RINGS WITH \mathbb{A} DERIVATION WHOSE IMAGE IS CONTAINED IN THE NUCLEI

CHEN-TE YEN

Abstract

Albstract. Let R be a nonassociative ring, N, M, L and G the left nucleus, middle nucleus, right nucleus and nucleus respectively. Suh [4] proved that if R is a prime ring with a derivation d such that $d(R) \subseteq G$ then either R is associative or $d^{3}=0$. We improve this result by concluding that either R is associative or $d^{2}=2 d=0$ under the weaker hypothesis $d(R) \subseteq N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$. Using our result, we obtain the theorems of Posner [3] and Yen [11] for the prime nonassociative rings. In our recent papers we partially generalize the above main result.

1. Introduction

Let R be a nonassociative ring. We adopt the usual notations for associators and commutators: $(x, y, z)=(x y) z-x(y z)$ and $(x, y)=x y-y x$. We shall denote the left nucleus, middle nucleus, right nucleus and nucleus by N, M, L and G respectively. Thus N, M, L and G consists of all elements $n \operatorname{such}$ that $(n, R, R)=0,(R, n, R)=$ $0,(R, R, n)=0$ and $(n, R, R)=(R, n, R)=(R, R, n)=0$ respectively. An additive mapping d on R is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all x, y in R. R is called semiprime if the only ideal of R which squares to zero is the zero ideal. R is called prime if the product of any two nonzero ideals of R is nonzero. R is called simple if R is the only nonzero ideal of R. Clearly, a prime ring is a semiprime ring. If R is a simple ring, then $R^{2}=0$ or $R^{2}=R$; in the former case R is commutative and associative. So, if R is a simple ring then we assume that $R^{2}=R$. Thus a simple ring is a prime ring. Recently, Suh [4] proved that if R is a prime ring with a derivation d such that $d(R) \subseteq G$ then either R is associative or $d^{3}=0$. In section 2, we improve this result by concluding that either R is associative or $d^{2}=2 d=0$ under the weaker hypothesis

Received May 6, 1993; revised September 6, 1993
1991 Mathematics Subject Classification. Secondary 17A36.
Key words and phrases. Nonassociative ring, nucleus, derivation, d-invariant, semiprime ring, prime ring, simple ring.
$d(R) \subseteq N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$. Using our result, we obtain the theorems of Posner [3] and Yen [11] for the prime nonassociative rings. In section 3, we partially generalize the main result of this paper and state our recent results. Assume that R has a derivation d. A nonempty subset S of R is called d-invariant if $d(S) \subseteq S$. By the definition of d, we obtain

$$
\begin{equation*}
d(R)+d(R) R=d(R)+R d(R) \tag{1}
\end{equation*}
$$

Rings with associators in the nuclei were first studied by Kleinfeld and later by the author. Kleinfeld [1] proved that if R is a semiprime ring such that $(R, R, R) \subseteq G$ and the Abelian group $(R,+)$ has no elements of order 2 then R is associative. Yen [6] improved this result by dropping the hypothesis $(R, R, R) \subseteq M$. In [5], Yen showed that if R is a simple ring of characteristic not two such that $(R, R, R) \subseteq N \cap M$ or $(R, R, R) \subseteq M \cap L$ then R is associative. For the related results, see [7]-[11].

2. Results and applications

Let R be a nonassociative ring. In every ring one may verify the Teichmüller identity

$$
\begin{equation*}
(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z \tag{2}
\end{equation*}
$$

Suppose that $n \in N$. Then with $w=n$ in (2) we obtain

$$
\begin{equation*}
(n x, y, z)=n(x, y, z) \quad \text { for all } n \text { in } N \tag{3}
\end{equation*}
$$

Assume that $m \in L$. Then with $z=m$ in (2) we get

$$
\begin{equation*}
(w, x, y m)=(w, x, y) m \quad \text { for all } m \text { in } L \tag{4}
\end{equation*}
$$

As consequences of (2), (3) and (4), we have that $N, M, L, N \cap L, N \cap M, M \cap L$ and G are associative subrings of R.

In this section, we assume that R has a derivation d which satisfies
$(*) \quad d(R) \subseteq A$, where $A=N$ or $A=L$.
Using (*) and the definition of d, we have

$$
\begin{equation*}
d(x) y+x d(y) \in A \quad \text { for all } x, y \text { in } R \tag{5}
\end{equation*}
$$

Then with $x \in d(R)$ and $y \in d(R)$ in (5) respectively, and noting that A is an associative subring of R, and using (*) we get

$$
\begin{equation*}
d^{2}(R) R \subseteq A \quad \text { and } \quad R d^{2}(R) \subseteq A \tag{6}
\end{equation*}
$$

Applying (*), (3), (4) and (6), and with $n \in d^{2}(R)$ in (3), and with $m \in d^{2}(R)$ in (4) respectively, we obtain

$$
\begin{equation*}
d^{2}(R)(R, R, R)=0 \quad \text { if } \quad A=N \quad \text { and } \quad(R, R, R) d^{2}(R)=0 \quad \text { if } \quad A=L \tag{7}
\end{equation*}
$$

Combining (7) with (*) yields

$$
\begin{equation*}
d^{2}(R)((R, R, R) R)=0 \text { if } A=N \text { and }(R(R, R, R)) d^{2}(R)=0 \text { if } A=L \tag{8}
\end{equation*}
$$

Definition. The associator ideal I of R is the smallest ideal which contains all associators in R.

Note that I may be characterized as all finite sums of associators and right (or left) multiples of associators, as a consequence of (2). Hence we can easily show that

$$
\begin{equation*}
I=\sum(R, R, R)+(R, R, R) R=\sum(R, R, R)+R(R, R, R) \tag{9}
\end{equation*}
$$

Using (7), (8) and (9), we obtain

$$
\begin{equation*}
d^{2}(R) \cdot I=0 \quad \text { if } \quad A=N \quad \text { and } \quad I \cdot d^{2}(R)=0 \quad \text { if } \quad A=L \tag{10}
\end{equation*}
$$

Applying the definition of d, we have the equality

$$
\begin{equation*}
d((x, y, z))=(d(x), y, z)+(x, d(y), z)+(x, y, d(z)) \tag{11}
\end{equation*}
$$

Combining (9) with (11) yields
Lemma. 1. If R is a ring with a derivation d, then the associator ideal I of R is d-invariant.

Using (1) and the following hypothesis, we can prove
Lemma 2. If R is a ring with a derivation d such that $d(R) \subseteq N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$, then the ideal B of R generated by $d(R)$ is $B=\sum d(R)+d(R) R=\sum d(R)+R d(R)$. Moreover, if we define B_{k} inductively by $B_{1}=B$, and $B_{k+1}=B_{k}^{2}$ for every positive integer k, then each $B_{k}=\sum d(R)^{1}+$ $d(R)^{i} R=\sum d(R)^{i}+R d(R)^{i}$ is an ideal of R, where $i=2^{k-1}$.

Lemma 3. Let R be a semiprime ring with a derivation d such that $d(R) \subseteq$ $N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$. If d^{2} is a derivation of R, then $2 d=0$.

Proof. Since d and d^{2} are derivations of R, for all x, y in R we have $d^{2}(x) y+$ $2 d(x) d(y)+x d^{2}(y)=d^{2}(x y)=d^{2}(x) y+x d^{2}(y)$. Thus, $2 d(x) d(y)=0$ and so $2 d(R)^{2}=0$. Using this, the hypothesis and Lemma 2, we obtain $2\left(\sum d(R)+d(R) R\right)^{2}=0$. By Lemma 2 again and the semiprimeness of R, this implies $2\left(\sum d(R)+d(R) R\right)=0$. Hence $2 d(R)=0$, as desired.

Lemma 4. Let R be a prime ring with a derivation d such that $d(R) \subseteq N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$. If R is not associative and $2 d=0$, then $d^{2}=0$.

Proof. Since R is not associative, we have $I \neq 0$. Because of $2 d=0$, we obtain

$$
\begin{equation*}
d^{2}(R)+d^{2}(R) R=d^{2}(R)+R d^{2}(R) \tag{12}
\end{equation*}
$$

Using (12) and the hypothesis, we have that the ideal C of R generated by $d^{2}(R)$ is $C=\sum d^{2}(R)+d^{2}(R) R$. Applying this, (10), (12) and the hypothesis, we get $C \cdot I=0$. By the primeness of R and $I \neq 0$, this implies $C=0$. Thus $d^{2}(R)=0$, as desired.

Lemma 5. If R is a prime ring with a derivation d such that $d(R) \subseteq N \cap L$, then either R is associative or $d^{2}=2 d=0$.

Proof. If $I=0$, then R is associative. Assume that $I \neq 0$, and $x, y, z \in R$ and $t \in I$. By (10), we have $d^{2}(R) \cdot I=0$. Using this and $d(R) \subseteq N$, we get $0=d^{2}(x y) \cdot t=$ $\left(d^{2}(x) y+2 d(x) d(y)+x d^{2}(y)\right) t=d^{2}(x) \cdot y t+2 d(x) d(y) \cdot t+x d^{2}(y) \cdot t=2 d(x) d(y) \cdot t+x d^{2}(y) \cdot t$ and so

$$
\begin{equation*}
2 d(x) d(y) \cdot t=-x d^{2}(y) \cdot t \quad \text { for all } \quad x, y \in R \quad \text { and } \quad t \in I \tag{13}
\end{equation*}
$$

By Lemma 1, we have $d(I) \subseteq I$. Thus replacing t by $d(t)$ in (13), and applying $d(R) \subseteq L$, Lemma I and $d^{2}(R) \cdot I=0$, we obtain $2 d(x) d(y) \cdot d(t)=-x d^{2}(y) \cdot d(t)=-x \cdot d^{2}(y) d(t)=0$. Hence, we get

$$
\begin{equation*}
2 d(R)^{2} \cdot d(I)=0 \tag{14}
\end{equation*}
$$

Using $d(R) \subseteq N \cap L$ and (14), we have

$$
\begin{aligned}
2 d(x) d(y) \cdot z d(t) & =2(d(x) d(y) \cdot z) d(t)=2(d(x)(d(y z)-y d(z))) d(t) \\
& =2 d(x) d(y z) \cdot d(t)-2(d(x) y \cdot d(z)) d(t)=-2((d(x y)-x d(y)) d(z)) d(t) \\
& =-2 d(x y) d(z) \cdot d(t)+2(x \cdot d(y) d(z)) d(t)=x \cdot(2 d(y) d(z)) d(t)=0
\end{aligned}
$$

Applying this, $d(R) \subseteq N \cap L$ and (14), we obtain
$2 d(x) d(y) d(z) \cdot t=2 d(x) d(y) \cdot d(z) t=2 d(x) d(y)(d(z t)-z d(t))=2 d(x) d(y) \cdot d(z t)-$ $2 d(x) d(y) \cdot z d(t)=0$. Thus, we get

$$
\begin{equation*}
2 d(R)^{3} \cdot I=0 \tag{15}
\end{equation*}
$$

Using Lemma 2 and (15), we have $2\left(\left(\sum d(R)+d(R) R\right)^{2}\right)^{2} \cdot I=0$. By the primeness of R, and applying $I \neq 0$ and Lemma 2 twice, this implies $2\left(\left(\sum d(R)+d(R) R\right)^{2}\right)^{2}=0$ and so $2\left(\sum d(R)+d(R) R\right)^{2}=0$. Again, the last equality implies $2\left(\sum d(R)+d(R) R\right)=0$. Hence, $2 d(R)=0$. By Lemma 4 and $I \neq 0$, we obtain $d^{2}=0$. This completes the proof of Lemma 5.

Lemma 6. If R is a prime ring with a derivation d such that $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$, then either R is associative or $d^{2}=2 d=0$.

Proof. By symmetry, we only prove the lemma in case $d(R) \subseteq N \cap M$. If $I=0$, then R is associative. Assume that $I \neq 0$. By (10), we have $d^{2}(R) \cdot I=0$. Using this and $d(R) \subseteq N \cap M$, for all $x, y \in R$ and $z \in I$ we get
$\left.0=d^{2}(x y) z=\left(d^{2}(x) y+2 d(x) d(y)+x d^{2}(y)\right) z=d^{2}(x)(y z)+2(d(x) d(y)) z+\left(x d^{2}(y)\right)\right) z=$ $2(d(x) d(y)) z+x\left(d^{2}(y) z\right)=2(d(x) d(y)) z$.

Hence, we obtain $2 d(R)^{2} \cdot I=0$. Applying this, $d(R) \subseteq N \cap M$ and Lemma 2, we have $2\left(\sum d(R)+d(R) R\right)^{2} \cdot I=0$. By the primeness of R, and using $I \neq 0$ and Lemma 2 twice, this implies $2\left(\sum d(R)+d(R) R\right)^{2}=0$ and so $2\left(\sum d(R)+d(R) R\right)=0$. Thus, $2 d(R)=0$. Because of $I \neq 0$, by Lemma 4 we get $d^{2}=0$. This completes the proof of Lemma 6.

Combining Lemma 5 with Lemma 6 yields the main result of this paper.
Theorem 1. If R is a prime ring with a derivation d such that $d(R) \subseteq N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$, then either R is associative or $d^{2}=2 d=0$.

Corollary 1. If R is a prime ring of characteristic not two with a derivation d such that $d(R) \subseteq N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$, then either R is associative or $d=0$.

In the courses of the proofs of Lemma 5 and Lemma 6, we obtain
Corollary 2. If R is a semiprime ring with a derivation d such that $d(R) \subseteq$ $N \cap L \cap I$ or $d(R) \subseteq N \cap M \cap I$ or $d(R) \subseteq M \cap L \cap I$, then $d^{2}=2 d=0$.

Corollary 3. If R is a semiprime ring such that the Abelian group $(R,+)$ has no elements of order 2 and R has a derivation d such that $d(R) \subseteq N \cap L \cap I$ or $d(R) \subseteq N \cap M \cap I$ or $d(R) \subseteq M \cap L \cap I$, then $d=0$.

Applying Theorem 1, we can generalize the results of prime associative rings of characteristic not two with a derivation to the prime nonassociative rings. Here, we give two applications. The first application of Theorem 1 is by using Theorem 1 of [3] to obtain the theorem of Posner for the prime nonassociative rings.

Theorem 2. Let R be a prime ring of characteristic not two with derivations d and f such that $g(R) \subseteq N \cap L$ or $g(R) \subseteq N \cap M$ or $g(R) \subseteq M \cap L$, where $g=d$ or $g=f$. If $f d$ is a derivation of R, then either $d=0$ or $f=0$.

The second application of Theorem 1 is by applying the theorem of [11] to obtain this result for the prime nonassociative rings.

Theorem 3. Let R be a noncommutative prime ring of characteristic not two with a nonzero derivation d such that $d(R) \subseteq N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$. Then the subring of R generated by all $(d(x), y), x, y \in R$ contains a nonzero two-sided ideal of R.

Using Lemma 3, Theorem 2 is valid for the semiprime ring case when $f=d$ and the Abelian group $(R,+)$ has no elements of order 2.

Theorem 4. Let R be a semiprime ring such that the Abelian group $(R,+)$ has no elements of order 2 and let R have a derivation d such that $d(R) \subseteq N \cap L$ or $d(R) \subseteq N \cap M$ or $d(R) \subseteq M \cap L$. If d^{2} is a derivation of R, then $d=0$.

3. Partial generalizations

Recently, we partially generalize Theorem 1.
Theorem 5 [8]. If R is a simple ring with a derivation d and there exists a fixed positive integer n such that $d^{n}(R) \subseteq N \cap L$, then either R is associative or $d^{3 n-1}=0$.

Theorem 6 [8]. If R is a prime ring with a derivation d and there exists a fixed positive integer n such that $d^{n}(R) \subseteq G$, then either R is associative or $d^{3 n-1}=0$.

Theorem 5 remains true for the prime ring case by adding the hypothesis $d^{3 n-1}(R) \subseteq$ M. Thus this result extends Theorem 6 and partially generalizes Theorem 1. For the proof, we need a lemma.

Lemma 7 [10]. Let R be a ring and E a nonempty subset of G. If $R E \subseteq N$ and $E R \subseteq L$, or $E R+R E \subseteq M$, then $E R+R E \subseteq M$, and the ideal F of R generated by E is $F=\sum E+E R+R E+R \cdot E R$.

Theorem 7. If R is a prime ring with a derivation d and there exists a fixed positive integer n such that $d^{n}(R) \subseteq N \cap L$, and $d^{3 n-1}(R) \subseteq M$, then either R is associative or $d^{3 n-1}=0$.

Proof. By the hypothesis, we get $d^{3 n-1}(R) \subseteq G$. Using $d^{n}(R) \subseteq N \cap L$, and as the proofs of the results of [8], we have

$$
\begin{equation*}
d^{3 n-1}(R) R+R d^{3 n-1}(R) \subseteq N \cap L \quad \text { and } \quad d^{3 n-1}(R) \cdot I=0 \tag{16}
\end{equation*}
$$

Applying (16), $d^{3 n-1}(R) \subseteq G$ and Lemma 7 , we obtain that $d^{3 n-1}(R) R+R d^{3 n-1}(R) \subseteq$ M, and the ideal K of R generated by $d^{3 n-1}(R)$ is $K=\sum d^{3 n-1}(R)+d^{3 n-1}(R) R+$ $R d^{3 n-1}(R)+R \cdot d^{3 n-1}(R) R$. Using these, $d^{3 n-1}(R) \subseteq G$ and (16), we get $K \cdot I=0$. By the primeness of R, this implies $K=0$ or $I=0$. If $I=0$, then R is associative. Assume that $K=0$. Then $d^{3 n-1}(R)=0$. This completes the proof of Theorem 7.

By an argument similar to the proof of Theorem 7, we can show the following result which also generalizes Theorem 6 and partially extends Theorem 1.

Theorem 8. If R is a prime ring with a derivation d and there exists a
fixed positive integer n such that $d^{n}(R) \subseteq N \cap M$, (resp. $\left.d^{n}(R) \subseteq M \cap L\right)$ and $d^{3 n-1}(R) \subseteq L\left(\right.$ resp. $\left.d^{3 n-1}(R) \subseteq N\right)$, then either R is associative or $d^{3 n-1}=0$.

In Theorem 7, without the hypothesis $d^{3 n-1}(R) \subseteq M$ we obtain
Theorem 9 [8]. If R is a prime ring with a derivation d and there exists a fixed positive integer n such that $d^{n}(R) \subseteq N \cap L$, then either R is associative or $d^{3 n-1}(R)^{2}=0$.

Recently, using Theorem 1 of [2] we also partially extends Theorem 1.
Theorem 10 [7]. If R is a prime ring with a derivation d and there exists a fixed positive integer n such that $d^{n}(R) \subseteq G$ and $\left(d^{n}(R), R\right)=0$, then R is associative and $d^{n}=0$, or R is associative and commutative, or

$$
d^{2 n}=\left(\frac{(2 n)!}{n!}\right) d^{n}=0
$$

Added in proof. Recently, we have proved that if R is a semiprime ring such that $(R, R, R) \subseteq N \cap L$ or $(R, R, R) \subseteq N \cap M$ or $(R, R, R) \subseteq M \cap L$ then $N=M=L$. Thus E. Kleinfeld's result [1] can be improved. We also have proved that if R is a semiprime ring with a derivation d such that $d(R) \subseteq G$ then $d^{2}(I)=2 d(I)=0$.

References

[1] E. Kleinfeld, "A class of rings which are very nearly associative," Amer. Math. Monthly, 93(1986), 720-722.
[2] P. H. Lee and T. K. Lee, "Note on nilpotent derivations," Proc. Amer. Math. Soc. 98(1986), 31-32.
[3] E. C. Posner, "Derivations in prime rings," Proc. Amer. Math. Soc. 8(1957), 1093-1100.
[4] T. I. Suh, "Prime nonassociative rings with a special derivation," Abstracts of papers presented to the Amer. Math. Soc. 14(1993), 284.
[5] C. T. Yen, "Rings with associators in the left and middle nucleus," Tamkang J. Math. 23(1992), 363-369.
[6] C. T. Yen, "Rings with associators in the left and right nucleus," unpublished manuscript.
[7] C. T. Yen, "Rings with a Jordan derivation whose image is contained in the nuclei or commutative center," submitted.
[8] C. T. Yen, "Rings with a derivation whose some power image is contained in the nuclei," submitted.
[9] C. T. Yen, "Nonassociative rings with a special derivation," submitted.
[10] C. T. Yen, "Rings with a derivation whose image is zero on the associators," to appear in Tamkang J. Math.
[11] C. T. Yen, "On a subring of prime ring with derivation," submitted.

Department of Mathematics, Chung Yuan University, Chung Li, Taiwan, 320, Republic of China.

