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ON THE DENJOY-PERRON-BOCHNER 
INTEGRAL 

STANISLAW SIUDUT 

Abstract. The notion of Denjoy integrals of abstract functions was first intro­ 
duced by A. Alexiewicz [l). His descriptive definitions are based upon a concept of 
the approximate derivative. In this paper we present another descriptive definition 
for the Denjoy-Perron integral of abstract functions - via the parametric derivative 
of Tolstov [8). Some properties of this integral are examined. 

We assume that the reader is familiar with [2]. Let X be a Banach space. The defi­ 
nition of Tolstov ([8] p.387) and the important theorem of Armstrong ([2] p.36, Theorem 
2) lead to the following definition. 

Definition. Let F : [a, b] .- X, where [a, b] is a finite interval. The function 
f : [a, b] .- X is called the parametric derivative of F if there exists a differentiable 
strictly increasing function <p mapping [a, ,B] onto [a, b] such that 

d 
dtF(<p(t)) = <p'(t) · f(cp(t)) for every t E [a, ,B]. 

The function will be called a dpr for F ( dpr stands for differentiable parametric repre­ 
sentation). We shall write D(F) = f. 

The properties of the parametric derivative are the same as in [2], namely we have 
a. If F' = f then cp(t) = t is a dpr for F. 
b. If F has a parametric derivative, then it is continuous. 
c. If D(F) = f, and F has dpr <p, and cp'(t) f. 0, then F has an ordinary derivative at 

the point x = <p(t), F'(t) = f(x). 
d. If D( F) = f on [a, b], then a.e. on [a, b] F has an ordinary derivative F' = f ( cit. 

[2] pp.31, 32). 
The proofs of the above properties run as in [2]. The properties 1, 2, 3 ([2] p.31) 

remain also true, i.e. we have 
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l. D(kF) = kD(F), k is a constant, 
2. D(F + G) = D(F) + D(G), 
3. D(F) = 0 implies F is a constant. 

To prove 2 define e = ((cp-1 + 'lj;-1 /2)-1, where cp, 'lj; are dpr for F, G, respectively. 
For every h belonging to the set { cp-1, 'lj;-1, e-1} his a strictly increasing bijection (a, b] 
onto [a, ,BJ and O < h' :::=; oo, so O :::=; (h-1 )' < oo and h-1 is a strictly increasing bijection 
[a, ,BJ onto [a, b]. Thus E> satisfies the assumptions of our definition. Obviously we have 
O < 2(E>-1)' = (cp-1)' + ('lj;-1)' :::=; oo, hence (E>-1)'(x) = oo if and only if (cp-1)'(x) = oo 
or/and (7j;-1)'(x) = oo. Therefore, if x = 0(t) = cp(s) = 'lj;(r) then we obtain 

E>'(t) = 0 if and only if cp'(s) = 0 or/and 7/J'(r) = 0. 

The above, the Definition and property c imply that E> is a dpr for both F and G, because 
(F o E>)'(t) and (Go E>)'(t) exist. To prove the last statement we consider for example 
the case E>'(t) = 0, cp'(s) = 0, 7/J'(r) :f. 0. Since x_ = E>(t) = cp(s) = '1/J(r) and E>(t + h) = 
E>(t) + o(h), cp(s + hi) = cp(s) + o1 (h1 ), '1/J(r + h2) = 7/J(r) + 1j;'(r)h2 + 02(h2), we obtain for 
E>(t+h) = cp(s+h1) = 'lj;(r+h2) the following equalities o(h) = 01(h1) = 02(h2)+'1j;'(r)h2. 
According to the definition of E> we get t = (s+r)/2, t+h = (s+h1 +r+h2)/2 and the 
signs of h, h1, h2 are the same. Therefore 2h = h1 + h2 and hi/ h is bounded as h ---+ 0 
(moreover, h---+ 0 if and only if h1 ---+ 0). Consequently, 

(F o E>)'(t) = lim (F(x + o(h) _ F(x))/h = lim h1 . F(x + 01(h1)) - F(x) 
h-+O h-+O h h1 

= lim h1 . F(cp(s + h1)) - F(cp(s)) 
h-+0 h h1 = 0, 

because of (F o cp)'(s) = 0. This proves the existence of (F o 8)'(t). The existence of 
( G o E> )' ( t) is a consequence of the property c. 

Finally, E> is a dpr for both F and G. Thus ((F + G) o E>)' = (F o E> +Go E>)' = 
(F o E>)' +(Go E>)', which yields property 2 (cf. [2], p. 32). Properties 1 and 3 are easy 
to prove (cf. [2], pp. 31, 32). 

Let Xi (i = 1, 2, 3) be a Banach sp.ace, Fi : [a, b] ---+ Xi(i = 1, 2), B: X1 x X2 ---+ X3 
is an arbitrary bilinear and continuous map. Then we have also 

The proof is similar to that of [2] p.32 if we use a formula on the derivative of bilinear 
product from [7], Chapter III, 4. 

Let f be a parametric derivative of Fon [a, b]. We define the Denjoy-Perron-Bochner 
integral (short: DPB-integral) off by 

b 1 f = F(b) - F(a) 
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(see [2] p.32 (3) for real-valued functions). The function f above is said to be Denjoy­ 
Perron-Bochner integrable (short: DPB-integrable). This integral is well-defined (see the 
proof of Theorem 1, [2] p.33). Moreover, theorem 2, 3, 4, 5 from [2] pp. 33, 34 remain 
also true with the similar proofs (obviously the proof of 4 must be suitable changed). 
Therefore the following properties hold for DPB integral: 
a. if f, g are DPB-integrable in [a, b), k is a constant, then kf, f + g are also DPB­ 

integrable on [a, b] and 

lb kf = k lb f, lb lb b 
a (f + g) = a f + 1 g, 

(3. if f is DPB-integrable in [a, c] and on [c, b], then f is DPB-integrable on [a, b] and 

,. if F1,F2 are the same as in the property d,D(F1),D(F2) exist and one of summands 
on the right side of dis DPB-integrable, so is the other, and 

t B(F1, D(F2)) = B(F, (b), F2(b)) - B(F, (a), F,(a)) - t B(D(F1 ), F,)), 

8. if f is the derivative of Fon [a, bl, then f is DPB-integrable and 

lb f = F(b) - F(a). 
In the sequel the Bochner integral off on [a, b] will be denoted by (B) 1: f. Using 
Th. 8 of Zahorski ([10) p.35) and arguing as in [2) p.35 we obtain 

€. if f = 0 a.e. on [a, b], then f is DPB-integrable on [a, b] and 1: f = 0. Now, we shall 
prove the following 

Theorem A. A DPB-integrable function f is strongly measurable. 

Proof. Let f = D(F) be defined on [a, bl, and Z = {x E (a, b) : F'(x) ex­ 
ists and F'(x) = f(x)}. By the property d, the complement of the set Z to the set 
[a, b] has Lebesgue measure zero. Define hn = (b - a)/n, I(n, k) = [a+ (k - l)hn, a+ 

n 
khnl, 6.I(n, k) = hn, 6.F(n, k) = F(a + khn) - F(a + (k - l)hn), Yn(x) = L Xn,k(X) 

k=l 
.6.F(n, k)/ .6.I(n, k), where Xn,k is the characteristic function of the interval I(n, k). 

Fix x E Z. For every n there exists an interval I(n, k(t)) containing t, where t is 
a member of (a, b). Moreovei·, the diameter of this interval tends to zero as n tends to 
infinity. Thus 

6.F(n, k(x)) = F'(x) J~moo 6.I(n, k(x)) (see [5) p.157). 
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Consequently, the sequence of simple functions Yn tends to F'(x) = f(x) for almost all 
x E [a, b] and therefore f(x) is strongly measurable on [a, b] ([9] p. 130). 

Theorem B. If f : [a, b] - X, the dimension of X is finite and f is Bochner 
integrable on [a, b], then f is DPB-integrable there and the two integrals are equal. 

n 
Proof. Let e1, ... , en be a basis of X and f = ~ fiei. From this and Th. 3 [2] it 

i=l 
follows that 

by the property 2 and e. 

Theorem C. Let T be a bounded linear operator on a Banach space X into 
a Banach space Y. If f is an X-valued and DPB-integrable on [a, b] function, 
then Tf is a Y-valued DPB-integrable function, and 

Proof. Let F be a parametric primitive off with dpr <p. Now T is continuous and 
therefore it is commutative with the derivative. We have ((To F) o cp)'(t) = (To (F o 
cp))'(t) = T((F o cp)'(t)) = T(cp'(t)f(cp(t))) = cp'(t) ·[To J](cp(t)), whence <p is a dpr for 
To F and D(T o F) =To f. Thus 

lb To f =(To F)(b) - (To F)(a) = T(F(b) - F(a)) = r(lb f) 
and the proof is finished. 

Theorem D. If f is Bochner integrable on [a, b) and f is DPB-integrable on 
[a, b], then the two integrals are equal there. 

Proof. Denote the first integral by u, the second one by v both on [a, b). Let T be 
a bounded linear functional defined on X. 
Define 

b rb 
p= (B) 1 Tof, q= la Tof. 

It follows from Th. C, Corollary 2 of [9] p. 134 and Th. 3 of [2) that 

T(u - v) = Tu - Tv = p- q = 0. 

Therefore u - v must be O (since Tis an arbitrary element of the dual space of X). The 
proof is finished. 
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From the descriptive definitions of the Bochner and the Denjoy-Bochner integrals 
([1], pp. 101, 102) it follows immediately that if f is Bochner integrable on [a, bl, then 
f is DB-integrable there and the two integrals are equal. But then the DB-integral is a 
generalization of the general Denjoy integral, whereas our DPB-integral is a generaliza­ 
tion of the restricted Denjoy integral. These considerations and Theorems B, D suggest 
the following theorem. 

Theorem E. If f is Bochner integrable on [a, b], then f is DPB-integrable 
there and the two integrals are equal. 

Proof. Let 1111 be the norm in the space X, A= (B) 1: llf(x)lldx. If A= 0, then 
llf(x)II = 0 for almost all x in I= [a, bl, so f = 0 a.e. on I. Thus the two integrals are 
equal by the property c: (see also [9] p. 133). 

Suppose A > 0. Since the function c(t) = t + (B) 1: llf(x)lldx is increasing and 
continuous on I, then for every s from J = [a, b + A] there exists t E J, such that 
s = c( t). Denoting this t by d( s), we have the increasing bijection d : J ---+ I. Let 
us consider the function F(t) = (B) 1: f(x)dx. Taking s1 :::=; s2 from J, we obtain for 
ti = d(si), (i = 1, 2) 

and similarly 

From this it follows that the funcitons d, F o d satisfy the Lipschitz condition on J. 
Moreover, d (as well as c) is absolutely continuous. 

The set E = { x E J : F'(x) = f(x)} has measure b - a, thus the set Z = I\E has 
measure zero (Th. 2, [9], p. 134). Therefore the set d-1(Z) = c(Z) has measure zero (Th. 
1, [5] p. 172) and (F o d)'(s) exists for almost alls E J. Indeed, d'(s) exists for almost 
alls E J and therefore (Fod)'(s) = F'(d(s)) ·d'(s) for almost alls E J\d-1(Z), thus 
for almost all s E J (cf. [5], Corollary, p. 173). Repeating the arguments of Bruckner 
([4], p. 555, lines17,21) we can find a dpr cp for F o d and a dpr 'lj; ford (both F o d and d 
satisfy the Lipschitz condition). Let E>: K---+ J be a common dpr for F o d, d (compare 
with the proof of property 2). Thus 

(F o do 8)'(r) exists for all r EK. (1) 

Denote by C, G the sets 

{x E I\E: x = do e(r), (do E>)'(r) = 0 for some r EK}, 
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{ x E I\E: x =do E>(r), (do E>)'(r) f; 0 for some r EK}, 

respectively. The sets E, C, G are disjoint and EU CU G = I, since (do E>)'(r) exists 
for all r E K. Define the function g(x) to be f(x), 0, ((do E>)'(r))-1. (F o do E>)'(r) for 
x =do E>(r) belonging to E, C, G, respectively. From this definition and (1) we obtain 

(F o (do E>))'(r) = g(d o 8(r)) ·(do 8)'(r) for all r EK, 
and therefore doe is a dpr for F, D(F) = g. Since g - f = 0 a.e. on I, then g - f is 
DPB-integrable and its DPB-integral is equal to zero {property € ). Finally, 

F(b) - F(a) = lb g = lb (f - g + g) = lb f (property a), so 

(B) lb f(x)dx = F(b) - F(a) = lb f, (9.e.d.) 

The theorem on integration by substitution ([2), p.38) can be reformulated as follows. 

Theorem F. Let g : [c, d] -+ R be Lebesgue integrable and positive on [c, d], 
G(t) =a+ 1; g for c :S t :S d, and G(d) = b. If f : [a, b] - X is DPB-integrable on 
[a, bl, then g · (f o G) is DPB-integrable on [c, d] and 1: f = fed g · (f o G). 

The proof is similar to that of [2] p. 38, 39. Indeed, let us observe that our function 
g is DPB-integrable (by Tolstov's theorem, [8)). In the diagram on p. 34, [2), we must 
take X instead of R. 

Example. Let F(x) = x2 sin(l/x2) for x f; 0, F(O) = 0 and w E X, w f; 0. The 
function f = D(F) · w is DPB-intergrable on· [0,1), but f is not B-integrable on this 
interval. This remark is an obvious consequence of a Saks' example, see also [2] p. 35. 
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