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ON THE INTERLACING PROPERTY OF 
STABLE COMPLEX SYSTEMS OF 

DIFFERENTIAL EQUATIONS 

ZIAD ZAHREDDINE 

Abstract. By exploiting recent stability results, an interesting property known 
in stability theory as the interlacing property is revisited and reproduced. The 
approach is straightforward and highlights the central role that positive para-odd 
functions is currently playing in the stability of complex systems of differential 
equations. 

1. Introduction 

The interlacing property plays a crucial role in the stability theory of differen 
tial equations. Using this property, Kharitonov [2] and [3] obtained the well-known 
Kharitonov theorems for real interval polynomials and recently, Argoun [1] applied it to 
the stability of perturbed systems in the real case. For more applications of the interlac 
ing property in the stability of perturbed real systems, see for example [4] and [5] where 
in the latter the terminology Hermite-Biehler theorem was used instead of interlacing 
property. 

The technique we shall use applies to both real and complex systems. We intend to 
reproduce the interlacing property by resorting to the theory of positive para-odd func 
tions which is playing an increasing effective role in the stability of differential equations 
with complex coefficients [6]. The main focus of this paper is the straightforwardness 
with which such a property is obtained without necessarily evoking Tellegen's theorem 
or the complex counterpart of Foster's reactance theorem. Our approach applies to 
both continuous and discrete-time systems showing again (7] the effectiveness of positive 
para-odd functions in displaying the intimate connections between Routh-Hurwitz and 
Schur-Cohn types of stability (8]. 
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In section 2, we exploit to advantage the relationship between a stable system and 
a positive para-odd function and we settle the interlacing property for continuous-time 
systems. The discrete-time counterpart is dealt with in section 3. 

2. Continuous-Time Systems 

Consider a continuous time system (real or complex) with characteristic polynomial 
given by 

(1) 

Define 

{ 
J..:::J.:.. 

h(z) = f !f: 
f-f* 

where f* the paraconjugate of f is defined by 

if n odd 
if n even, 

Then h takes the form 

It is clear from (6], that if (1) is stable (all zeros off in Re z < 0), then h may be written 
in the partial fraction expansion form 

( ) d1 d2 dn-l hz =ao+doz+ . + . + ... +--.-- z - 1,WI Z - 'lW2 Z - 'lWn-l 

where Re a0 = 0, dj ~ 0 for j = 0, 1, ... , n-1 and where the Wj are distinct real numbers. 
Any function satisfying the above expansion is called positive para-odd [6). 

We recall the following 

Theorem 1. ([6), Theorem 3.1) 
(1) is stable if and only if the partial fraction expansion of h satisfies dj > 0 

for j = 0, 1, ... , n - 1. 
The following theorem shows how the interlacing property can be used as a stability 

test for systems of differential equations. 

Theorem 2. (Interlacing Property) 
The system (1) is stable if and only if Re a1 > 0 and the zeros and poles of 

h are simple, lie on the imaginary axis and interlace. 

Proof. If (1) is stable, then h can be written as in Theorem 1. From the analysis 
done on h in (6), a0 + d0z represents the quotient obtained when the numerator of h is 
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divided by its denominator, hence do = R;a
1 

leading to Re a1 > 0. From the partial 
fraction expansion of h, it follows that the poles of h are simple and imaginary and the 
same applies on the roots, for it is clear that h is positive para-odd if and only if -k is 
positive para-odd. 

Without loss of generality, we assume that a0 = 0. (Otherwise we take H = h - a0, 
and we do our analysis on H). 

Let k(s) = -ih(is), then 

( ) di d2 dn-1 k s =dos - - - - , and 
S - W1 S - W2 S - Wn-1 

'( · d1 d2 dn-1 
k S) =do+ I )2 + ( )2 +. '. + ( '~. 

S - W1 S - W2 S - Wn-1 

Therefore k'(s) > 0 for s =f:. wk, 

and k(s) is strictly increasing from -oo to oo in each interval (w1,w1+1) and the 
equation k( s) = 0 has exactly one solution on each of these intervals, leading to the 
desired conclusion. 

Conversely, let is1, is2, ... , isn and iw1, ... , iwn be respectively the roots and poles 
of h such that 

(2) 

Let 
( d1 d2 dn-1 h z) = ao + doz + . + . + ... + --. -- 

z - iw1 Z - iw2 Z - 1,Wn-1 

be the partial fraction expansion of h. Again do = -R1 and do > 0. ea1 
Also, we may supose a0 = 0. Reconsider the form 

d2 k(s) = -ih(is) = dos - _..!!:.! 
S -W1 S - Wn-l 
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From (2), it follows automatically that dj > 0 for j = 1, ... , n and by ([6], Theorem 3.1), 
( 1) is stable. 

3. Discrete-Time Systems 

The ideas and results of section 2 may be conveyed to discrete systems in the fol 
lowing way: 
Let 

· ) n n-1 g( w = w + a1 w + ... + an 
be the characteristic polynomial of a discrete system (real or complex). Define 

(3), 

The discrete-time counterpart of Theorem 2 is: 

Theorem 3. The system (3) is stable (all roots of g inside the unit circle) 
if and only if I~ I < 1 and g - gr and g + gr have interlacing roots on the unit 
circle. 

Using the bilinear transformation w = ~~~ (or z = ~!~), the proof of Theorem 3 
may be traced in the spirit of (7] and (8] where explicit relationships between Routh 
Hurwitz ( continuous systems) and Schur-Cohn ( discrete systems) types of stability have 
been established. 
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