(2.11) 
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Thus, we establish the inequality (2.9) using (2.10) and (2.11). 
Now let 

Lu= (-1/ L CaDau 
lal=2t 

(ca 's are constants) 

be an ellipitic differential operator, that is ,there exists a constant c > 0 such that 

L Cal;,a ~ clF,,12\ for all f,, = (6, · · ·, F,,n) E Rn. 
lal=2t 

(2.12) 

Here o: = (o:1, · · ·, o:n) is an n-tuple of nonnegative integers; lo:I = 0:1 + · · · + O:n, and 
Da = Df1 • • · D~n, Dj = B/Bxi. Let Ak,p's be the eigenvalues of the Dirichlet problem 
(where O::; p::; r < t): 

{ 
Lu -:- ARp(6.)u 
u satisfies ( *t). 

in M 

Theorem 2.5. For k = 1, 2, · · ·, we have 

i) Ak,t ~ c(k,t, 
and 

ii) '°'k A. > ck { n ( k )2(t-r)/n}(t-r)/(t-p) 
Lt;=l J,t - b n+2(t-r) lMI · 

(2.13) 

(2.14) 

Proof. Let { wi}t be the orthonormal eigenfunctions corresponding to the eigen 
values {(i,t}t and let w E C2t(M) be an non-zero function satisfying (*t) and (w,wj) = 
0, j = 1, 2, · · ·, k - l. Since wlBM = 0, we can extend w to Rn by letting w(x) = 0 for 
x E Rn\M. Let w(x) denote the Fourier transform of w(x). Then 

(! w) (~) = i~;W(O, i = R, 

hence 
(2.15) 

Moreover, for any h ~ 0, 
(2.16) 

(2.17) 

Write Daw = D/3+-rw with I.Bl = hi = t. By integration by parts and the Planchel 
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Theorem we have 

{-1/ / w(x)D0w(x)dx = f (Df3w)(D0w)dx 
jM jM · 

=! / {[Df3w + D1'w]2 - [Df3w - D1'w]2}dx 
4 lnn 
1 / --- --- --- --- =- {1Df3w + D1'wl2 -1Df3w - D1'wl2}d~ 
4 Rn 

= ! / (iii;IYtw + iii;IYtw )d~ 
2 jM 

=Re JM ~lYtwde 

= JM e13+1'1w(~)12~ (by(2.15)) 

= JM e01w(€)12de. 

0 bserve that 
JM l€12tlw(Ol2d~ = JM w 6t wdx. 

For instance, if t = 2h, then 

JM l€l2tlw(Ol2~ = JM (l~l2hlw(€)l)2~ 

= JM 1~(€)12d€ (by (2.14)) 

= JM I 6h w(x)l2dx (by Planchel Theorem) 

= JM w 6t wdx. (by Green's Theorem) 

It follows that 

1 wLwdx = 1 L Ca€0lw(Ol2d€ 
M M icrl=2t 

2:: c JM 1e12tlw(e)l2de (by(2.12)) 

= c JM w 6 t wdx. 

From the mini-max principle we have 

A _. f {IMwLwlO-/=wEC2t(M),wsatisfies(*t)} 
k,t - m ESUP (w,w) EC C2t(M),dimE = k ' 

(2.18) 
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and 
;- - . f { JM w t:::,,t w IO I- w E c2t(M), w satisfies (*t)} 
<,,k,t - lil ESUp (w,w) EC c2t(M),dimE = k . 

This implies (2.13) by (2.18). Thus, the inequality (2.14) follows from theorem A and 
(2.13). 

We conjecture that Theorem 2.5 remains true for the differential operator L which 
is self-adjoint and uniformly elliptic, that is, it satisfies (2.12) and c~s are functions 
ca(x) E ct(M) and there is a constant K > 0 such thaf 

L lca(x)l2 :SK, for all x EM. 
a 

We shall show that this conjecture is true for t = l. Since L is self-adjoint, we may 
assume that L is in the divergent form, that is, 

Lu= - L Di(ci1(x)D1u), 
i,j 

where the matrix (ci1(x)) is symmetric. Let {Ak} be the eigenvalues of the eigenvalue 
problem: 

{Lu= Au in M 
u = 0 on 8M. 

The following result generalizes the result of Li and Yau (1.4). 

(2.19) 

Theorem 2.6. 
i) Xk ~ c:Xk, k = 1, 2, ... , (2.20) 

and 
k _ ( )2/n ii) Lj=l Aj ~ ~:~en 1tt1 , k = 1, 2, · · ·. (2.21) 

Proof. Let { <pk} be the orthonormal eigenfunctions corresponding to { Ak}. Since 
the quadratic form 

Q(w) = JM wLw 
- - satisfies Q(<pk) = Ak = Ak < <pk, <pk >, hence the mini-max principle also holds for the 

eigenvalue problem (2.19). Thus, 

A- . f { J M wLw I O f. w E C2 
( M), w ,a M = 0 } 

k = m esup 2 . < w,w > E c C (M),dimE = k. 

Now for any w E C2(M}, w I- 0 and wJ8M = 0, 
(by(2.12)) 
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Hence it follows from the mini-max principle that we have the inequality (2.20). Thus, 
we can establish the inequality (2.21) via the estimate (1.4). 

To conclude this section we verify the following comparison theorem for eigenvalus 
(k,t' s. 

Theorem 2. 7. Let O::; p::; r < m::; t, and bp = 1 in Rp(x). Then we have 
i) (k,t ~ ((k,t)t/m, k = 1, 2, · · ·; 
ii) I:;=1((k,t)

5 ~ k(m-t)/t{I:;=1((i,m)s}t/m, k = 1,2,·· ·, ands > 0 is any real 
number. 

Proof. i) Let Wk be the subspace of L2(M) generated by w1,u.i2, ···,wk, and so 
(wi, Wj) = 6i,i· Let w = L~=l aiwi E Wk and IM w 6,P w = l. Then 

hence 

) 

(m-t)/t 
IM W 6 mW < (IM W 6 t W )m/t ::; (t aJ ( (k,t)m/t ::; ( (k,t)m/t. 

(w, w) - (w, w) j=l 
(2.22) 

Now for u # 0, u E Wk, let llull2 = IM u 6.Pu and set w = u/llull. Then IM w 6.Pw = 1 
and 

IMu.6mu IMw6.mw 
(u,u) - (w,w) 

(2.23) 

Since w/s also satisfy (*m); hence (i) follows from the mini-max principle, (2.22) and 
(2.23). 
ii) By (i) and Holder's inequality. 

The special case of Theorem 2.7 (i) when p = r = 0 was proved in [3] and [2) (for 
m = k = 1). 

3. Generalized Ratio 

Theorem 3.1. If 1]1,v ~ 1, then 

b_r t_:,, 4 ~ ( { ~ t } '~ t-rn µk+1,v - t-r µk,v ::; bkn2 L-1 m 'Tl,+ 2m - 2)am-r L.)bµi,p) ~ k-t-. 
m=r+l i=l . 

Proof. The following result is proved in [I). The special case L = 6. was obtained 
by Payne, Polya and Weinberger in [10). 

t { k }m/t 
AH1,o - Ak,o :<; k!'·=~+l m(n + 2m - 2}a=-• 8 A;,o k(t-=)/•. (3.1) 
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Thus, it follows from Lemmas 2.2 and 2.3 that 
1 1 1 

µk+l,P::; bAk+I,p::; b(Ak+i,o - Ak,o) + ,;.Xk,o 
t { k }m/t 4 t-m 1 

::; bkn2 m~+l m(n + 2m - 2)am-r ; Ai,O k-t- + bAk,O (by (3.1)) 

t { k }m/t < -4- "" m(n + 2m - 2)a - "".xt/(t-p) k t-;m + !.x t.:.7, - bkn2 ~ m r ~ t,p b k,p 
m=r+l i=l 

t { k }m/t 
::; bk~2 I: m(n + 2m - 2)am-r I:(bµi,p)tf(t-r) k t~m + bt::r ,1,{~; 

m=r+l i=l 

This establishes the Theorem. 

Proof of Theorem B. Since Ak,o 2:: 1, form the proof of Theorem 3.1, we get 
k 

4 "" /t t.-m 1 µk+l,p::; bkn2 ~ m(n + 2m - 2)am-r{k.Xk,o}m k-t- + bAk,O 
rn=r+l 

{ 
t } 1 4 t/(t-p) ::; b 1 + n2 L m(n + 2m - 2)am-r Ak,p 

m=r+l 

1{ 4 t } t ::; b 1 + n2 L m(n + 2m - 2)am-r (bµk,p)~ 
. m=r+l 

(by Lemma 2.3) 

(by Lemma 2.2) 

This concludes the proof. 

From [5], we also have the following inequality: 

t-r { k } t'.:'..\ 
Ak+1,1 - Ak,l ::; 1-1~: '>\2 ~

1 
(m + l)(n + 2m)am ; Ai,l k t-;:;

1

. 

By repeating the arguments above using this inequality we have 

Theorem 3.2. If 1JI,p 2:: 1, then 
i) 

µ br/(t-r) t/(t-r) r+l,p - µk,p · 
4 t-r k 

::; b(n + 
2
)2k I: (m + 1)(n + 2m)am {I:(bµi,p) t.:.r} /'.\ k 

1

~:;

1

. 

m=l i=l 
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ii) 

µk+l,p < br/(t-r) {1 + 4 ~ (m + l)(n + 2m)a } . 
t/(t-r) - (n + 2)2 L..J m 

µk,p m=l 

As a special case if 111,v ~ 1, we have 

1Jk+l,p < l + _8_. 
11v+I - n + 2 
k,p 

This inequality is much sharper than the one in (1.10} if p ~ 1. 
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