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REPRESENTATION OF PRIMES BY THE PRINCIPAL FORM
OF NEGATIVE DISCRIMINANT A WHEN hA(A) IS 4

KENNETH S. WILLIAMS * AND D. LIU

Abstract. Let A be a negative integer which is congruent to 0 or 1 (mod 4). Let
H(A) denote the form class group of classes of positive-definite, primitive integral
binary quadratic forms az? + bxy + cy? of discriminant A. If H(A) is a cyclic
group of order 4, an explicit quartic polynomial pa(z) of the form z* — bz2 + d
with integral coefficients is determined such that for an odd prime p not dividing
A, p is represented by the principal form of discriminant A if and only if the
congruence pa(z) = 0 (mod p) has four solutions.

1. Notation and a preliminary result

Let A be a negative integer which is congruent to 0 or 1 (mod 4). Let H(A) denote
the form class group of classes of positive-definite, primitive integral binary quadratic
forms az? + bzy + cy? of discriminant A. It is well known that H(A) is a finite Abelian
group. The order of H(A) is called the classnumber of forms of discriminant A and is
denoted by h(A). The principal form of discriminant A is the form 14 given by
1a = {(1,0, —A/4), if A =0 (mod 4),

(1,1,(1-A)/4), if A=1 (mod 4).
In this paper we are concerned with the representability of a prime by the principal form
1a of discriminant A when h(A) = 4.

Recent work of Steven Arno has determined all the imaginary quadratic fields with
classnumber 4 [1: Theorem 7], namely, the 54 fields Q(1/—n) with

n =14,17,21, 30, 33, 34, 39, 42, 46, 55, 57, 70, 73, 78, 82, 85, 93, 97,
102,130,133, 142, 155, 177, 190, 193, 195, 203, 219, 253, 259, 291,
323, 355,435,483, 555, 595, 627, 667, 715, 723, 763, 795, 955,
1003, 1027, 1227, 1243, 1387, 1411, 1435, 1507, 1555.
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The complete list of all imaginary quadratic fields @(v/—n) with classnumber 1 or 2 has
been known for some time:

h(-n)=1: n=1,2,3,711,19,43,67,163 (9 fields)
h(-n)=2: n=25,6,10,13,15,22,35,37,51,58,91,115,123,
187,235, 267,403,427. (18 fields)

From these results we can deduce

Proposition 1.1. h(A) = 4 if and only if —A has one of the following 84
values:

39, 55, 56, 63, 68, 80, 84,96, 120,128,132, 136, 144, 155, 156, 160, 168,171, 180,
184,192,195, 196, 203, 208, 219, 220, 228, 240, 252, 256, 259, 275, 280, 288, 291,
292,312, 315, 323, 328, 340, 352, 355, 363, 372, 387, 388, 400, 408, 435, 448,475,
483, 507, 520, 532, 555, 568, 592, 595, 603, 627,667, 708, 715, 723, 760, 763, 772,
795,928, 955,1003,1012, 1027, 1227, 1243, 1387, 1411, 1435, 1467, 1507, 1555.

Proof. Let d be the discriminant of the imaginary quadratic field given uniquely
by
A = fid,

where f is a positive integer. Then, by a formula of Gauss, we have

h(A) = h(f*d) = h(d)¢a(f)/u,

where -
da(f) = fH(l - (E) E)
and
3, ifd=-3,
u=1< 2, ifd=—4,
1, ifd< —4.

Note that g runs through the distinct primes dividing f and (g) is the Kronecker symbol.
As ¢q(f)/u is a positive integer, we see that '

(@) h(d)=4 and ¢4(f)/u=1, or
h{A) =4 =% { () h(d)=2 and ¢a(f)/u=2, or (1)
() h(d)=1 and gu(f)fu=4
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For case (a), we have ¢q(f) = 1, which occurs if and only if f =1 or d =1 (mod 8)
and f = 2. Then appealing to the list of imaginary quadratic fields with classnumber 4,
we deduce that (a) occurs if and only if —A has one of the following 56 values:

39,55, 56, 68, 84,120, 132, 136, 155, 156, 168, 184, 195, 203, 219, 220, 228,
259, 280, 291, 292, 312, 323, 328, 340, 355, 372, 388, 408, 435, 483, 520, 532,
555, 568, 595, 627, 667, 708, 715, 723, 760, 763, 772, 795,955, 1003, 1012,
1027,1227,1243,1387, 1411, 1435, 1507, 1555.

For case (b), we have ¢q4(f) = 2, which occurs if and only if d = 0 (mod 4) and
f=2ord=1(mod 8) and f =4 ord=1 (mod 3) and f = 3. Then appealing to the
list of imaginary quadratic fields with classnumber 2, we deduce that (b) occurs if and
only if —A has one of the following 10 values:

80, 96, 160, 180, 208, 240, 315, 352, 592, 928.

For case (c), we consider the following three subcases: (cl1): d < —4; (c2): d = —4; (c3):
d = —3. For case (c1), we have ¢4(f) = 4, which occurs if and only if

d =0 (mod 4) and f =4 or
d =1,4 (mod 5) and f =5 or
d =2 (mod 3) and f =3 or
d=—T7and f =6,8 or
d=-8and f =4,6.

Then appealing to the list of imaginary quadratic fields with classnumber 1, we deduce
that (c1) occurs if and only if —A has one of the following 11 values:

63,128,171, 252, 275, 288, 387, 448, 475, 603, 1467.

For case (c2), we have ¢_4(f)/2 = 4, which occurs if and only if f =6,7,8 or 10, that is
if and only if —A has one of the following 4 values:

144,196, 256, 400.

For case (c3), we have ¢_3(f)/3 = 4, which occurs if and only if f = 8,11 or 13, that is
if and only if —A has one of the following 3 values:

192, 363, 507.
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2. Introduction and a preliminary result

Gauss [2] showed that an odd prime p is represented by the quadratic form z2 +
64y? (the principal form of discriminant -256) if and only if the congruence z4 — 2 =0
(mod p) has four solutions. In this paper we extend this result of Gauss to all negative
discriminants A for which H(A) ~ Z,; (see Theorem 4.1). The case H(A) ~ Z3 was
treated by K.S. Williams and R.H. Hudson [9].

Let K be an imaginary quadratic field, and let Ok denote the ring of algebraic
integers of K. We define for any nonzero ideal M of Ok the group Ix (M), and its
subgroups Pg,;(M) and Pk z(M), by

Ix (M) = group of all fractional O -ideals which are relatively prime to M,
Py 1 (M) = subgroup of Ix (M) generated by principal ideals a®@ g, where
o € Ok satisfies a = 1 (mod M),
Py z(M) = subgroup of Ix (M) generated by principal ideals a@ g with a €
Ok and a = a (mod M) for some integer a coprime with M.
If M = aOg we write I (a) for Ix(aOk), Pk,z(a) for Pk z(aOk), and Pk 1(a) for
Py 1(aOk). Let f be a positive integer and let @ ¢ denote the order of conductor f in a
quadratic field K. We also let C(Oy) denote the ideal class group of the order ©; and
F¢(K) the ring class field of the order Of. The genus field of the ring class field Fy(K)
is denoted by K(f) and is the largest subfield of Fy(K) such that K(f) is an Abelian
extension of Q. -

Theorem 2.1. Let A =0,1 (mod 4) be a negative integer. Set K = Q(vVA).
Let N be a subgroup of H(A). Then there exists a unique dihedral extension M
of Q such that if p is unramified in M then p is represented by a form in N if and
~ only if p splits completely in M. In particular, p is represented by the principal

form 14 if and only if p splits completely in F;(K), where f = VA/dg.

Proof. As A =0,1 (mod 4), there is a positive integer f such that A = dg f2,
where dx denotes the discriminant of X. We have the isomorphisms

H(A) = C(Oy) =~ Ik(f)/Pk,z(f)-
Under the above isomorphisms, as N C H(A), there exists a unique subgroup H with
Py,z(f) C H C Ik(f) (2)

such that NV ~ H/Pg 7(f). By the existence theorem of class field theory, (2) determines
a unique Abelian extension M of K such that

Ix(f)/H ~ Gal(M/K).

Further, we have that

Gal(M/K) = Ix(f)/H ~ (Ik(f)/Px,2(f))/(H/ Pk z(f)) = H(A)/N.
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Now appealing to [5: Theorem 3.6], the assertion of the theorem follows. In particular,
if N = {1a}, then we have M = F¢(K) so that the last assertion of the theorem follows.

For h(A) = 4, as H(A) is either a Klein-4 group or a cyclic-4 group, we have the
following result.

Theorem 2.2. Suppose h(A) =4. Set K = Q(v/A) and let f = /A/dxk.
(i) If H(A) ~ Zy X Z,, then Fy(K) is the composite field of its three quadratic
fields, say, k, k' and k", so that for a prime p not dividing A,
: di _ dkl _ dku _
p s represented by 1a < <?) = (7> — ( ’ ) =
(i) If H(A) ~ Z4, then there is an irreducible quartic p(z) = zt — bx? + d € Z[g]
such that F;(K) is the splitting field of p(z) so that, for an odd prime p not
dividing disc(p),

=1 and p(z) =0 (mod p) 3)

d
p is represented by 1a < (‘f)
has a solution,

. (%) _ (b2 ;4d) _ ((b+\/i)_2p——ﬂ)/2) _1 (@)
= (@)- (G- - ®
<> VY(p-1)/2 = 2 (mod p), (6)

where the v,(n =0,1,2,...) are given by the recurrence relation
Unt2 = bUny1 —dvp, v =2, v = b.

Proof. For the case (i), as F;(K) is the composite field of the fields k, k' and k",
p splits completely in Fy(K) if and only if p splits completely in all the three quadratic
fields. Then the assertion of the theorem follows from the last assertion of Theorem 2.1.
For the case (ii), as Gal(Fy(K)/K) ~ H(A), we have Gal(Fs(K)/K) is a cyclic group
of order 4 so that Gal(F(K)/Q) ~ D4. By [5: Lemma 2.4] and [7: Theorem 4.2], the
quartic p(z) stated in the theorem exists. Now we prove the assertion (3). As Fy(K)
is the splitting field of p(z), we have, for a prime p not dividing disc(p), that p splits
completely in M if and only if the congruence

z* — b2® + d = 0 (mod p)

has four solutions. Then the assertion (3) follows from [8: Theorem 2.16 (i)]. The
assertions (4), (5) and (6) follow from [8: Theorem 2.1, Lemma 2.4 and Lemma 2.3
respectively.
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For the case H(A) ~ Zy X Z, as Ff(K) = K(f), applying [6: Theorem 4.1] we have
no difficulty in determining k, k" and k¥”. The following table gives all the 34 discriminants
satisfying Theorem 2.2(3i).

A dy. dy dyn A dx. dy dr
-84 -4 -3 -7 -96 -4 8 -3
-120 8 -3 5 -132 8 -3 -11
-160 4 8 ) -168 -8 -3 -7
-180 -4 -3 5 -192 -4 8 -3
-195 -3 ) 13 -228 8 -3 -19
-240 -4 -3 5 -280 8 ) -7
-288 -4 8 -3 -312 8 -3 13
-315 -3 ) -7 -340 -4 5) 17
-352 -4 8 -11 -372 8 -3 -31
-408 8 -3 17 -435 -3 ) 29
-448 -4 8 -7 -483 -3 -7 -23
-520 -8 ) 13 -532 8 -7 -19
-555 -3 5 37 -595 ) -7 17
-627 -3 -11 -19 -708 8 -3 -59
-715 ) -11 13 -760 8 ) -19
-795 -3 ) 53 -928 -4 -8 29
-1012 8 -11 -23 -1435 5 -7 41

3. Determination of p(z) when H(A) ~ Z,

In order to apply Theorem 2.2 (ii), for each A = df?, where d is a fundamental
discriminant, we have to determine a quartic p(z) = z* — bz? + d € Z[z] such that the
ring class field F(Q(+/d)) is the splitting field of p(z). We divide the remaining 50 values
of A into nine sets as follows:

(A) —A = 39,55,155,156,203, 219, 220, 259, 291, 323, 355, 667, 723, 763, 955,

1003,1027,1227,1243, 1387, 1411, 1507, 1555 (see Lemma. 3.2)

(B) —A =63, 171, 252, 387, 603, 1467(see Lemma 3.3)
(C) —A = 68, 292, 388, 772(see Lemma 3.4)

(D) —A = 80, 208, 592(see Lemma 3.5)

(E) —A = 56, 136, 184, 328, 568(see Lemma, 3.6)

(F) —A = 363, 507(see Lemma, 3.7)

) —A = 144, 196, 256, 400(see Lemma 3.8)
) —A = 275, 475(see Lemma. 3.9)
) —A = 128(see Lemma 3.10)

P

G
H
(I

Lemma 3.1. Let M be a dihedral extension with Gal(M/Q) ~ Dy. Let K be
the unigue quadratic field in M such that Gal(M/K) ~ Z,, and let k be a quadratic
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field in M different from K. Let K = Q(VD), k = Q(/d), where both D and d are
squarefree. Then there are nonzero integers a,b,c with gcd(a,b) squarefree such
that 2D = (a® — b*d)d.

Proof. As Gal(M/Q) =~ Dy, there is a quartic field in M containing k such that
the normal closure of L is M. As [L : k] = 2, there are integers a,b with ged(a, b)

squarefree such that L = Q(Va + bv/d). It is clear that Va + bV/d is a root of f(z) =
7% — 2072 + a® — b2d and M is the splitting field of f(z). By [7: Lemma 3.3], we have

K = Q(WD) = Q(+/(a®> — b2d)d). As D is squarefree, there is an integer ¢ such that
2D = (a? — b2d)d.

Lemma 3.2. Let py and py be two primes with py =3 (mod 4), p2 =1 (mod
4). Let K = Q(/=pipz).- Then h(—pip2) =0 (mod 4) if and only if there are
integers a,b and c such that

py = a® + bpy,

where a and b satisfy
ged(a, b) = ged(a, b, p1p2),a =1 (mod 2), b=0 (mod 2),a+b=1 (mod 4). (1)
Further, if h(—pip2) =0 (mod 4), set
p(z) = (2% — a)? + p1b? = 2* — 2a2® + pa,

where a and b are given as above. Then the splitting field M of p(z) over Q
satisfies
K c M C Fi(K).

In particular, if h(—p1p2) = 4 then M = Fi(K).

Proof. By [6: Theorem 4.1], the ring class field F1(K) of K contains the genus
field

K(1) = Q(vV—p1,vP2)-
This implies that the 2-part of Gal(F;(K)/K) is a cyclic group of order 27, r > 1. Now
suppose that h(@k) = 0 (mod 4). By Galois theory there is an extension K C K (1

M c Fy(K) with Gal(M/K) ~ Z4. Let k = Q(/—p1). By Lemma 3.1, there are integers
a,b,c with ged(a, b) squarefree such that pac? = a® + b?p;. Set

p(z) = (2% — a)* + p1b? = 2* — 2a2® + cZps,

Then M is the splitting field of p(z) and M contains L = k(y/a +b/—p1). By [3:
Theorem 2], we have

dr = 2°pips ((a—(ba,pr_)pz—)f’ (2)
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where e is an even integer given by [3: TABLES C and D]. On the other hand, by [6:
Theorem 3.12], we have

dr, = drdk fo(M/K)? = pip2 fo(M/K)?, (3)

where fo(M/K) denotes the finite part of the conductor of the extension M/K. Hence
we obtain

fo(M/K) =2¢/ 2((‘&%)'

Noting that as M C Fy(K), we have, by [5: Theorem 3.9], that fo(M/K) = 1 so that
e = 0 and gcd(a, b) = ged(a, b, p1p2). By [3: TABLES C and D], we obtain the condition
(1).

Conversely, suppose that the conditions involving a and b of the lemma are satisfied.
Set p(z) = (22 —a)? + p1b%. Let M be the splitting field of p(z) so that Gal(M/Q) ~ Dy
and Gal(M/K) ~ Z,. Let k = Q(v/—p1), L = Q(v/a + by/—p1). By [3: Theorem 2], we

have
dr, = pipe.

and then, by (3), we have fo(M/K) = 1 so that M C F;(K), which implies that
h(—p1p2) = 0 (mod 4).

Lemma 3.3. Let K = Q(v/—p), where p=7,19,43,67,163 so that h(O3) = 4.
There are integers a and b such that p = a® + 3b® and

_ (3 (mod 4), ifa=0 (mod4),
e { 1 (mod 4), ifa=2 (mod 4), (4)

Set p(z) = z* — 6b%z% + 3p. Then F3(K) is the splitting field of p(z).

Proof. As p =1 (mod 3), there are integers a and b such that p = a®+3b%. Modulo
4 we obtain @ = 0 (mod 2), b = 1 (mod 2). Replacing b by —b if necessary we obtain (4).
Let M be the splitting field of p(z). By [4: Theorem 3], Gal(M/Q) ~ D4. By [7: Lemma,
3.3], M contains k = Q(+/=3) and K, and Gal(M/K) ~ Z,. Let L = k(/3b+ a/-3).
As 1/3b+ av/=3 is a root of p(z), M is the normal closure of L. Now by [6: Theorem
3.12],

dr = drdk fo(M/K)? = 3pfo(M/K)>.

By [3: Theorem 2], we have
dL = 33p,

so that fo(M/K) = 3. Finally, by [5: Theorem 3.9], we obtain M = F3(K).

Lemma 3.4. Let p be a prime which is congruent to 1 modulo 4. Set

K = Q(y/=p). Then

hOk) =0 (mod 4) if and only if p=1 (mod 8). (5)
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Further, if p=1 (mod 8), then p can be expressed in the form
p=a®+b?

where a =1 (mod 4) and b=0 (mod 4). Set

piz) = z* — 2az® + p.
Then the splitting field M of p(z) over Q satz'sﬁés

K C M C Fi(K).
In particular, if h(Ok) = 4 then M = Fi(K).
Proof. By [6: Theorem 4.1], the Hilbert class field F1(K) of K contains
K(1) = Q(vV-1,vp).

This implies that the 2-rank of Gal(F;(K)/K) is 1, so that h(Ox) = 0 (mod 2). Further,
suppose that h(@x) = 0 (mod 4). Then F;(K) contains a 4-cyclic extension M of K.
It is obvious that K (1) C M. Set k = Q(v/—1). By Lemma 3.1, there are integers a, b,c
with gcd(a, b) squarefree such that pc® = a? + b%. Set

p(z) = (z? — a)? + b% = z* — 2az® + Fp.

Then M is the splitting field of p(z) and M contains L = k(v/a + by/—1). By [3:
Theorem 2], we have

_ e (_(a:h) 2
On the other hand, by [6: Theorem 3.12], we have
d = didk fo(M/K)? = 2*pfo(M/K)?, (7)
Hence we obtain (a.b)
e a,
ot/ ) = 22 (20,

Noting that as M C Fy(K), we have, by [5: Theorem 3.9], that fo(M/K) = 1 so that
e = 4 and gcd(a,b) = ged(a,b,p). This, by [3: TABLE B], implies a = 1 (mod 2) and
b =0 (mod 4) so that p=1 (mod 8).

Conversely, suppose p = 1 (mod 8). Then there are integers a,b with b = 0 (mod 4)
such that p = a? + b°. Set p(z) = (2 — a)? + b%. Let M be the splitting field of p(x) so
that Gal(M/Q) ~ D, and Gal(M/K) ~ Z,. Let k = Q(+/=1), L = Q(+/a + by/-1). By
[3: TABLE B] we have

dr = 2%p.
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Then, by (7), we have fo(M/K) =1 so that M C F;(K), which implies that h(dx) =0
(mod 4).

Lemma 3.5. Let p be a prime which is congruent to 5 modulo 8 so that
there are integers a,b such that

p=a®+b%, a=1(mod2), b=2 (mod 4).
Set K = Q(y/—p). Then h(O3) =4 (mod 8). Set
p(z) = z* — 2az® + p.
Then the splitting field M of p(z) over Q satisfies
K C M C F5(K).
In particular, if h(Og) =4 then M = F,(K).

Proof. By Lemma 3.4, we have h(Ok) = 2 (mod 4). Then appealing to Gauss’s
formula, A(O2) = 2h(Ok) = 4 (mod 8).
Let M be the splitting field of p(z), let k = Q(v/-1), L = k(+/a + by/—-1). By [3:

Theorem 2], we have
di = 2°p. (8)

On the other hand, by [6: Theorem 3.12], we have
dr = didk fo(M/K)* = 2'pfo(M/K)?. (9)

where fo(M/K) denotes the finite part of the conductor of the extension M/K. Hence
we obtain fo(M/K) = 2 so that, by [5: Theorem 3.9], M C F>(K).

Lemma 3.6 Let p be an odd prime and let K = Q(v/—2p). Then

{2 (mod 4), if (%) = -1,

e (mod 4), if (2) =1.

Further, suppose that (%) =1, that is, p= %1 (mod 8). Then p can be erpressed
in the form

_ { —a®>+2b?, if p=-1 (mod 8),

| a? + 202, if p=1 (mod 8),

where the integers a and b satisfy

_ [ 1 (mod 4), if b=0 (mod 4),

°s {—1 (mod 4), ifb=2 (mod 4). (10)
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Set

sl = {(m2 —a)? -2 =2*—2az? —p, ifp=-1 (mod 8), (1)

(22 —a)? + 20> =z* —2az% +p, ifp=1 (mod 8).
Then the splitting field M of p(z) over Q satisfies

K C M C Fi(K).

In particular, if h(Ok) =4 then M = Fi(K).

Proof. We just treat the case when p =1 (mod 4). The case when p = 3 (mod 4)
can be handled similarly. By [6: Theorem 4.1] the Hilbert class field F3 (K) contains the
genus field

K(1) = Q(vV~-2,vp),

so that [K(1) : K] = 2. This implies that the 2-rank of Gal(F,(K)/K) is 1, so that
h(Ok) =0 (mod 2). We now show that

h(Ok) = 0 (mod 4) if and only if p = 1 (mod 8).

Suppose first that A(Ok) = 0 (mod 4). Then F;(K) contains a cyclic-4 extension M of
K. Tt is obvious that K(1) C M. Set k = Q(v/—2). By Lemma 3.1, there are integers
a, b, ¢ such that ¢?p = a? + 2b% so that p =1 (mod 8).

Conversely, suppose that p = 1 (mod 8). Then there are integers a, b satisfying (10)
such that p = a2 + 2b. Set k = Q(v/—2). Set

p(z) = z* — 2az + p.

Let M be the splitting field of p(z) so that Gal(M/Q) ~ D,. Let k = Q(v/—2) and let
L = Q(v/a + by/=2) so that M is the normal closure of L. By [7: Theorem 3.12);

dy = dxdy fo(M/K)? = —2°pfo(M/K)*.
On the other hand, as a and b satisfy (10), from [3: TABLE A] we have
dL = _26p7

so that fo(M/K) = 1. Thus, the extension K C M is unramified, so that M C F} (K),
which implies h(Og) = 0 (mod 4). In particular, if h(Ok) = 4, then M = F(K).

Lemma 3.7. Let K = Q(v/-3) and f =11,13. Set

o) = [ -2 + 297, if =11,
PIE) = 41 — 3622 — 39, if f =13.

Then the splitiing field of ps(z) is F¢(K).
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Proof. We just prove the result when f = 13. The case when f = 11 can be treated

similarly. Let M be the splitting field of ps(z). Let k = Q(v13), L = Q(v/13 + 4/13).
By [7: Theorem 3.12],

dr = dgdifo(M/K)? = —=39fy(M/K)>.
On the other hand, by [3: Theorem 2]
dp = —39- 132,
so that fo(M/K) = 13. By [5: Theorem 3.9], M = Fi3(K).
Lemma 3.8. Let K = Q(v/—4) and f =6,7,8,10. Set

z* + 3, if f =86,
zt + 7, iF f =¥
zt -5, if 7 =10.

Then the splitting field of ps(z) is Ff(K).

Proof. We just prove the result when f = 6. The other cases can be treated
similarly. Let M be the splitting field of ps(x). Let k = Q(v/-3), L = Q(v/-3). By [7:
Theorem 3.12],

dr = dgdrfo(M/K)? = 12fo(M/K)2.
On the other hand, by [3: Theorem 2]
dg =24 .33,
so that fo(M/K) = 6. By [5: Theorem 3.9], M = Fys(K).
Lemma 3.9. Let K = Q(V/d), where d = —11 or —19. Set

fol] = z* — 1022 — 55, if d = —11,
¥ 2% + 3022 — 95, if d= —19.

Then the splitting field of p(z) is Fs(K).

Proof. We just prove the result when K = Q(v/—11). The case when K =
Q(+/—19) can be treated similarly. Let M be the splitting field of p(z). Let k = Q(/5),
L = Q(+v/5 +4V5). By [7: Theorem 3.12],

dr = drdi fo(M/K)? = —11-5fo(M/K)>?.
On the other hand, by [3: TABLE C]

dr = —11-5%,
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so that fo(M/K) =>5. By [5: Theorem 3.9], M = F5(K).

Lemma 3.10. Let K = Q(v/—8). Set p(z) = z* — 22% + 2. Then the splitting
field of p(z) is F4y(K).

Proof. Let M be the splitting field of p(z). Let k = Q(v/—=1), L = Q(+/1+ v/=1).
By [7: Theorem 3.12],

dp = dgdy fo(M]K)? = 2° fo(M/K)?.
On the other hand, by [3: Theorem 2]
i, =2,
so that fo(M/K) = 4. By [5: Theorem 3.9], M = Fy(K).

4. The main result
Appealing to Theorem 2.2 and Lemmas 3.2-3.10, we obtain the following result.

Theorem 4.1. Let A be one of the 50 discriminants such that h(A) = 4
and H(A) =~ Z4. Then the prime p (p > 3,pt A) is represented by the principal

form 1a of discriminant A if and only if (%) = +1 and pa(x) is congruent to
the product of four distinct linear polynomsials (mod p), where pa(z) is the monic
biquadratic polynomial with integral coefficients listed in the following table.

Table
A Pa A D
39 zt + 222 4+ 13 55 zt + 222 + 45
56 2t 222 -7 63 zt + 622 + 21
68 gt =232 + 17 80 zt — 222 +5
128 zt-222+42 136  z*—622+17
144 z*+3 155  zt+222 4125
156  z*+22%+13 171 z* 4+ 622 + 57
184  z* +62%—23 196 z*+7
203 z*+222+29 208 z*—622+13
219 z*—-10z2+73 220 z* 4222445
252  z*+ 622 +21 256 xt-2
259 zt—6z2+37 275 z*—10z2 - 55

291 z* + 1422 + 97 292  z*+622+73
323zt +22:2 4425 328  zt 4622441
355  z* — 2222 + 405 363  z*— 2222 + 297
387  z*—1822 4129 388 z* — 1822 4 97
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400
507
592
667
763
955
1027
1243
1387
1507
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