REPRESENTATION OF PRIMES BY THE PRINCIPAL FORM OF NEGATIVE DISCRIMINANT Δ WHEN $h(\Delta)$ IS 4

KENNETH S. WILLIAMS * AND D. LIU

Abstract

Let Δ be a negative integer which is congruent to 0 or $1(\bmod 4)$. Let $H(\Delta)$ denote the form class group of classes of positive-definite, primitive integral binary quadratic forms $a x^{2}+b x y+c y^{2}$ of discriminant Δ. If $H(\Delta)$ is a cyclic group of order 4 , an explicit quartic polynomial $\rho_{\Delta}(x)$ of the form $x^{4}-b x^{2}+d$ with integral coefficients is determined such that for an odd prime p not dividing Δ, p is represented by the principal form of discriminant Δ if and only if the congruence $\rho_{\Delta}(x) \equiv 0(\bmod p)$ has four solutions.

1. Notation and a preliminary result

Let Δ be a negative integer which is congruent to 0 or $1(\bmod 4)$. Let $H(\Delta)$ denote the form class group of classes of positive-definite, primitive integral binary quadratic forms $a x^{2}+b x y+c y^{2}$ of discriminant Δ. It is well known that $H(\Delta)$ is a finite Abelian group. The order of $H(\Delta)$ is called the classnumber of forms of discriminant Δ and is denoted by $h(\Delta)$. The principal form of discriminant Δ is the form 1_{Δ} given by

$$
1_{\Delta}= \begin{cases}(1,0,-\Delta / 4), & \text { if } \Delta \equiv 0(\bmod 4) \\ (1,1,(1-\Delta) / 4), & \text { if } \Delta \equiv 1(\bmod 4)\end{cases}
$$

In this paper we are concerned with the representability of a prime by the principal form 1_{Δ} of discriminant Δ when $h(\Delta)=4$.

Recent work of Steven Arno has determined all the imaginary quadratic fields with classnumber 4 [1: Theorem 7], namely, the 54 fields $Q(\sqrt{-n})$ with

$$
\begin{aligned}
n= & 14,17,21,30,33,34,39,42,46,55,57,70,73,78,82,85,93,97, \\
& 102,130,133,142,155,177,190,193,195,203,219,253,259,291, \\
& 323,355,435,483,555,595,627,667,715,723,763,795,955, \\
& 1003,1027,1227,1243,1387,1411,1435,1507,1555 .
\end{aligned}
$$

Received June 14, 1993.
1991 Mathematics Subject Classification. 11E16, 11R11, 11R29, 11R37.
Key words and phrases. Form class group, ideal class group, ring class field.

* Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.

The complete list of all imaginary quadratic fields $Q(\sqrt{-n})$ with classnumber 1 or 2 has been known for some time:

$$
\begin{array}{cc}
h(-n)=1: & n=1,2,3,7,11,19,43,67,163 \quad(9 \text { fields }) \\
h(-n)=2: & n=5,6,10,13,15,22,35,37,51,58,91,115,123, \\
& 187,235,267,403,427 . \quad(18 \text { fields })
\end{array}
$$

From these results we can deduce
Proposition 1.1. $h(\Delta)=4$ if and only if $-\Delta$ has one of the following 84 values:

$$
\begin{aligned}
& 39,55,56,63,68,80,84,96,120,128,132,136,144,155,156,160,168,171,180 \text {, } \\
& 184,192,195,196,203,208,219,220,228,240,252,256,259,275,280,288,291, \\
& 292,312,315,323,328,340,352,355,363,372,387,388,400,408,435,448,475, \\
& 483,507,520,532,555,568,592,595,603,627,667,708,715,723,760,763,772, \\
& 795,928,955,1003,1012,1027,1227,1243,1387,1411,1435,1467,1507,1555 .
\end{aligned}
$$

Proof. Let d be the discriminant of the imaginary quadratic field given uniquely by

$$
\Delta=f^{2} d
$$

where f is a positive integer. Then, by a formula of Gauss, we have

$$
h(\Delta)=h\left(f^{2} d\right)=h(d) \phi_{d}(f) / u
$$

where

$$
\phi_{d}(f)=f \prod_{q \mid f}\left(1-\left(\frac{d}{q}\right) \frac{1}{q}\right)
$$

and

$$
u= \begin{cases}3, & \text { if } d=-3 \\ 2, & \text { if } d=-4 \\ 1, & \text { if } d<-4\end{cases}
$$

Note that q runs through the distinct primes dividing f and $\left(\frac{d}{q}\right)$ is the Kronecker symbol. As $\phi_{d}(f) / u$ is a positive integer, we see that

$$
h(\Delta)=4 \Longleftrightarrow\left\{\begin{array}{lll}
(a) & h(d)=4 & \text { and } \phi_{d}(f) / u=1, \tag{1}\\
(b) & h(d)=2 & \text { or } \\
(c) & h(d)=1 & \text { and } \phi_{d}(f) / u=2, \\
\text { and } \phi_{d}(f) / u=4 . &
\end{array}\right.
$$

For case (a), we have $\phi_{d}(f)=1$, which occurs if and only if $f=1$ or $d \equiv 1(\bmod 8)$ and $f=2$. Then appealing to the list of imaginary quadratic fields with classnumber 4 , we deduce that (a) occurs if and only if $-\Delta$ has one of the following 56 values:

$$
\begin{aligned}
& 39,55,56,68,84,120,132,136,155,156,168,184,195,203,219,220,228 \text {, } \\
& 259,280,291,292,312,323,328,340,355,372,388,408,435,483,520,532, \\
& 555,568,595,627,667,708,715,723,760,763,772,795,955,1003,1012, \\
& 1027,1227,1243,1387,1411,1435,1507,1555 .
\end{aligned}
$$

For case (b), we have $\phi_{d}(f)=2$, which occurs if and only if $d \equiv 0(\bmod 4)$ and $f=2$ or $d \equiv 1(\bmod 8)$ and $f=4$ or $d \equiv 1(\bmod 3)$ and $f=3$. Then appealing to the list of imaginary quadratic fields with classnumber 2 , we deduce that (b) occurs if and only if $-\Delta$ has one of the following 10 values:

$$
80,96,160,180,208,240,315,352,592,928 .
$$

For case (c), we consider the following three subcases: (c1): $d<-4$; (c2): $d=-4$; (c3): $d=-3$. For case (c1), we have $\phi_{d}(f)=4$, which occurs if and only if

$$
\begin{aligned}
& d \equiv 0(\bmod 4) \text { and } f=4 \text { or } \\
& d \equiv 1,4(\bmod 5) \text { and } f=5 \text { or } \\
& d \equiv 2(\bmod 3) \text { and } f=3 \text { or } \\
& d=-7 \text { and } f=6,8 \text { or } \\
& d=-8 \text { and } f=4,6 .
\end{aligned}
$$

Then appealing to the list of imaginary quadratic fields with classnumber 1 , we deduce that (c1) occurs if and only if $-\Delta$ has one of the following 11 values:

$$
63,128,171,252,275,288,387,448,475,603,1467
$$

For case (c2), we have $\phi_{-4}(f) / 2=4$, which occurs if and only if $f=6,7,8$ or 10 , that is if and only if $-\Delta$ has one of the following 4 values:
$144,196,256,400$.
For case (c3), we have $\phi_{-3}(f) / 3=4$, which occurs if and only if $f=8,11$ or 13 , that is if and only if $-\Delta$ has one of the following 3 values:

2. Introduction and a preliminary result

Gauss [2] showed that an odd prime p is represented by the quadratic form $x^{2}+$ $64 y^{2}$ (the principal form of discriminant -256) if and only if the congruence $x^{4}-2 \equiv 0$ $(\bmod p)$ has four solutions. In this paper we extend this result of Gauss to all negative discriminants Δ for which $H(\Delta) \simeq Z_{4}$ (see Theorem 4.1). The case $H(\Delta) \simeq Z_{3}$ was treated by K.S. Williams and R.H. Hudson [9].

Let K be an imaginary quadratic field, and let \mathcal{O}_{K} denote the ring of algebraic integers of K. We define for any nonzero ideal \mathcal{M} of \mathcal{O}_{K} the group $I_{K}(\mathcal{M})$, and its subgroups $P_{K, 1}(\mathcal{M})$ and $P_{K, Z}(\mathcal{M})$, by
$I_{K}(\mathcal{M})=$ group of all fractional \mathcal{O}_{K}-ideals which are relatively prime to \mathcal{M}, $P_{K, 1}(\mathcal{M})=$ subgroup of $I_{K}(\mathcal{M})$ generated by principal ideals $\alpha \mathcal{O}_{K}$, where $\alpha \in \mathcal{O}_{K}$ satisfies $\alpha \equiv 1(\bmod \mathcal{M})$,
$P_{K, Z}(\mathcal{M})=$ subgroup of $I_{K}(\mathcal{M})$ generated by principal ideals $\alpha \mathcal{O}_{K}$ with $\alpha \in$ \mathcal{O}_{K} and $\alpha \equiv a(\bmod \mathcal{M})$ for some integer a coprime with \mathcal{M}.
If $\boldsymbol{M}=\alpha \mathcal{O}_{K}$ we write $I_{K}(\alpha)$ for $I_{K}\left(\alpha \mathcal{O}_{K}\right), P_{K, Z}(\alpha)$ for $P_{K, Z}\left(\alpha \mathcal{O}_{K}\right)$, and $P_{K, 1}(\alpha)$ for $P_{K, 1}\left(\alpha \mathcal{O}_{K}\right)$. Let f be a positive integer and let \mathcal{O}_{f} denote the order of conductor f in a quadratic field K. We also let $C\left(\mathcal{O}_{f}\right)$ denote the ideal class group of the order \mathcal{O}_{f} and $F_{f}(K)$ the ring class field of the order \mathcal{O}_{f}. The genus field of the ring class field $F_{f}(K)$ is denoted by $K(f)$ and is the largest subfield of $F_{f}(K)$ such that $K(f)$ is an Abelian extension of Q.

Theorem 2.1. Let $\Delta \equiv 0,1(\bmod 4)$ be a negative integer. Set $K=Q(\sqrt{\Delta})$. Let N be a subgroup of $H(\Delta)$. Then there exists a unique dihedral extension M of Q such that if p is unramified in M then p is represented by a form in N if and only if p splits completely in M. In particular, p is represented by the principal form 1_{Δ} if and only if p splits completely in $F_{f}(K)$, where $f=\sqrt{\Delta / d_{K}}$.

Proof. As $\Delta \equiv 0,1(\bmod 4)$, there is a positive integer f such that $\Delta=d_{K} f^{2}$, where d_{K} denotes the discriminant of K. We have the isomorphisms

$$
H(\Delta) \simeq C\left(\mathcal{O}_{f}\right) \simeq I_{K}(f) / P_{K, Z}(f)
$$

Under the above isomorphisms, as $N \subset H(\Delta)$, there exists a unique subgroup H with

$$
\begin{equation*}
P_{K, Z}(f) \subset H \subset I_{K}(f) \tag{2}
\end{equation*}
$$

such that $N \simeq H / P_{K, Z}(f)$. By the existence theorem of class field theory, (2) determines a unique Abelian extension M of K such that

$$
I_{K}(f) / H \simeq \operatorname{Gal}(M / K)
$$

Further, we have that

$$
\operatorname{Gal}(M / K) \simeq I_{K}(f) / H \simeq\left(I_{K}(f) / P_{K, Z}(f)\right) /\left(H / P_{K, Z}(f)\right) \simeq H(\Delta) / N
$$

Now appealing to [5: Theorem 3.6], the assertion of the theorem follows. In particular, if $N=\left\{1_{\Delta}\right\}$, then we have $M=F_{f}(K)$ so that the last assertion of the theorem follows. For $h(\Delta)=4$, as $H(\Delta)$ is either a Klein- 4 group or a cyclic-4 group, we have the following result.

Theorem 2.2. Suppose $h(\Delta)=4$. Set $K=Q(\sqrt{\Delta})$ and let $f=\sqrt{\Delta / d_{K}}$.
(i) If $H(\Delta) \simeq Z_{2} \times Z_{2}$, then $F_{f}(K)$ is the composite field of its three quadratic fields, say, k, k^{\prime} and $k^{\prime \prime}$, so that for a prime p not dividing Δ,

$$
p \quad \text { is represented by } 1_{\Delta} \Longleftrightarrow\left(\frac{d_{k}}{p}\right)=\left(\frac{d_{k^{\prime}}}{p}\right)=\left(\frac{d_{k^{\prime \prime}}}{p}\right)=1
$$

(ii) If $H(\Delta) \simeq Z_{4}$, then there is an irreducible quartic $\rho(x)=x^{4}-b x^{2}+d \in Z[x]$ such that $F_{f}(K)$ is the splitting field of $\rho(x)$ so that, for an odd prime p not dividing $\operatorname{disc}(\rho)$,

$$
\begin{gather*}
p \text { is represented by } 1_{\Delta} \Longleftrightarrow\left\{\begin{array}{l}
\left(\frac{d_{K}}{p}\right)=1 \text { and } \rho(x) \equiv 0(\bmod p) \\
\text { has a solution, }
\end{array}\right. \tag{3}\\
\Longleftrightarrow\left(\frac{d}{p}\right)=\left(\frac{b^{2}-4 d}{p}\right)=\left(\frac{\left(b+\sqrt{b^{2}-4 d}\right) / 2}{p}\right)=1 \tag{4}\\
\Longleftrightarrow\left(\frac{d}{p}\right)=\left(\frac{b^{2}-4 d}{p}\right)=\left(\frac{b+2 \sqrt{d}}{p}\right)=1 \tag{5}\\
\Longleftrightarrow v_{(p-1) / 2} \equiv 2(\bmod p) \tag{6}
\end{gather*}
$$

where the $v_{n}(n=0,1,2, \ldots)$ are given by the recurrence relation

$$
v_{n+2}=b v_{n+1}-d v_{n}, \quad v_{0}=2, \quad v_{1}=b
$$

Proof. For the case (i), as $F_{f}(K)$ is the composite field of the fields k, k^{\prime} and $k^{\prime \prime}$, p splits completely in $F_{f}(K)$ if and only if p splits completely in all the three quadratic fields. Then the assertion of the theorem follows from the last assertion of Theorem 2.1. For the case (ii), as $\operatorname{Gal}\left(F_{f}(K) / K\right) \simeq H(\Delta)$, we have $\operatorname{Gal}\left(F_{f}(K) / K\right)$ is a cyclic group of order 4 so that $\operatorname{Gal}\left(F_{f}(K) / Q\right) \simeq D_{4}$. By [5: Lemma 2.4] and [7: Theorem 4.2], the quartic $\rho(x)$ stated in the theorem exists. Now we prove the assertion (3). As $F_{f}(K)$ is the splitting field of $\rho(x)$, we have, for a prime p not dividing $\operatorname{disc}(\rho)$, that p splits completely in M if and only if the congruence

$$
x^{4}-b x^{2}+d \equiv 0(\bmod p)
$$

has four solutions. Then the assertion (3) follows from [8: Theorem 2.16 (i)]. The assertions (4), (5) and (6) follow from [8: Theorem 2.1, Lemma 2.4 and Lemma 2.3] respectively.

For the case $H(\Delta) \simeq Z_{2} \times Z_{2}$, as $F_{f}(K)=K(f)$, applying [6: Theorem 4.1] we have no difficulty in determining k, k^{\prime} and $k^{\prime \prime}$. The following table gives all the 34 discriminants satisfying Theorem 2.2(i).

Δ	d_{k}	$d_{k^{\prime}}$	$d_{k^{\prime \prime}}$	Δ	d_{k}	$d_{k^{\prime}}$	$d_{k^{\prime \prime}}$
-84	-4	-3	-7	-96	-4	8	-3
-120	8	-3	5	-132	8	-3	-11
-160	-4	8	5	-168	-8	-3	-7
-180	-4	-3	5	-192	-4	8	-3
-195	-3	5	13	-228	8	-3	-19
-240	-4	-3	5	-280	8	5	-7
-288	-4	8	-3	-312	8	-3	13
-315	-3	5	-7	-340	-4	5	17
-352	-4	8	-11	-372	8	-3	-31
-408	8	-3	17	-435	-3	5	29
-448	-4	8	-7	-483	-3	-7	-23
-520	-8	5	13	-532	8	-7	-19
-555	-3	5	37	-595	5	-7	17
-627	-3	-11	-19	-708	8	-3	-59
-715	5	-11	13	-760	8	5	-19
-795	-3	5	53	-928	-4	-8	29
-1012	8	-11	-23	-1435	5	-7	41

3. Determination of $\rho(x)$ when $H(\Delta) \simeq Z_{4}$

In order to apply Theorem 2.2 (ii), for each $\Delta=d f^{2}$, where d is a fundamental discriminant, we have to determine a quartic $\rho(x)=x^{4}-b x^{2}+d \in Z[x]$ such that the ring class field $F_{f}(Q(\sqrt{d}))$ is the splitting field of $\rho(x)$. We divide the remaining 50 values of Δ into nine sets as follows:
(A) $-\Delta=39,55,155,156,203,219,220,259,291,323,355,667,723,763,955$, 1003, 1027, 1227, 1243, 1387, 1411, 1507, 1555 (see Lemma 3.2)
(B) $-\Delta=63,171,252,387,603,1467$ (see Lemma 3.3)
(C) $-\Delta=68,292,388,772($ see Lemma 3.4)
(D) $-\Delta=80,208,592$ (see Lemma 3.5)
(E) $-\Delta=56,136,184,328,568$ (see Lemma 3.6)
(F) $-\Delta=363,507$ (see Lemma 3.7)
(G) $-\Delta=144,196,256,400$ (see Lemma 3.8)
(H) $-\Delta=275,475$ (see Lemma 3.9)
(I) $-\Delta=128$ (see Lemma 3.10)

Lemma 3.1. Let M be a dihedral extension with $G a l(M / Q) \simeq D_{4}$. Let K be the unique quadratic field in M such that $\operatorname{Gal}(M / K) \simeq Z_{4}$, and let k be a quadratic
field in M different from K. Let $K=Q(\sqrt{D}), k=Q(\sqrt{d})$, where both D and d are squarefree. Then there are nonzero integers a, b, c with $\operatorname{gcd}(a, b)$ squarefree such that $c^{2} D=\left(a^{2}-b^{2} d\right) d$.

Proof. As $\operatorname{Gal}(M / Q) \simeq D_{4}$, there is a quartic field in M containing k such that the normal closure of L is M. As $[L: k]=2$, there are integers a, b with $\operatorname{gcd}(a, b)$ squarefree such that $L=Q(\sqrt{a+b \sqrt{d}})$. It is clear that $\sqrt{a+b \sqrt{d}}$ is a root of $f(x)=$ $x^{4}-2 a x^{2}+a^{2}-b^{2} d$ and M is the splitting field of $f(x)$. By [7: Lemma 3.3], we have $K=Q(\sqrt{D})=Q\left(\sqrt{\left(a^{2}-b^{2} d\right) d}\right)$. As D is squarefree, there is an integer c such that $c^{2} D=\left(a^{2}-b^{2} d\right) d$.

Lemma 3.2. Let p_{1} and p_{2} be two primes with $p_{1} \equiv 3(\bmod 4), p_{2} \equiv 1(\bmod$ 4). Let $K=Q\left(\sqrt{-p_{1} p_{2}}\right)$. Then $h\left(-p_{1} p_{2}\right) \equiv 0(\bmod 4)$ if and only if there are integers a, b and c such that

$$
c^{2} p_{2}=a^{2}+b^{2} p_{1}
$$

where a and b satisfy

$$
\begin{equation*}
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a, b, p_{1} p_{2}\right), a \equiv 1(\bmod 2), b \equiv 0(\bmod 2), a+b \equiv 1(\bmod 4) \tag{1}
\end{equation*}
$$

Further, if $h\left(-p_{1} p_{2}\right) \equiv 0(\bmod 4)$, set

$$
\rho(x)=\left(x^{2}-a\right)^{2}+p_{1} b^{2}=x^{4}-2 a x^{2}+c^{2} p_{2}
$$

where a and b are given as above. Then the splitting field M of $\rho(x)$ over Q satisfies

$$
K \subset M \subset F_{1}(K)
$$

In particular, if $h\left(-p_{1} p_{2}\right)=4$ then $M=F_{1}(K)$.
Proof. By [6: Theorem 4.1], the ring class field $F_{1}(K)$ of K contains the genus field

$$
K(1)=Q\left(\sqrt{-p_{1}}, \sqrt{p_{2}}\right) .
$$

This implies that the 2-part of $\operatorname{Gal}\left(F_{1}(K) / K\right)$ is a cyclic group of order $2^{r}, r \geq 1$. Now suppose that $h\left(\mathcal{O}_{K}\right) \equiv 0(\bmod 4)$. By Galois theory there is an extension $K \subset K(1) \subset$ $M \subset F_{1}(K)$ with $\operatorname{Gal}(M / K) \simeq Z_{4}$. Let $k=Q\left(\sqrt{-p_{1}}\right)$. By Lemma 3.1, there are integers a, b, c with $\operatorname{gcd}(a, b)$ squarefree such that $p_{2} c^{2}=a^{2}+b^{2} p_{1}$. Set

$$
\rho(x)=\left(x^{2}-a\right)^{2}+p_{1} b^{2}=x^{4}-2 a x^{2}+c^{2} p_{2}
$$

Then M is the splitting field of $\rho(x)$ and M contains $L=k\left(\sqrt{a+b \sqrt{-p_{1}}}\right)$. By [3: Theorem 2], we have

$$
\begin{equation*}
d_{L}=2^{e} p_{1}^{2} p_{2}\left(\frac{(a, b)}{\left(a, b, p_{1} p_{2}\right)}\right)^{2} \tag{2}
\end{equation*}
$$

where e is an even integer given by [3: TABLES C and D]. On the other hand, by [6: Theorem 3.12], we have

$$
\begin{equation*}
d_{L}=d_{k} d_{K} f_{0}(M / K)^{2}=p_{1}^{2} p_{2} f_{0}(M / K)^{2} \tag{3}
\end{equation*}
$$

where $f_{0}(M / K)$ denotes the finite part of the conductor of the extension M / K. Hence we obtain

$$
f_{0}(M / K)=2^{e / 2}\left(\frac{(a, b)}{\left(a, b, p_{1} p_{2}\right)}\right)
$$

Noting that as $M \subset F_{1}(K)$, we have, by [5: Theorem 3.9], that $f_{0}(M / K)=1$ so that $e=0$ and $\operatorname{gcd}(a, b)=\operatorname{gcd}\left(a, b, p_{1} p_{2}\right)$. By [3: TABLES C and D], we obtain the condition (1).

Conversely, suppose that the conditions involving a and b of the lemma are satisfied. Set $\rho(x)=\left(x^{2}-a\right)^{2}+p_{1} b^{2}$. Let M be the splitting field of $\rho(x)$ so that $\operatorname{Gal}(M / Q) \simeq D_{4}$ and $\operatorname{Gal}(M / K) \simeq Z_{4}$. Let $k=Q\left(\sqrt{-p_{1}}\right), L=Q\left(\sqrt{a+b \sqrt{-p_{1}}}\right)$. By [3: Theorem 2], we have

$$
d_{L}=p_{1}^{2} p_{2}
$$

and then, by (3), we have $f_{0}(M / K)=1$ so that $M \subset F_{1}(K)$, which implies that $h\left(-p_{1} p_{2}\right) \equiv 0(\bmod 4)$.

Lemma 3.3. Let $K=Q(\sqrt{-p})$, where $p=7,19,43,67,163$ so that $h\left(\mathcal{O}_{3}\right)=4$. There are integers a and b such that $p=a^{2}+3 b^{2}$ and

$$
b \equiv \begin{cases}3(\bmod 4), & \text { if } a \equiv 0(\bmod 4), \tag{4}\\ 1(\bmod 4), & \text { if } a \equiv 2(\bmod 4),\end{cases}
$$

Set $\rho(x)=x^{4}-6 b^{2} x^{2}+3 p$. Then $F_{3}(K)$ is the splitting field of $\rho(x)$.
Proof. As $p \equiv 1(\bmod 3)$, there are integers a and b such that $p=a^{2}+3 b^{2}$. Modulo 4 we obtain $a \equiv 0(\bmod 2), b \equiv 1(\bmod 2)$. Replacing b by $-b$ if necessary we obtain (4). Let M be the splitting field of $\rho(x)$. By [4: Theorem 3], $\operatorname{Gal}(M / Q) \simeq D_{4}$. By [7: Lemma 3.3], M contains $k=Q(\sqrt{-3})$ and K, and $\operatorname{Gal}(M / K) \simeq Z_{4}$. Let $L=k(\sqrt{3 b+a \sqrt{-3}})$. As $\sqrt{3 b+a \sqrt{-3}}$ is a root of $\rho(x), M$ is the normal closure of L. Now by [6: Theorem 3.12],

$$
d_{L}=d_{k} d_{K} f_{0}(M / K)^{2}=3 p f_{0}(M / K)^{2}
$$

By [3: Theorem 2], we have

$$
d_{L}=3^{3} p
$$

so that $f_{0}(M / K)=3$. Finally, by [5: Theorem 3.9], we obtain $M=F_{3}(K)$.
Lemma 3.4. Let p be a prime which is congruent to 1 modulo 4. Set $K=Q(\sqrt{-p})$. Then

$$
\begin{equation*}
h\left(\mathcal{O}_{K}\right) \equiv 0(\bmod 4) \text { if and only if } p \equiv 1(\bmod 8) \tag{5}
\end{equation*}
$$

Further, if $p \equiv 1(\bmod 8)$, then p can be expressed in the form

$$
p=a^{2}+b^{2}
$$

where $a \equiv 1(\bmod 4)$ and $b \equiv 0(\bmod 4)$. Set

$$
\rho^{\prime}(x)=x^{4}-2 a x^{2}+p
$$

Then the splitting field M of $\rho(x)$ over Q satisfies

$$
K \subset M \subset F_{1}(K)
$$

In particular, if $h\left(\mathcal{O}_{K}\right)=4$ then $M=F_{1}(K)$.
Proof. By [6: Theorem 4.1], the Hilbert class field $F_{1}(K)$ of K contains

$$
K(1)=Q(\sqrt{-1}, \sqrt{p})
$$

This implies that the 2 -rank of $\operatorname{Gal}\left(F_{1}(K) / K\right)$ is 1 , so that $h\left(\mathcal{O}_{K}\right) \equiv 0(\bmod 2)$. Further, suppose that $h\left(\mathcal{O}_{K}\right) \equiv 0(\bmod 4)$. Then $F_{1}(K)$ contains a 4 -cyclic extension M of K. It is obvious that $K(1) \subset M$. Set $k=Q(\sqrt{-1})$. By Lemma 3.1, there are integers a, b, c with $\operatorname{gcd}(a, b)$ squarefree such that $p c^{2}=a^{2}+b^{2}$. Set

$$
\rho(x)=\left(x^{2}-a\right)^{2}+b^{2}=x^{4}-2 a x^{2}+c^{2} p
$$

Then M is the splitting field of $\rho(x)$ and M contains $L=k(\sqrt{a+b \sqrt{-1}})$. By [3: Theorem 2], we have

$$
\begin{equation*}
d_{L}=2^{e} p\left(\frac{(a, b)}{(a, b, p)}\right)^{2} \tag{6}
\end{equation*}
$$

On the other hand, by [6: Theorem 3.12], we have

$$
\begin{equation*}
d_{L}=d_{k} d_{K} f_{0}(M / K)^{2}=2^{4} p f_{0}(M / K)^{2} \tag{7}
\end{equation*}
$$

Hence we obtain

$$
f_{0}(M / K)=2^{(e-4) / 2}\left(\frac{(a, b)}{(a, b, p)}\right)
$$

Noting that as $M \subset F_{1}(K)$, we have, by [5: Theorem 3.9], that $f_{0}(M / K)=1$ so that $e=4$ and $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b, p)$. This, by [3: TABLE B], implies $a \equiv 1(\bmod 2)$ and $b \equiv 0(\bmod 4)$ so that $p \equiv 1(\bmod 8)$.

Conversely, suppose $p \equiv 1(\bmod 8)$. Then there are integers a, b with $b \equiv 0(\bmod 4)$ such that $p=a^{2}+b^{2}$. Set $\rho(x)=\left(x^{2}-a\right)^{2}+b^{2}$. Let M be the splitting field of $\rho(x)$ so that $\operatorname{Gal}(M / Q) \simeq D_{4}$ and $\operatorname{Gal}(M / K) \simeq Z_{4}$. Let $k=Q(\sqrt{-1}), L=Q(\sqrt{a+b \sqrt{-1}})$. By [3: TABLE B] we have

$$
d_{L}=2^{4} p
$$

Then, by (7), we have $f_{0}(M / K)=1$ so that $M \subset F_{1}(K)$, which implies that $h\left(d_{K}\right) \equiv 0$ $(\bmod 4)$.

Lemma 3.5. Let p be a prime which is congruent to 5 modulo 8 so that there are integers a, b such that

$$
p=a^{2}+b^{2}, \quad a \equiv 1(\bmod 2), \quad b \equiv 2(\bmod 4)
$$

Set $K=Q(\sqrt{-p})$. Then $h\left(\mathcal{O}_{2}\right) \equiv 4(\bmod 8)$. Set

$$
\rho(x)=x^{4}-2 a x^{2}+p
$$

Then the splitting field M of $\rho(x)$ over Q satisfies

$$
K \subset M \subset F_{2}(K)
$$

In particular, if $h\left(\mathcal{O}_{2}\right)=4$ then $M=F_{2}(K)$.
Proof. By Lemma 3.4, we have $h\left(O_{K}\right) \equiv 2(\bmod 4)$. Then appealing to Gauss's formula, $h\left(O_{2}\right)=2 h\left(O_{K}\right) \equiv 4(\bmod 8)$.

Let M be the splitting field of $\rho(x)$, let $k=Q(\sqrt{-1}), L=k(\sqrt{a+b \sqrt{-1}})$. By [3: Theorem 2], we have

$$
\begin{equation*}
d_{L}=2^{6} p \tag{8}
\end{equation*}
$$

On the other hand, by [6: Theorem 3.12], we have

$$
\begin{equation*}
d_{L}=d_{k} d_{K} f_{0}(M / K)^{2}=2^{4} p f_{0}(M / K)^{2} \tag{9}
\end{equation*}
$$

where $f_{0}(M / K)$ denotes the finite part of the conductor of the extension M / K. Hence we obtain $f_{0}(M / K)=2$ so that, by [5: Theorem 3.9], $M \subset F_{2}(K)$.

Lemman 3.6 Let p be an odd prime and let $K=Q(\sqrt{-2 p})$. Then

$$
h\left(\mathcal{O}_{K}\right) \equiv \begin{cases}2(\bmod 4), & \text { if }\left(\frac{2}{p}\right)=-1 \\ 0(\bmod 4), & \text { if }\left(\frac{2}{p}\right)=1\end{cases}
$$

Further, suppose that $\left(\frac{2}{p}\right)=1$, that is, $p= \pm 1(\bmod 8)$. Then p can be expressed in the form

$$
p= \begin{cases}-a^{2}+2 b^{2}, & \text { if } p \equiv-1(\bmod 8) \\ a^{2}+2 b^{2}, & \text { if } p \equiv 1(\bmod 8)\end{cases}
$$

where the integers a and b satisfy

$$
a \equiv \begin{cases}1(\bmod 4), & \text { if } b \equiv 0(\bmod 4), \tag{10}\\ -1(\bmod 4), & \text { if } b \equiv 2(\bmod 4) .\end{cases}
$$

Set

$$
\rho(x)= \begin{cases}\left(x^{2}-a\right)^{2}-2 b^{2}=x^{4}-2 a x^{2}-p, & \text { if } p \equiv-1(\bmod 8) \tag{11}\\ \left(x^{2}-a\right)^{2}+2 b^{2}=x^{4}-2 a x^{2}+p, & \text { if } p \equiv 1(\bmod 8)\end{cases}
$$

Then the splitting field M of $\rho(x)$ over Q satisfies

$$
K \subset M \subset F_{1}(K)
$$

In particular, if $h\left(\mathcal{O}_{K}\right)=4$ then $M=F_{1}(K)$.
Proof. We just treat the case when $p \equiv 1(\bmod 4)$. The case when $p \equiv 3(\bmod 4)$ can be handled similarly. By [6: Theorem 4.1] the Hilbert class field $F_{1}(K)$ contains the genus field

$$
K(1)=Q(\sqrt{-2}, \sqrt{p})
$$

so that $[K(1): K]=2$. This implies that the 2-rank of $\operatorname{Gal}\left(F_{1}(K) / K\right)$ is 1 , so that $h\left(\mathcal{O}_{K}\right) \equiv 0(\bmod 2)$. We now show that

$$
h\left(\mathcal{O}_{K}\right) \equiv 0(\bmod 4) \text { if and only if } p \equiv 1(\bmod 8)
$$

Suppose first that $h\left(\mathcal{O}_{K}\right) \equiv 0(\bmod 4)$. Then $F_{1}(K)$ contains a cyclic-4 extension M of K. It is obvious that $K(1) \subset M$. Set $k=Q(\sqrt{-2})$. By Lemma 3.1, there are integers a, b, c such that $c^{2} p=a^{2}+2 b^{2}$ so that $p \equiv 1(\bmod 8)$.

Conversely, suppose that $p \equiv 1(\bmod 8)$. Then there are integers a, b satisfying (10) such that $p=a^{2}+2 b^{2}$. Set $k=Q(\sqrt{-2})$. Set

$$
\rho(x)=x^{4}-2 a x+p
$$

Let M be the splitting field of $\rho(x)$ so that $\operatorname{Gal}(M / Q) \simeq D_{4}$. Let $k=Q(\sqrt{-2})$ and let $L=Q(\sqrt{a+b \sqrt{-2}})$ so that M is the normal closure of L. By [7: Theorem 3.12],

$$
d_{L}=d_{K} d_{k} f_{0}(M / K)^{2}=-2^{6} p f_{0}(M / K)^{2}
$$

On the other hand, as a and b satisfy (10), from [3: TABLE A] we have

$$
d_{L}=-2^{6} p
$$

so that $f_{0}(M / K)=1$. Thus, the extension $K \subset M$ is unramified, so that $M \subset F_{1}(K)$, which implies $h\left(\mathcal{O}_{K}\right) \equiv 0(\bmod 4)$. In particular, if $h\left(\mathcal{O}_{K}\right)=4$, then $M=F_{1}(K)$.

Lemma 3.7. Let $K=Q(\sqrt{-3})$ and $f=11,13$. Set

$$
\rho_{f}(x)= \begin{cases}x^{4}-22 x^{2}+297, & \text { if } f=11 \\ x^{4}-36 x^{2}-39, & \text { if } f=13\end{cases}
$$

Then the splitting field of $\rho_{f}(x)$ is $F_{f}(K)$.

Proof. We just prove the result when $f=13$. The case when $f=11$ can be treated similarly. Let M be the splitting field of $\rho_{f}(x)$. Let $k=Q(\sqrt{13}), L=Q(\sqrt{13+4 \sqrt{13}})$. By [7: Theorem 3.12],

$$
d_{L}=d_{K} d_{k} f_{0}(M / K)^{2}=-39 f_{0}(M / K)^{2}
$$

On the other hand, by [3: Theorem 2]

$$
d_{L}=-39 \cdot 13^{2}
$$

so that $f_{0}(M / K)=13$. By [5: Theorem 3.9], $M=F_{13}(K)$.
Lemma 3.8. Let $K=Q(\sqrt{-4})$ and $f=6,7,8,10$. Set

$$
\rho_{f}(x)= \begin{cases}x^{4}+3, & \text { if } f=6 \\ x^{4}+7, & \text { if } f=7 \\ x^{4}-2, & \text { if } f=8 \\ x^{4}-5, & \text { if } f=10\end{cases}
$$

Then the splitting field of $\rho_{f}(x)$ is $F_{f}(K)$.
Proof. We just prove the result when $f=6$. The other cases can be treated similarly. Let M be the splitting field of $\rho_{f}(x)$. Let $k=Q(\sqrt{-3}), L=Q(\sqrt[4]{-3})$. By [7: Theorem 3.12],

$$
d_{L}=d_{K} d_{k} f_{0}(M / K)^{2}=12 f_{0}(M / K)^{2}
$$

On the other hand, by [3: Theorem 2]

$$
d_{L}=2^{4} \cdot 3^{3}
$$

so that $f_{0}(M / K)=6$. By [5: Theorem 3.9], $M=F_{6}(K)$.
Lemma 3.9. Let $K=Q(\sqrt{d})$, where $d=-11$ or -19 . Set

$$
\rho(x)= \begin{cases}x^{4}-10 x^{2}-55, & \text { if } d=-11 \\ x^{4}+30 x^{2}-95, & \text { if } d=-19\end{cases}
$$

Then the splitting field of $\rho(x)$ is $F_{5}(K)$.
Proof. We just prove the result when $K=Q(\sqrt{-11})$. The case when $K=$ $Q(\sqrt{-19})$ can be treated similarly. Let M be the splitting field of $\rho(x)$. Let $k=Q(\sqrt{5})$, $L=Q(\sqrt{5+4 \sqrt{5}})$. By [7: Theorem 3.12],

$$
d_{L}=d_{K} d_{k} f_{0}(M / K)^{2}=-11 \cdot 5 f_{0}(M / K)^{2}
$$

On the other hand, by [3: TABLE C]

$$
d_{L}=-11 \cdot 5^{3}
$$

so that $f_{0}(M / K)=5$. By [5: Theorem 3.9], $M=F_{5}(K)$.
Lemma 3.10. Let $K=Q(\sqrt{-8})$. Set $\rho(x)=x^{4}-2 x^{2}+2$. Then the splitting field of $\rho(x)$ is $F_{4}(K)$.

Proof. Let M be the splitting field of $\rho(x)$. Let $k=Q(\sqrt{-1}), L=Q(\sqrt{1+\sqrt{-1}})$. By [7: Theorem 3.12],

$$
d_{L}=d_{K} d_{k} f_{0}(M / K)^{2}=2^{5} f_{0}(M / K)^{2}
$$

On the other hand, by [3: Theorem 2]

$$
d_{L}=2^{9},
$$

so that $f_{0}(M / K)=4$. By [5: Theorem 3.9], $M=F_{4}(K)$.

4. The main resullt

Appealing to Theorem 2.2 and Lemmas 3.2-3.10, we obtain the following result.
Theorem 4.1. Let Δ be one of the 50 discriminants such that $h(\Delta)=4$ and $H(\Delta) \simeq Z_{4}$. Then the prime $p(p>3, p \nmid \Delta)$ is represented by the principal form I_{Δ} of discriminant Δ if and only if $\left(\frac{\Delta}{p}\right)=+1$ and $\rho_{\Delta}(x)$ is congruent to the product of four distinct linear polynomials $(\bmod p)$, where $\rho_{\Delta}(x)$ is the monic biquadratic polynomial with integral coefficients listed in the following table.

Table

Δ	ρ_{Δ}	Δ	ρ_{Δ}
39	$x^{4}+2 x^{2}+13$	55	$x^{4}+2 x^{2}+45$
56	$x^{4}+2 x^{2}-7$	63	$x^{4}+6 x^{2}+21$
68	$x^{4}-2 x^{2}+17$	80	$x^{4}-2 x^{2}+5$
128	$x^{4}-2 x^{2}+2$	136	$x^{4}-6 x^{2}+17$
144	$x^{4}+3$	155	$x^{4}+2 x^{2}+125$
156	$x^{4}+2 x^{2}+13$	171	$x^{4}+6 x^{2}+57$
184	$x^{4}+6 x^{2}-23$	196	$x^{4}+7$
203	$x^{4}+2 x^{2}+29$	208	$x^{4}-6 x^{2}+13$
219	$x^{4}-10 x^{2}+73$	220	$x^{4}+2 x^{2}+45$
252	$x^{4}+6 x^{2}+21$	256	$x^{4}-2$
259	$x^{4}-6 x^{2}+37$	275	$x^{4}-10 x^{2}-55$
291	$x^{4}+14 x^{2}+97$	292	$x^{4}+6 x^{2}+73$
323	$x^{4}+22 x^{2}+425$	328	$x^{4}+6 x^{2}+41$
355	$x^{4}-22 x^{2}+405$	363	$x^{4}-22 x^{2}+297$
387	$x^{4}-18 x^{2}+129$	388	$x^{4}-18 x^{2}+97$

400	$x^{4}-5$	475	$x^{4}+30 x^{2}-95$
507	$x^{4}-36 x^{2}-39$	568	$x^{4}+2 x^{2}-71$
592	$x^{4}-2 x^{2}+37$	603	$x^{4}+6 x^{2}+201$
667	$x^{4}+26 x^{2}+261$	723	$x^{4}+14 x^{2}+241$
763	$x^{4}+18 x^{2}+109$	772	$x^{4}+14 x^{2}+193$
955	$x^{4}+18 x^{2}+845$	1003	$x^{4}+14 x^{2}+3825$
1027	$x^{4}-6 x^{2}+325$	1227	$x^{4}+38 x^{2}+409$
1243	$x^{4}+6 x^{2}+2825$	1411	$x^{4}+14 x^{2}+1377$
1387	$x^{4}+78 x^{2}+1825$	1467	$x^{4}-42 x^{2}+489$
1507	$x^{4}+46 x^{2}+1233$	1555	$x^{4}-62 x^{2}+2205$

References

[1] Steven Arno, "The imaginary quadratic fields of class number 4," Acta Arith., 60 (1992), 321-334.
[2] C. F. Gauss, "Theoria Residuorum Biquadraticorum," Commentatio Prima, in Werke, II (1876), 65-92.
[3] J. G. Huard, B. K. Spearman and K. S. Williams, "Integral bases for quartic fields with quadratic subfields," Carleton-Ottawa Mathematical Lecture Note Series, Number 4, June 1991.
[4] L-C. Kappe and B. Warren, "An elementary test for the Galois group of a quartic polynomial," Amer. Math. Monthly, 96 (1989), 133-137.
[5] D. Liu, "Dihedral polynomial congruences and binary quadratic forms," submitted for publication.
[6] D. Liu, "Evaluation of the conductor $f_{0}(M / K)-I I$," submitted for publication.
[7] D. Liu, "Some properties of dihedral polynomials," submitted for publication.
[8] D. Liu, "Evaluation of the Legendre symbol $\left(\frac{A+B \sqrt{d}}{P}\right)$," submitted for publication.
[9] K. S. Williams and R. H. Hudson, "Representation of primes by the principal form of discriminant $-D$ when the class number $h(-D)$ is $3, "$ Acta Arith., 57 (1991), 131-153.

Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6.

