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RINGS WITH A DERIVATION WHOSE IMAGE IS 
CONTAINED IN THE NUCLEI 

CHEN-TE YEN 

Abstract. Let R be a nonassociative ring, N, M, Land G the left nucleus, middle 
nucleus, right nucleus and nucleus respectively. Suh [4] proved that if R is a prime 
ring with a derivation d such that d(R) <;;; G then either R is associative or d3 = 0. 
We improve this result by concluding that either R is associative or d2 = 2d = 0 
under the weaker hypothesis d(R) <;;; N n Lor d(R) <;;; N n Mor d(R) <;;; Mn L. 
Using our result, we obtain the theorems of Posner [3] and Yen [11] for the prime 
nonassociative rings. In our recent papers we partially generalize the above main 
result. 

1. Introduction 

Let R be a nonassociative ring. We adopt the usual notations for associators and 
commutators: (x, y, z) = (xy)z - x(yz) and (x, y) = xy - yx. We shall denote the 
left nucleus, middle nucleus, right nucleus and nucleus by N, M, L and G respectively. 
Thus N, M, L and G consists of all elements n such that (n, R, R) = 0, (R, n, R) = 
0, (R, R, n) = 0 and (n, R, R) = (R, n, R) = (R, R, n) = 0 respectively. An additive 
mapping don R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y in R. 
R is called semiprime if the only ideal of R which squares to zero is the zero ideal. R 
is called prime if the product of any two nonzero ideals of R is nonzero. R is called 
simple if R is the only nonzero ideal of R. Clearly, a prime ring is a semiprime ring. If 
R is a simple ring, then R2 = 0 or R2 = R; in the former case R is commutative and 
associative. So, if Risa simple ring then we assume that R2 = R. Thus a simple ring is 
a prime ring. Recently, Suh [4] proved that if R is a prime ring with a derivation d such 
that d(R) ~ G then either R is associative or d3 = 0. In section 2, we improve this result 
by concluding that either R is associative or d2 = 2d = 0 under the weaker hypothesis 
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d(R) ~ N n L or d(R) ~ N n _M or d(R) ~ Mn L. Using our result, we obtain the 
theorems of Posner [3] and Yen [11] for the prime nonassociative rings. In section 3, we 
partially generalize the main result of this paper and state our recent results. Assume 
that R has a derivation d. A nonempty subset S of R is called d-invariant if d(S) ~ S. 
By the definition of d, we obtain 

d(R) + d(R)R = d(R) + Rd(R). (1) 

Rings with associators in the nuclei were first studied by Kleinfeld and later by the 
author. Kleinfeld [1] proved that if R is a semiprime ring such that (R, R, R) ~ G 
and the Abelian group (R, +) has no elements of order 2 then R is associative. Yen 
[6] improved this result by dropping the hypothesis (R, R, R) ~ M. In [5], Yen showed 
that if R is a simple ring of characteristic not two such that (R, R, R) ~ N n M or 
(R, R, R) ~ Mn L then R is associative. For the related results, see [7]-[11]. 

2. Results and applications 

Let R be a nonassociative ring. In every ring one may verify the Teichmiiller identity 

(wx,y,z) - (w,xy,z) + (w,x,yz) = w(x,y,z) + (w,x,y)z. 

Suppose that n EN. Then with w = n in (2) we obtain 

(nx, y, z) = n(x, y, z) for all n in N. 

Assume that m E L. Then with z = m in (2) we get 

(w, x, ym) = (w, x, y)m for all min L. 

(2) 

(3) 

(4) 

As consequences of (2), (3) and (4), we have that N, M, L, N n L, N n M, Mn Land G 
are associative subrings of R. 

In this section, we assume that R has a derivation d which satisfies 

( *) d(R) ~ A, where A = N or A = L. 

Using ( *) and the definition of d, we have 

d(x)y + xd(y) EA for all x, yin R. (5) 

Then with x E d(R) and y E d(R) in (5) respectively, and noting that A is an associative 
subring of R, and using ( *) we get 

(6) 
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Applying(*), (3), (4) and (6), and with n E d2(R) in (3), and with m E d2(R) in (4) 
respectively, we obtain 

d2(R)(R, R, R) = 0 if A= N and (R, R, R)d2(R) = 0 if A = L. (7) 

Combining (7) with ( *) yields 

d2(R)((R, R, R)R) = 0 if A= N and (R(R, R, R))d2(R) = 0 if A= L. (8) 

Definition. The associator ideal I of R is the smallest ideal which contains all 
associators in R. 

Note that I may be characterized as all finite sums of associators and right (or left) 
multiples of associators, as a consequence of (2). Hence we can easily show that 

I= L}R,R,R) + (R,R,R)R = ~)R,R,R) + R(R,R,R). (9) 

Using (7), (8) and (9), we obtain 

d2(R) ·I= 0 if A = N and I· d2(R) = 0 if A = L. (10) 

Applying the definition of d, we have the equality 

d((x,y,z)) = (d(x),y,z) + (x,d(y),z) + (x,y,d(z)). 

Combining (9) with (11) yields 

(11) 

Lemma 1. If R is a ring with a derivation d, then the associator ideal I of 
R is d-invariant. 

Using (1) and the following hypothesis, we can prove 

Lemma 2. If R is a ring with a derivation d such that d(R) ~ N n L or 
d(R) ~ N n M or d(R) ~ Mn L, then the ideal B of R generated by d(R) is 
B = L d(R) + d(R)R = L d(R) + Rd(R). Moreover, if we define Bk inductively by 
B1 = B, and Bk+1 = Bi for every positive integer k, then each Bk = L d(R)1 + 
d(R)i R = L d(R)i + Rd(R)i is an ideal of R, where i = 2k-1. 

Lemma 3. Let R be a semiprime ring with a derivation d such that d(R) ~ 
N n L or d(R) ~ N n M or d(R) ~Mn L. If d2 is a derivation of R, then 2d = 0. 

Proof. Since d and d2 are derivations of R, for all x, y in R we have d2(x)y + 
2d(x)d(y)+xd2(y) = d2(xy) = d2(x)y+xd2(y). Thus, 2d(x)d(y) = 0 and so 2d(R)2 = 0. 
Using this, the hypothesis and Lemma 2, we obtain 2("£ d(R) + d(R)R)2 = 0. By 
Lemma 2 again and the semi primeness of R, this implies 2("£ d(R) + d(R)R) = 0. Hence 
2d( R) = 0, as desired. 
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Lemma 4. Let R be a prime ring with a derivation d such that d(R) ~ NnL 
or d(R) ~ N n M or d(R) ~ Mn L. If R is not associative and 2d = O, then d2 = 0. 

Proof. Since R is not associative, we have I# 0. Because of 2d = 0, we obtain 
(12) 

Using (12) and the hypothesis, we have that the ideal C of R generated by d2(R) is 
C = L d2(R) + d2(R)R. Applying this, (10), (12) and the hypothesis, we get C · I = 0. 
By the primeness of Rand J # 0, this implies C = 0. Thus d2(R) = 0, as desired. 

Lemma 5. If R is a prime ring with a derivation d such that d(R) ~ N n L, 
then either R is associative or d2 = 2d = 0. 

Proof. If I = 0, then R is associative. Assume that I # 0, and x, y, z E R and 
t E J. By (10), we have d2(R) ·I= 0. Using this and d(R) ~ N, we get O = d2(xy) · t = 
(d2(x )y+2d(x )d(y)+xd2 (y) )t = d2(x) -yt+2d(x )d(y) ·t+xd2 (y) ·t = 2d(x )d(y) ·t+xd2(y) ·t 
and so 

2d(x)d(y)··t=-xd2(y)·t forall x,yER and tEI. (13) 

By Lemma 1, we have d(J) ~ I. Thus replacing t by d(t) in (13), and applying d(R) ~ L, 
Lemma 1 and d2(R)·I = 0, we obtain 2d(x)d(y)·d(t) = -xd2(y)·d(t) = -x·d2(y)d(t) = 0. 
Hence, we get 

2d(R)2 · d(I) = 0. 
Using d(R) ~ N n Land (14), we have 

(14) 

2d(x)d(y) · zd(t) =2(d(x)d(y) · z)d(t) = 2(d(x)(d(yz) - yd(z)))d(t) 
=2d(x)d(yz) · d(t) - 2(d(x)y · d(z))d(t) = -2((d(xy) - xd(y))d(z))d(t) 
= - 2d(xy)d(z) · d(t) + 2(x · d(y)d(i))d(t) = x · (2d(y)d(z))d(t) = 0. 

Applying this, d(R) ~ N n Land (14), we obtain 
2d(x)d(y)d(z) · t = 2d(x)d(y) · d(z)t = 2d(x)d(y)(d(zt) - zd(t)) = 2d(x)d(y) · d(zt) - 
2d(x)d(y) · zd(t) = 0. Thus, we get 

2d(R)3 ·I= 0. (15) 

Using Lemma 2 and (15), we have 2((L d(R) + d(R)R)2)2 ·I= 0. By the primeness of 
R, and applying I# 0 and Lemma 2 twice, this implies 2((L d(R) + d(R)R)2)2 = 0 and 
so 2(2: d(R) + d(R)R)2 = 0. Again, the last equality implies 2(2: d(R) + d(R)R) = 0. 
Hence, 2d(R) = 0. By Lemma 4 and J # 0, we obtain d2 = 0. This completes the proof 
of Lemma 5. 

Lemma 6. If R is a prime ring with a derivation d such that d(R) ~ N n M 
or d(R) ~ Mn L, then either R is associative or d2 = 2d = 0. 



RINGS WITH A DERIVATION 305 

Proof. By symmetry, we only prove the lemma in case d(R) ~ N n M. If I= 0, 
then R is associative. Assume that J # 0. By (10), we have d2(R) · I = 0. Using this 
and d(R) ~ N n M, for all x, y E Rand z E J we get 
O = d2(xy)z = (d2(x)y + 2d(x)d(y) + xd2(y))z = d2(x)(yz) + 2(d(x)d(y))z + (xd2(y)))z = 
2(d(x)d(y))z + x(d2(y)z) = 2(d(x)d(y))z. 

Hence, we obtain 2d(R)2 • I = 0. Applying this, d(R) ~ N n M and Lemma 2, we 
have 2(I:: d(R) + d(R)R)2 ·I= 0. By the primeness of R, and using I# 0 and Lemma 
2 twice, this implies 2(I: d(R) + d(R)R)2 = 0 and so 2(I: d(R) + d(R)R) = 0. Thus, 
2d(R) = 0. Because of I# 0, by Lemma 4 we get d2 = 0. This completes the proof of 
Lemma 6. 

Combining Lemma 5 with Lemma 6 yields the main result of this paper. 

Theorem 1. If R is a prime ring with a derivation d such that d(R) ~ NnL 
or d(R) ~ N n M or d(R) ~Mn L, then either R is associative or d2 = 2d = 0. 

Corollary 1. If R is a prime ring of characteristic not two with a derivation 
d such that d(R) <; N n L or d(R) ~ N n M or d(R) <; Mn L, then either R is 
associative or d = 0. 

In the courses of the proofs of Lemma 5 and Lemma 6, we obtain 

Corollary 2. If R is a semiprime ring with a derivation d such that d(R) ~ 
N n L n I or d(R) ~ N n Mn I or d(R) ~Mn L n I, then d2 = 2d = o. 

Corollary 3. If R is a semiprime ring such that the Abelian group (R, +) 
has no elements of order 2 and R has a derivation d such that d(R) ~ N n L n I 
or d(R) ~ N n Mn I or d(R) ~Mn L n I, then d = 0. 

Applying Theorem 1, we can generalize the results of prime associative rings of 
ch.lracteristic not two with a derivation to the prime nonassociative rings: Here, we give 
two applications. The first application of Theorem 1 is by using Theorem 1 of [3] to 
obtain the theorem of Posner for the prime nonassociative rings. 

Theorem 2. Let R be a prime ring of characteristic not two with derivations 
d and f such that g(R) ~ N n L or g(R) ~ N n M or g(R) ~ Mn L, where g = d 
or g = f. If fd is a derivation of R, then either d = 0 or f = 0. 

The second application of Theorem 1 is by applying the theorem of [11] to obtain 
this result for the prime nonassociative rings. 

Theorem 3. Let R be a noncommutative prime ring of characteristic not 
two with a nonzero derivation d such that d(R) ~ N n L or d(R) ~ N n M or 
d(R) <; Mn L. Then the subring of R generated by all (d(x), y), x, y E R contains 
a nonzero two-sided ideal of R. 
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Using Lemma 3, Theorem 2 is valid for the semiprime ring case when f = d and the 
Abelian group (R, +) has no elements of order 2. 

Theorem 4. Let R be a semiprime ring such that the Abelian group (R, +) 
has no elements of order 2 and let R have a derivation d such thaf d(R) ~ N n L 
or d(R) ~ N n M or d(R) ~ Mn L. If d2 is a derivation of R, then d = 0. 

3. Partial generalizations 

Recently, we partially generalize Theorem 1. 

Theorem 5 [8]. If R is a simple ring with a derivation d and there exists 
a fixed positive integer n such that dn(R) ~ N n L, then either R is associative or 
d3n-1 = 0. 

Theorem 6 [8]. If R is a prime ring with a derivation d and there exists 
a fixed positive integer n such that dn(R) ~ G, then either R is associative or 
d3n-1 = 0. 

Theorem 5 remains true for the prime ring case by adding the hypothesis d3n-1(R) ~ 
M. Thus this result extends Theorem 6 and partially generalizes Theorem 1. For the 
proof, we need a lemma. 

Lemma 7 [10]. Let R be· a ring and E a nonempty subset of G. If RE~ N 
and ER ~ L, or ER+ RE ~ M, then ER+ RE ~ A1, and the ideal F of R 
generated by E is F = LE + ER+ RE + R · ER. 

Theorem 7. If R is a prime ring with a derivation d and there exists a 
fixed positive integer n such that dn(R) ~ N n L, and d3n-1(R) ~ M, then either 
R is associative or d3n-l = O. 

Proof. By the hypothesis, we get d3n-1(R) ~ G. Using_dn(R) ~ N n L, and as 
the proofs of the results of [8], we have 

d3n-1(R)R + Rd3n-1(R) ~ N n L and d3n-1(R) ·I= 0. (16) 

Applying (16), d3n-1(R) ~ G and Lemma 7, we obtain that d3n-l(R)R+Rd3n-l(R) ~ 
M, and the ideal K of R generated by d3n-1(R) is K = }:d3n-1(R) + d3n-1(R)R + 
Rd3n-1(R) + R. d3n-1(R)R. Using these, d3n-1(R) ~ G and (16), we get K ·I= 0. By 
the primeness of R, this implies K = 0 or I = 0. If I = 0, then R is associative. Assume 
that K = 0. Then d3n-1(R) = 0. This completes the proof of Theorem 7. 

By an argument similar to the proof of Theorem 7, we can show the following result 
which also generalizes Theorem 6 and partially extends Theorem 1. 

Theorem 8. If R is a prime ring with a derivation d and there exists a 



RINGS WITH A DERIVATION 307 

fixed positive integer n such that dn(R) ~ N n M, (resp. dn(R) ~ Mn L} and 
d3n-1(R) ~ L (resp. d3n-1(R) ~ N ), then either R is associative or d3n-l = 0. 

In Theorem 7, without the hypothesis d3n-1(R) ~ M we obtain 

Theorem 9 [8]. If R is a prime ring with a derivation d and there exists a 
fixed positive integer n such that dn(R) ~ N n L, then either R is associative or 
d3n-1 (R)2 = o. 

Recently, using Theorem 1 of [2} we also partially extends Theorem l. 

Theorem 10 [7]. If R is a prime ring with a derivation d and there exists 
a fixed positive integer n such that dn(R) ~ G and· (dn(R), R) = O, then R is 
associative and dn = O, or R is associative and commutative, or 

d2n = ( (2~)! )dn = 0. 
n. 

Added in proof. Recently, we have proved that if R is a semiprime ring such that 
(R,R,R) ~ N n Lor (R,R,R) ~ N n Mor (R,R,R) ~Mn L then N = M = L. Thus 
E. Kleinfeld's result [1] can be improved. We also have proved that if R is a semiprime 
ring with a derivation d such that d(R) ~ G then d2(J) = 2d(J) = 0. 
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