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ON THE DENJOY-PERRON-BOCHNER
INTEGRAL

STANISLAW SIUDUT

Abstract. The notion of Denjoy integrals of abstract functions was first intro-
duced by A. Alexiewicz [1]. His descriptive definitions are based upon a concept of
the approximate derivative. In this paper we present another descriptive definition
for the Denjoy-Perron integral of abstract functions - via the parametric derivative
of Tolstov [8]. Some properties of this integral are examined.

We assume that the reader is familiar with [2]. Let X be a Banach space. The defi-
nition of Tolstov ([8] p.387) and the important theorem of Armstrong ([2] p.36, Theorem
2) lead to the following definition.

Definition. Let F : [a,b] — X, where [a,b] is a finite interval. The function
f:la,b] = X is called the parametric derivative of F if there exists a differentiable
strictly increasing function ¢ mapping [, f] onto [a,b] such that

9 F(p() = () Flo(®)  for every  te ol

The function will be called a dpr for F' (dpr stands for differentiable parametric repre-
sentation). We shall write D(F) = f.
The properties of the parametric derivative are the same as in [2], namely we have
a. If F/ = f then ¢(t) =t is a dpr for F.
b. If F has a parametric derivative, then it is continuous.
c. If D(F) = f, and F has dpr ¢, and ¢'(t) # 0, then F' has an ordinary derivative at
the point z = @(t), F'(t) = f(=z).
d. If D(F) = f on [a,b], then a.e. on [a,b] F has an ordinary derivative F' = f (cit.
[2] ppe31, 32).
The proofs of the above properties run as in [2]. The properties 1, 2, 3 ([2] p.31)
remain also true, i.e. we have
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1. D(kF) = kD(F), k is a constant,

2. D(F +G)=D(F)+ D(G),

3. D(F) =0 implies F is a constant.

To prove 2 define © = ((¢~! +9~1/2)71, where ¢, 9 are dpr for F', G, respectively.

For every h belonging to the set {¢~!,9~1,071} h is a strictly increasing bijection [a, b]
onto [, 8] and 0 < A’ < 00,50 0 < (h™1)" < 0o and h™! is a strictly increasing bijection
[a, B] onto [a,b]. Thus © satisfies the assumptions of our definition. Obviously we have
0<2(07Y) =(p71) + (1) < 00, hence (071)(z) = o if and only if (¢~ !)'(x) = o0
or/and (¢~1)(z) = oco. Therefore, if z = O(t) = ¢(s) = ¥(r) then we obtain

©(t)=0 ifandonlyif ¢'(s)=0 or/and ¢'(r)=0.

The above, the Definition and property ¢ imply that © is a dpr for both F' and G, because
(Fo®)(t) and (G o ©)'(t) exist. To prove the last statement we consider for example
the case ©'(t) = 0, ¢'(s) =0, ¥'(r) # 0. Since z = O(t) = ¢(s) = ¥(r) and O(¢t + h) =
O(t)+o(h), p(s+h1) = p(s)+o01(h1), Y(r+ha) = ¥(r) + ' (r)he + 02(hs), we obtain for
O(t+h) = p(s+h1) = 9(r+h2) the following equalities o(h) = 01 (h1) = 02(ha)+%'()h2.
According to the definition of © we get t = (s+7)/2,t+h = (s+hy +7+ h2)/2 and the
signs of h, hy, ho are the same. Therefore 2h = h; + hy and h; /h is bounded as h — 0
(moreover, h — 0 if and only if h; — 0). Consequently,

h_1 ) F(.’E 4= Ol(hl)) = F((L‘)
h h1 '

(F0©)(¢) = lim (F(z + o(h) - F(z))/h = lim
hi  F(e(s + ) = F(e(s))

=l Ay =4

because of (F' o ¢)'(s) = 0. This proves the existence of (F o ©)'(¢t). The existence of
(G 0 ©)/(¢) is a consequence of the property c.

Finally, © is a dpr for both F and G. Thus (F+ G)00©) = (Fo® + Go0) =
(F o ®)'+ (G o ©), which yields property 2 (cf. [2], p. 32). Properties 1 and 3 are easy
to prove (cf. [2], pp. 31, 32).

Let X; (i = 1,2,3) be a Banach space, F; : [a,b] — X;(i = 1,2), B: X; x X5 — X3
is an arbitrary bilinear and continuous map. Then we have also

e. D(B(F, F3)) = B(F1, D(F»)) + B(D(F1), F2).

The proof is similar to that of [2] p.32 if we use a formula on the derivative of bilinear
product from [7], Chapter III, 4.

Let f be a parametric derivative of F on [a, b]. We define the Denjoy-Perron-Bochner
integral (short: DPB-integral) of f by

b
/ f =F(b) - F(a)
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(see [2] p.32 (3) for real-valued functions). The function f above is said to be Denjoy-
Perron-Bochner integrable (short: DPB-integrable). This integral is well-defined (see the
proof of Theorem 1, [2] p.33). Moreover, theorem 2, 3, 4, 5 from [2] pp. 33, 34 remain
also true with the similar proofs (obviously the proof of 4 must be suitable changed).
Therefore the following properties hold for DPB integral:
a. if f, g are DPB-integrable in [a,b], k is a constant, then kf, f + g are also DPB-
integrable on [a, b] and

/:kf=k/abf, /ab(f+g)=/:f+/:g,

B. if f is DPB-integrable in [a,c] and on [c,b], then f is DPB-integrable on [a,b] and

/:f=/:f+/cbf,

‘~. if Fy, Fy are the same as in the property d, D(F;), D(F3) exist and one of summands
on the right side of d is DPB-integrable, so is the other, and

b b
/ B(Fy, D(Fy)) = B(Fy(b), Fa(5)) — B(Fi(a), Fa(a)) - f B(D(F), B)),

a

§. if f is the derivative of F on [a,b], then f is DPB-integrable and

b
/ f = F(b) — F(a).

In the sequel the Bochner integral of f on [a,b] will be denoted by (B) f: f. Using
Th. 8 of Zahorski ([10] p.35) and arguing as in [2] p.35 we obtain

e. if f =0 a.e. on [a,b], then f is DPB-integrable on [a, b] and f: f = 0. Now, we shall
prove the following

Theorem A. A DPB-integrable function f is strongly measurable.

Proof. Let f = D(F) be defined on [a,b], and Z = {z € (a,b) : F'(z) ex-
ists and F'(z) = f(z)}. By the property d, the complement of the set Z to the set
[a,b] has Lebesgue measure zero. Define h, = (b — a)/n,I(n,k) = [a + (kK — 1)hn,a +
kha], AI(n,k) = hn, AF(n, k) = F(a + khs) — F(a + (k — 1)ha), ya(2) = 3 Xn k()

k=1
AF(n,k)/AI(n, k), where xn k is the characteristic function of the interval I(n,k).

Fix z € Z. For every n there exists an interval I(n,k(t)) containing ¢, where ¢ is
a member of (a,b). Moreover, the diameter of this interval tends to zero as n tends to
infinity. Thus
. AF(n,k
im SF (1 k(z))

K, ATk — 7 @ {eee Blp150).
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Consequently, the sequence of simple functions ¥, tends to F’'(z) = f(z) for almost all
z € [a,b] and therefore f(z) is strongly measurable on [a,b] ([9] p. 130).

Theorem B. If f : [a,b] — X, the dimension of X is finile and f is Bochner
integrable on [a,b], then f is DPB-integrable there and the two integrals are equal.

Proof. Let e;,...,e, be a basis of X and f = ) fie;. From this and Th. 3 [2] it
i=1

follows that
b n b n b n b b
CYNE ;((m/a £) o= ;(/ Ra=3 [he=[ s
by the property 2 and e.

Theorem C. Let T be a bounded linear operator on a Banach space X into
a Banach space Y. If f is an X-valued and DPB-integrable on [a,b] function,
then Tf is a Y-valued DPB-integrable function, and

T(/:f):/abTof.

Proof. Let F' be a parametric primitive of f with dpr ¢. Now T is continuous and
therefore it is commutative with the derivative. We have ((T' o F) o ¢)'(t) = (T o (F o

©))'(¢) = T((F o) (8)) = T(¢'(¢)f(#(t)) = ¢'() - [T o fl(¢(t)), whence ¢ is a dpr for
ToFand D(ToF)=To f. Thus

b

/abTOf = (T F)b) - (T F)(o) = T(F() ~ Fl@) = 7( [ )

a

and the proof is finished.

Theorem D. If f is Bochner integrable on [a,b] and f is DPB-integrable on
[a,b], then the two integrals are equal there.

Proof. Denote the first integral by u, the second one by v both on [a,b]. Let T be

a bounded linear functional defined on X.
Define

b b
p=(B)/ ey q=/ Tof.
It follows from Th. C, Corollary 2 of [9] p. 134 and Th. 3 of [2] that
T(u—v)=Tu—-Tv=p—-q=0.

Therefore v — v must be 0 (since T is an arbitrary element of the dual space of X). The
proof is finished.
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From the descriptive definitions of the Bochner and the Denjoy-Bochner integrals
([1], pp. 101, 102) it follows immediately that if f is Bochner integrable on [a, b], then
f is DB-integrable there and the two integrals are equal. But then the DB-integral is a
generalization of the general Denjoy integral, whereas our DPB-integral is a generaliza-
tion of the restricted Denjoy integral. These considerations and Theorems B, D suggest
the following theorem.

Theorem E. If f is Bochner integrable on [a,b], then f is DPB-integrable
there and the two integrals are equal.

Proof. Let || || be the norm in the space X, A = (B) f: ||f(z)||dz. If A =0, then
||f(z)]| = O for almost all z in I = [a,b], so f =0 a.e. on I. Thus the two integrals are
equal by the property ¢ (see also [9] p. 133).

Suppose A > 0. Since the function ¢(t) = t + (B) f: ||f(z)||dz is increasing and
continuous on I, then for every s from J = [a,b + A] there exists ¢ € I, such that
s = ¢(t). Denoting this ¢ by d(s), we have the increasing bijection d : J — I. Let
us consider the function F(t) = (B) f;’ f(z)dz. Taking s; < s from J, we obtain for
t; = d(s;), (6 =1,2)

ld(s2) = d(s1)| = t2 — s < to — t1 + (B) / @)z = [s2 — s1l,

and similarly

to

f(@)dal| < ta — t + (B) / 1 f@)lldz = |sz — s1l.

1 t1

|7 (d(s2)) = F(d(s1))]| = [|(B) j

From this it follows that the funcitons d, F' o d satisfy the Lipschitz condition on J.
Moreover, d (as well as c) is absolutely continuous.

The set E = {x el:Fiz)= f(a:)} has measure b — a, thus the set Z = I\ E has
measure zero (Th. 2, [9], p. 134). Therefore the set d=(Z) = ¢(Z) has measure zero (Th.
1, [5] p. 172) and (F o d)'(s) exists for almost all s € J. Indeed, d'(s) exists for almost
all s € J and therefore (F o d)'(s) = F'(d(s)) - d'(s) for almost all s € J\d~!(Z), thus
for almost all s € J (cf. [5], Corollary, p. 173). Repeating the arguments of Bruckner
([4], p. 555, linesy7,21) we can find a dpr ¢ for Fod and a dpr ¢ for d (both Fod and d
satisfy the Lipschitz condition). Let © : K — J be a common dpr for F od, d (compare
with the proof of property 2). Thus

(Fodo®)'(r) existsforall re€K. (1)
Denote by C, G the sets

{xEI\E:x=doG)(r), (do®)(r)=0 for some T‘EK},
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{zEI\E:x=do@(r), (do®)(r)#0  for some ’I‘EK},

respectively. The sets E,C,G are disjoint and EU C UG = I, since (d o ©)'(r) exists
for all » € K. Define the function g(z) to be f(z),0,((d o ©)'(r))™. (Fodo ®)(r) for
x = d o ©(r) belonging to E,C, G, respectively. From this definition and (1) we obtain

(Fo(do®))(r)=g(do®O(r))-(do®)(r) forall re€ K,

and therefore d o © is a dpr for F,D(F) = g. Since g— f = 0 a.e. on I, then g — f is
DPB-integrable and its DPB-integral is equal to zero (property €). Finally,

b b b
F(b) - F(a) = / o / 0 =gt / f  (property a), so

b b
(B) / f(z)dz = F(b) — F(a) = / f (ged)
The theorem on integration by substitution ([2], p.38) can be reformulated as follows.

Theorem F. Let g : [c,d] = R be Lebesgue integrable and positive on [c,d],
G(t) =a+ fotg Jorc<t<d, and G(d) =b. If f : [a,b] = X is DPB-integrable on
[a,b], then g-(f o G) is DPB-integrable on [c,d] and f:f = fcdg (fo Q).

The proof is similar to that of [2] p. 38, 39. Indeed, let us observe that our function
g is DPB-integrable (by Tolstov’s theorem, [8]). In the diagram on p. 34, [2], we must
take X instead of R.

Example. Let F(z) = z2sin(1/z?) forz # 0, F(0) =0 and w € X, w # 0. The
function f = D(F) - w is DPB-intergrable on- [0,1], but f is not B-integrable on this
interval. This remark is an obvious consequence of a Saks’ example, see also [2] p. 35.
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