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REPRESENTATION OF PRIMES BY THE PRINCIPAL FORM 
OF NEGATIVE DISCRIMINANT 6 WHEN h(6) IS 4 

KENNETH S. WILLIAMS* AND D. LIU 

Abstract. Let 6. be a negative integer which is congruent to O or 1 (mod 4). Let 
H(6.) denote the form class group of classes of positive-definite, primitive integral 
binary quadratic forms ax2 + bxy + cy2 of discriminant 6.. If H(6.) is a cyclic 
group of order 4, an explicit quartic polynomial p b. ( x) of the form x4 - bx2 + d 
with integral coefficients is determined such that for an odd prime p not dividing 
6., p is represented by the principal form of discriminant 6. if and only if the 
congruence Pb.(x) = 0 (mod p) has four solutions. 

1. Notation and a preliminary result 

Let 6 be a negative integer which is congruent to O or 1 (mod 4). Let H(!:l) denote 
the form class group of classes of positive-definite, primitive integral binary quadratic 
forms ax2 + bxy + cy2 of discriminant 6. It is well known that H(6) is a fi!lite Abelian 
group. The order of H(6) is called the classnumber of forms of discriminant 6 and is 
denoted by h(6). The principal form of discriminant 6 is the form lD. given by 

if 6 = 0 ( mod 4), 
if 6 - 1 ( mod 4). { 

(1, 0, -6/4), 
lD. = (1, 1, (1 - 6)/4), 

In this paper we are concerned with the representability of a prime by the principal form 
16 of discriminant 6 when h(6) = 4. 

Recent work of Steven Arno has determined all the imaginary quadratic fields with 
classnumber 4 [l: Theorem 7], namely, the 54 fields Q( -,;Cn) with 

n =14,17,21,30,33,34,39,42,46,55,57,70,73,78,82,85,93,97, 

102,130,133,142,155,177,190,193,195,203,219,253,259,291, 

323,355,435,483,555,595,627,667,715,723,763,795,955, 

1003,1027,1227,1243,1387,1411,1435,1507,1555. 
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The complete list of all imaginary quadratic fields Q( J=n) with classnumber 1 or 2 has 
been known for some time: 

h(-n) = 1 : n = l, 2, 3, 7, 11, 19, 43, 67,163 (9 fields) 
h(-n) = 2 : n = 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91,115, 123, 

187,235,267,403,427. (18 fields) 

From these results we can deduce 

Proposition 1.1. h(6.) = 4 if and only if -b. has one of the following 84 
values: 

39,55,56,63,68,80,84,96,120,128,132,136,144,155,156,160,168,171,180, 

184,192,195,196,203,208,219,220,228,240,252,256,259,275,280,288,291, 

292,312,315,323,328,340,352,355,363,372,387,388,400,408,435,448,475, 

483,507,520,532,555,568,592,595,603,627,667,708,715,723,760,763,772, 

795,928,955,1003,1012,1027,1227,1243,1387,1411,1435,1467,1507,1555. 

Proof. Let d be the discriminant of the imaginary quadratic field given uniquely 
by 

6,. = 12d, 

where f is a positive integer. Then, by a formula of Gauss, we have 

h(b.) = h(J2d) = h(d)<f>d(J)/u, 

where 

and 

{ 

3, if d = -3, 
u = 2, ~f d = -4, 

1, 1£ d < -4. 

Note that q runs through the distinct primes dividing f and (:) is the Kronecker symbol. 
As </>d(J)/u is a positive integer, we see that ' 

{ 

(a) h(d) = 4 
h(6.) = 4 ~ (b) h(d) = 2 

(c) h(d) = 1 

and </>d(J)/u = 1, or 
and </>d(J)/u = 2, or 
and </>d(J)/u = 4. 

(1) 
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For case (a), we have </>d(J) = 1, which occurs if and only if f = l or d - 1 (mod 8) 
and f = 2. Then appealing to the list of imaginary quadratic fields with classnumber 4, 
we deduce that (a) occurs if and only if -D. has one of the following 56 values: 

39,55,56,68,84,120,132,136,155,156,168,184,195,203,219,220,228, 
259,280,291,292,312,323,328,340,355,372,388,408,435,483,520,532, 
555,568,595,627,667,708,715,723,760,763,772,795,955,1003,1012, 
1027,1227,1243,1387,1411,1435,1507,1555. 

For case (b ), we have </>d(J) = 2, which occurs if and only if d _ 0 {mod 4) and 
f = 2 or d = 1 (mod 8) and f = 4 or d = 1 (mod 3) and f = 3. Then appealing to the 
list of imaginary quadratic fields with classnumber 2, we deduce that (b) occurs if and 
only if -D. has one of the following 10 values: 

80, 96, 160, 180, 208, 240, 315, 352, 592, 928. 

For case (c), we consider the following three subcases: (cl): d < -4; (c2): d = -4; (c3): 
d = -3. For case (cl), we have </>d(J) = 4, which occurs if and only if 

d =O (mod 4) and f = 4 or 
d =1,4 (mod 5) and f = 5 or 
d =2 (mod 3) and / = 3 or 
d = - 7 and / = 6, 8 or 
d = - 8 and f = 4, 6. 

Then appealing to the list of imaginary quadratic fields with classnumber 1, we deduce 
that (cl) occurs if and only if -D. has one of the following 11 values: 

63,128,171,252,275,288,387,448,475,603,1467. 

For case (c2), we have cp_4(J)/2 = 4, which occurs if and only if/= 6, 7, 8 or 10, that is 
if and only if -D. has one of the following 4 values: 

144,196,256,400. 

For case (c3), we have cp_3(f)/3 = 4, which occurs if and only if f = 8, 11 or 13, that is 
if and only if -D. has one of the following 3 values: 

192, 363, 507. 
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2. Introduction and a preliminary result 

Gauss [2] showed that an ,odd prime p is represented by the quadratic form x2 + 
64y2 (the principal form of discriminant -256) if and only if the congruence x4 - 2 = 0 
(mod p) has four solutions. In this paper we extend this result of Gauss to all negative 
discriminants 6 for which H(6) ~ Z4 (see Theorem 4.1). The case H(6) ~ Z3 was 
treated by K.S. Williams and R.H. Hudson [9]. 

Let K be an imaginary quadratic field, and let OK denote the ring of algebraic 
integers of K. We define for any nonzero ideal M of OK the group IK(M), and its 
subgroups PK,1 (M) and PK,z(M), by 

IK(M) = group of all fractional OK-ideals which are relatively prime to M, 
PK,I (M) = subgroup of IK(M) generated by principal ideals aO K, where 

a E OK satisfies a= l (mod M), 
PK,z(M) = subgroup of IK(M) generated by principal ideals a.OK with a E 

OK and a= a (mod M) for some integer a coprime with M. 
If M = a.OK we write IK(a) for IK(aOK), PK,z(a) for PK,z(aOK), and PK,1(a) for 
PK,1 ( aO K). Let f be a positive integer and let O I denote the order of conductor f in a 
quadratic field K. We also let C( 0 I) denote the ideal class group of the order O I and 
Fi ( K) the ring class field of the order O I. The genus field of the ring class field Fi ( K) 
is denoted by K(f) and is the largest subfield of F1(K) such that K(f) is an Abelian 
extension of Q. . 

Theorem 2.1. Let 6 = 0, 1 (mod 4) be a negative integer. Set K = Q(../X). 
Let N be a subgroup of H(6). Then there exists a unique dihedral extension M 
of Q such that if p is unramified in M then p is represented by a form in N if and 
only if p splits completely in M. In particular, p is represented by the principal 
form IA if and only if p splits completely in F1(K), where f = J 6/dK. 

Proof. As .6. = 0, 1 (mod 4), there is a positive integer f such that 6 = dK f2, 
where dK denotes the discriminant of K. We have the isomorphisms 

Under the above isomorphisms, as N c H(6), there exists a unique subgroup H with 

(2) 

such that N ~ H / PK,z(f). By the existence theorem of class field theory, (2) determines 
a unique Abelian extension M of K such that 

IK(f)/H ~ Gal(M/K). 

Further, we have that 

Gal(M/K) ~ h<(f)/H ~ (IK(J)/PK,z(f))/(H/PK,z(f)) ~ H(6)/N. 
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Now appealing to [5: Theorem 3.6], the assertion of the theorem follows. In particular, 
if N = {16}, then we have M = Ft(K) so that the last assertion of the theorem follows. 

For h(b.) = 4, as H(b.) is either a Klein-4 group or a cyclic-4 group, we have the 
following result. 

Theorem 2.2. Suppose h(6.) = 4. Set K = Q(vK) and let f = /6./dK. 
(i) If H(b.) '.:::'. Z2 x Z2, then Ft(K) is the composite field of its three quadratic 

fields, say, k, k' and k", so that for a prime p not dividing 6., 

(dk) (dk') (dk11) p is represented by 16 ~ P = P = P = l. 

(ii) If H(6.) '.:::'. Z4, then there is an irreducible quartic p(x) = x4 - bx2 + d E Z[x] 
such that Ft(K) is the splitting field of p(x) so that, for an odd prime p not 
dividing disc(p), 

p is represented by 16 <¢:=::;> { ( 4ff") = 1 and p(x) = 0 (mod p) 
has a solution, 

(3) 

<¢:=::;> (~) = (b2 
~ 4d) = (b + vb:- 4d)/2) = 1, 

<¢:=::;> ( ~) = ( b2 - 4d) = ( b + 2 v'd) = 1, 
p p p . 

<¢:=::;> v(p-1)/2 = 2 (mod p), 

where the vn(n = 0, 1, 2, ... ) are given by the recurrence relation 

(4) 

(5) 

(6) 

Vn+2 = bVn+I - dvn, Vo = 2, V1 = b. 

Proof. For the case (i), as Ft(K) is the composite field of the fields k, k' and k", 
p splits completely in Ft(K) if and only if p splits completely in all the three quadratic 
fields. Then the assertion of the theorem follows from the last assertion of Theorem 2.1. 
For the case (ii), as Gal(Ft(K)/K) '.:::'. H(b.), we have Gal(Ft(K)/K) is a cyclic group 
of order 4 so that Gal(FJ (K)/Q) '.:::'. D4. By (5: Lemma 2.4] and (7: Theorem 4.2], the 
quartic p(x) stated in the theorem exists. Now we prove the assertion (3). As Ft(K) 
is the splitting field of p(x), we have, for a prime p not dividing disc(p), that p splits 
completely in M if and only if the congruence 

x4 - bx2 + d = 0 (mod p) 

has four solutions. Then the assertion (3) follows from (8: Theorem 2.16 (i)]. The 
assertions ( 4), (5) and (6) follow from (8: Theorem 2.1, Lemma 2.4 and Lemma 2.3] 
respectively. 
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For the case H(D.) ~ Z2 x Z2, as F1(K) = K(f), applying [6: Theorem 4.1] we have 
no difficulty in determining k, k' and k". The following table gives all the 34 discriminants 
satisfying Theorem 2.2(i). 

D. dk dk' dk" D. dk dk' dk11 

-84 -4 -3 -7 -96 -4 8 -3 
-120 8 -3 5 -132 8 -3 -11 
-160 -4 8 5 -168 -8 -3 -7 
-180 -4 -3 5 -192 -4 8 -3 
-195 -3 5 13 -228 8 -3 -19 
-240 -4 -3 5 -280 8 5 -7 
-288 -4 8 -3 -312 8 -3 13 
-315 -3 5 -7 -340 -4 5 17 
-352 -4 8 -11 -372 8 -3 -31 
--408 8 -3 17 -435 -3 5 29 
-448 -4 8 -7 -483 -3 -7 -23 
-520 -8 5 13 -532 8 -7 -19 
-555 -3 5 37 -595 5 -7 17 
-627 -3 -11 -19 -708 8 -3 -59 
-715 5 -11 13 -760 8 5 -19 
-795 -3 5 53 -928 -4 -8 29 
-1012 8 -11 -23 -1435 5 -7 41 

3. Determination of p(x) when H(D.) ~ Z4 

In order to apply Theorem 2.2 (ii), for each D. = df2, where d is a fundamental 
discriminant, we have to determine a quartic p(x) = x4 - bx2 + d E Z[x] such that the 
ring class field F1(Q(./d)) is the splitting field of p(x). We divide the remaining 50 values 
of D. into nine sets as follows: 

(A) -D. = 39,55,155,156,203,219,220,259,291,323,355,667,723,763,955, 
1003, 1027, 1227, 1243, 1387, 1411, 1507, 1555 (see Lemma 3.2) 

(B) -D. = 63, 171, 252, 387, 603, 1467(see Lemma 3.3) 
(C) -D. = 68, 292, 388, 772(see Lemma 3.4) 
(D) -~ = 80, 208, 592(see Lemma 3.5) 
(E) -D. = 56, 136, 184, 328, 568(see Lemma 3.6) 
(F) -D. = 363, 507(see Lemma 3.7) 
(G) -D. = 144, 196, 256, 400(see Lemma 3.8) 
(H) -D. = 275, 475(see Lemma 3.9) 
(I) -D. = 128(see Lemma 3.10) 

Lemma 3.1. Let M be a dihedral extension with Gal(M/Q) ~ D4• Let K be 
the unique quadratic field in M such that Gal(l'v1/ K) ~ Z4, and let k be a quadratic 



REPRESENTATION OF PRIMES BY THE PRINCIPAL FORM 327 

field in M different from K. Let K = Q( JD), k = Q( vd), where both D and d are 
squarefree. Then there are nonzero integers a, b, c with gcd(a, b) squarefree such 
that c2 D = (a2 - b2d)d. 

Proof. As Gal(M /Q) ~ D4, there is a quartic field in M containing k such that 
the normal closure of L is M. As [L : k] = 2, there are integers a, b with gcd(a, b) 
squarefree such that L = Q( J a+ bvd). It is clear that J a+ bvd, is a root of J(x) = 
x4 - 2ax2 + a2 - b2d and M is the splitting field of f(x). By [7: Lemma 3.3}, we have 
K = Q( v'JJ) = Q( J(a2 - b2d)d). As D is squarefree, there is an integer c such that 
c2 D = (a2 - b2d)d. 

Lemma 3.2. Let p1 and P2 be two primes with p1 = 3 (mod 4), P2 = l (mod 
4). Let K = Q( J-P1P2). Then h(-P1P2) - 0 (mod 4) if and only if there are 
integers a, b and c such that 

c2p2 = a2 + b2p1, 

where a and b satisfy 

gcd(a,b) = gcd(a,b,p1p2),a - 1 (mod 2), b _ 0 (mod 2),a+ b = l (mod 4). (1) 

Further, if h(-P1P2) = 0 (mod 4), set 

where a and b are given as above. Then the splitting field M of p(x) over Q 
satisfies 

KC MC F1(K). 

In particular, if h(-P1P2) = 4 then M = F1(K). 

Proof. By [6: Theorem 4.1], the ring class field F1 (K) of K contains the genus 
field 

K(l) = Q( FPI, #2). 

This implies that the 2-part of Gal(F1 (K)/ K) is a cyclic group of order 2r, r ~ 1. Now 
suppose that h( 0 K) = 0 ( mod 4). By Galois theory there is an extension K C K ( 1) C 
M C F1 (K) with Gal(M / K) ~ Z4. Let k = Q( y'=p;). By Lemma 3.1, there are integers 
a, b, c with gcd( a, b) squarefree such that p2c2 = a2 + b2p1. Set 

Then M is the splitting field of p(x) and M contains L = k( F+ by'=p;). By [3: 
Theorem 2], we have 

( 
(a,b) )2 

dL = 2ePiP2 (a, b, P1P2) ' 
(2) 
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where e is an even integer given by (3: TABLES C and D]. On the other hand, by (6: 
Theorem 3.12], we have 

(3) 

where J0(M/K) denotes the finite part of the conductor of the extension M/K. Hence 
we obtain 

fo(M/K) = 2ef2( (a,b) ). 
(a, b,P1P2) 

Noting that as M C F1 (K), we have, by (5: Theorem 3.9], that fo(M / K) = 1 so that 
e = 0 and gcd(a, b) = gcd(a, b,p1p2). By (3: TABLES C and D], we obtain the condition 
(1). 

Conversely, suppose that the conditions involving a and b of the lemma are satisfied. 
Set p(x) = (x2 -a)2 +p1b2. Let M be the splitting field of p(x) so that Gal(M/Q) '.:::'. D4 

and Gal(M/K) '.:::'. Z4. Let k = Q(FP!), L = Q(/a+bFP!). By (3: Theorem 2], we 
have 

dL = PiP2· 
and then, by (3), we have J0(M / K) = 1 so that M C F1 (K), which implies that 
h(-P1P2) - 0 (mod 4). 

Lemma 3.3. Let K = Q( .j=p), where p = 7, 19, 43, 67,163 so that h(03) = 4. 
There are integers a and b such that p = a2 + 3b2 and 

b = { 3 ( mod 4), 
- 1 (mod 4), 

if a O (mod 4), 
if a= 2 (mod 4), 

(4) 

Set p(x) = x4 - 6b2x2 + 3p. Then F3(K) is the splitting field of p(x). 

Proof. Asp l (mod 3), there are integers a and b such that p = a2 +3b2. Modulo 
4 we obtain a= 0 (mod 2), b _ 1 {mod 2). Replacing b by -b if necessary we obtain ( 4). 
Let M be the splitting field of p(x). By [4: Theorem 3], Gal(M/Q) '.:::'. D4. By (7: Lemma 
3.3], M contains k = Q( ./=3) and K, and Gal(M/ K) '.:::'. Z4. Let L = k( )3b + ay'-3). 
As J3b + a./=3 is a root of p(x), M is the normal closure of L. Now by (6: Theorem 
3.12], 

dL = dkdK fo(M / K)2 = 3pfo(M / K)2. 

By [3: Theorem 2], we have 
dL = 33p, 

so that f0(M / K) = 3. Finally, by [5: Theorem 3.9], we obtain M = F3 (K). 

Lemma 3.4. Let p be a prime which is congruent to l modulo 4. Set 
K = Q(.j=p). Then 

h(OK) = 0 (mod 4) if and only if p = 1 (mod 8). (5) 
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Further, if p _ 1 (mod 8), then p can be expressed in the form 

where a= 1 (mod 4) and b = 0 (mod 4). Set 

p(x) = x4 - 2ax2 + p. 

Then the splitting field M of p(x) over Q satisfies 

KC MC F1(K). 

In particular, if h( 0 K) = 4 then M = F1 ( K). 

Proof. By [6: Theorem 4.1], the Hilbert class field F1 ( K) of K contains 

K(l) = Q( \1-l, y'p). 

This implies that the 2~rank of Gal(F1(K)/K) is 1, so that h(OK) - 0 (mod 2). Further, 
suppose that h(OK) = 0 (mod 4). Then F1(K) contains a 4-cyclic extension M of K. 
It is obvious that K(l) CM. Set k = Q( J=I). By Lemma 3.1, there are integers a, b, c 
with gcd(a, b) squarefree such that pc2 = a2 + b2. Set 

p(x) = (x2 - a)2 + b2 = x4 - 2ax2 + c2p. 

Then M is the splitting field of p(x) and M contains L = k( /a+ bv-1). By [3: 
Theorem 2], we have 

dL = 2ep( (a,b) )2. 
(a,b,p) 

On the other hand, by (6: Theorem 3.12), we have 

(6) 

(7) 

Hence we obtain 
fo(M/K) = 2(e-4)/2( (a,b) ). 

(a,b,p) 
Noting that as MC F1(K), we have, by [5: Theorem 3.9], that fo(M/K) = 1 so that 
e = 4 and gcd(a, b) = gcd(a, b, p). This, by (3: TABLE Bl, implies a = 1 (mod 2) and 
b = 0 (mod 4) so that p = 1 (mod 8). 

Conversely, suppose p = 1 (mod 8). Then there are integers a, b with b = 0 (mod 4) 
such that p = a2 + b2. Set p( x) = ( x2 - a )2 + b2. Let M be the splitting field of p( x) so 
that Gal(M/Q):::: D4 and Gal(M/K) ~ Z4• Let k = Q(v-1), L = Q( Ja + bv-1). By 
(3: TABLE B] we have 
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Then, by (7), we have fo(M / K) = 1 so that MC F1 (K), which implies that h(dK) - 0 
(mod 4). 

Lemma 3.5. Let p be a prime which is congruent to 5 modulo 8 so that 
there are integers a, b such that 

p = a2 + b2, a= 1 (mod 2), b = 2 (mod 4). 

Set K = Q( .;=:p). Then h( 02) = 4 (mod 8). Set 
p(x) = x4 - 2ax2 + p. 

Then the splitting field M of p(x) over Q satisfies 

KC MC F2(K). 

In particular, if h(02) = 4 then M = F2(K). 

Proof. By Lemma 3.4, we have h(OK) = 2 (mod 4). Then appealing to Gauss's 
formula, h(02) = 2h(OK) = 4 (mod 8). 

Let M be the splitting field of p( x), let k = Q( J=T), L = k( / a + bv'=I). By (3: 
Theorem 2], we have 

dL = 26p. 

On the other hand, by [6: Theorem 3.12], we have 

(8) 

(9) 

where fo(M/K) denotes the finite part of the conductor of the extension M/K. Hence 
we obtain fo(M / K) = 2 so that, by [5: Theorem 3.9), M C F2(K). 

Lemma 3.6 Let p be an odd prime and let K = Q( y1=2p). Then 

{ 

2 (mod 4), 
h(OK) 0 (mod 4), 

if(%)= -1, 
if(%) = 1. 

Further, suppose that (%) = 1, that is, p = ±l (mod 8). Then p can be expressed 
in the form 

p = {-a2 + 2b2 
a2 + 2b2 ' 

' 

if p -1 (mod 8), 
if p = 1 ( mod 8), 

mhere the integers a and b satisfy 

{ 
1 (mod 4), 

a - - l (n1od 4), 
if b _ O ( mod 4), 
if b = 2 ( mod 4). (10) 
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Set 
x _ { (x2 - a)2 - 2b2 = x4 - 2ax2 

- p, 
p( ) - (x2 - a)2 + 2b2 = x4 - 2ax2 + p, 

Then the splitting field M of p(x) over Q satisfies 

if p = -1 (mod 8), 
if p = 1 (mod 8). 

(11) 

In particular, if h( 0 K) = 4 then M = F1 ( K). 

Proof. We just treat the case when p = 1 (mod 4). The case when p = 3 (mod 4) 
can be handled similarly. By [6: Theorem 4.1] the Hilbert class field F1(K) contains the 
genus field 

K(l) = Q( ./=2, .jp), 
so that [K(l) : K] = 2. This implies that the 2-rank of Gal(F1 (K)/ K) is 1, so that 
h(OK) = 0 (mod 2). We now show that 

h( (? K) = 0 (mod 4) if and only if p = 1 (mod 8). 

Suppose first that h(OK) = 0 (mod 4). Then F1(K) contains a cyclic-4 extension M of 
K. It is obvious that K(l) C M. Set k = Q( v'=2). By Lemma 3.1, there are integers 
a, b, c such that c2p = a2 + 2b2 so that p _ 1 (mod 8). 

Conversely, suppose that p - l (mod 8). Then there are integers a, b satisfying (10) 
such that p = a2 + 2b2• Set k = Q( v'=2). Set 

p(x) = x4 - 2ax +p. 

Let M be the splitting field of p(x) so that Gal(M/Q) '.:::'. D4. Let k = Q(v'-2) and let 
L = Q( /a+ bv'-2) so that Mis the normal closure of L. By (7: Theorem 3.12], 

On the other hand, as a and b satisfy (10), from [3: TABLE A] we have 

so that f0(M/K) = 1. Thus, the extension KC Mis unramified, so that MC F1(K), 
which implies h(OK) = 0 (mod 4). In particular, if h(OK) = 4, then M = F1(K). 

Lemma 3.7. Let K = Q(v-3) and f = 11,13. Set 

( ) _ { x
4 - 22x2 + 297, 

P! x - x4 - 36x2 - 39, 

Then the splitting field of P1(x) is Fi (K). 

if f = ll, 
if f = 13. 
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Proof. We just prove the result when f = 13. The case when f = 11 can be treated 
similarly. Let M be the splitting field of P1(x). Let k = Q( /13), L = Q( V13 + 4yl3). 
By [7: Theorem 3.12], 

On the other hand, by (3: Theorem 2] 

dL = -39 · 132, 
so that fo(M / K) = 13. By [5: Theorem 3.9], M = F13(K). 

Lemma 3.8. Let K = Q( \f-4) and f = 6, 7, 8, 10. Set 

l x
4 + 3 

P1(x) = x
4 + 7: 

x4 - 2 
' 

x4 - 5 
' 

if F= 6, 
if f = 7, 
if f = 8, 
if f = 10. 

Then the splitting field of P1(x) is F1(K). 

Proof. We just prove the res':llt when / = 6. The other cases can be treated 
similarly. Let M be the splitting field of P1(x). Let k = Q( \f-3), L = Q( {1-3). By (7: 
Theorem 3.12], 

dL = dKdkfo(M/K)2 = 12fo(M/K)2• 

On the other hand, by [3: Theorem 2] 

so that fo(M/K) = 6. By [5: Theorem 3.9], M = F6(K). 

Lemma 3.9. Let K = Q(./d), where d = -11 or -19. Set 

{ 
x4 - 10x2 - 55 

p(x) = x4 + 30x2 - 95: 
Then the splitting field of p(x) is Fs(K). 

Proof. We just prove the result when K = Q( J=IT). The case when K = 
Q(,J=Ig) can be treated similarly. Let M be the splitting field of p(x). Let k = Q(VS), 
L = Q( /5 + 4VS). By [7: Theorem 3.12), 

dL = dKdkfo(M/K)2 = -11 · 5fo(M/K)2. 

On the other hand, by [3: TABLE C] 

if d = -11, 
if d = -19. 
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so that fo(M/ K) = 5. By (5: Theorem 3.9], M = Fs(K). 

Lemma 3.10. Let K = Q(y'-8). Set p(x) = x4 - 2x2 + 2. Then the splitting 
field of p(x) is F4(K). 

Proof. Let M be the splitting field of p(x). Let k = Q( v'=I), L = Q( Vl + v-1). 
By [7: Theorem 3.12], 

dL =dKdkfo(M/K)2 = 25fo(M/K)2. 

On the other hand, by [3: Theorem 2] 

d - 29 L - ' 

so that fo(M/K) = 4. By (5: Theorem 3.9], M = F4(K). 

4. The main result 

Appealing to Theorem 2.2 and Lemmas 3.2-3.10, we obtain the following result. 

Theorem 4.1. Let 6 be one of the 50 discriminants such that h(6) = 4 
and H(6) ~ Z4• Then the prime p (p > 3,p f 6) is represented by the principal 
form lD. of discriminant 6 if and only if ( ~) = +1 and PD-(x) is congruent to 
the product of four distinct linear polynomials (mod p), where Pb.(x) is the monic 
biquadratic polynomial with integral coefficients listed in the following table. 

Table 

6 PA 6 PA 

39 x4 + 2x2 + 13 55 x4 + 2x2 + 45 
56 x4 + 2x2 - 7 63 x4 + 6x2 + 21 
68 x4 - 2x2 + 17 80 x4 - 2x2 + 5 
128 x4 - 2x2 + 2 136 x4 - 6x2 + 17 
144 x4 +3 155 x4 + 2x2 + 125 
156 x4 + 2x2 + 13 171 x4 + 6x2 + 57 
184 x4 + 6x2 - 23 196 x4 +7 
203 x4 + 2x2 + 29 208 x4 - 6x2 + 13 
219 x4 - l0x2 + 73 220 x4 + 2x2 + 45 
252 x4 + 6x2 + 21 256 x4 - 2 
259 x4 - 0x2 + 37 275 x4 - 10x2 - 55 
291 x4 + 14x2 + 97 292 x4 + 6x2 + 73 
323 x4 + 22x2 + 425 328 x4 + 6x2 + 41 
355 x4 - 22x2 + 405 363 x4 - 22x2 + 297 
387 x4 - 18x2 + 129 388 x4 - 18x2 + 97 
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400 x4 -5 475 x4 + 30x2 - 95 
507 x4 - 36x2 - 39 568 x4 + 2x2 - 71 
592 x4 - 2x2 + 37 603 x4 + 6x2 + 201 
667 x4 + 26x2 + 261 723 x4 + 14x2 + 241 
763 x4 + 18x2 + 109 772 x4 + 14x2 + 193 
955 x4 + 18x2 + 845 1003 x4 + 14x2 + 3825 
1027 x4 - 6x2 + 325 1227 x4 + 38x2 + 409 
1243 x4 + 6x2 + 2825 1411 x4 + 14x2 + 1377 
1387 x4 + 78x2 + 1825 1467 x4 - 42x2 + 489 
1507 x4 + 46x2 + 1233 1555 x4 - 62x2 + 2205 
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