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OSCILLATION AND COMPARISON THEOREMS FOR 
NEUTRAL DIFFERENCE EQUATIONS 

B.G. ZHANG* AND PENGXIANG YAN 

Abstract. In this paper we study qualitative properties of solutions of the neutral 
difference equation 

where p 2 1, M = max{k,k1, ... ,km}, and k,ki,i = l, ... ,m, are nonnegative 
integers. Riccati techniques are used. 

Introduction 

In a number of recent papers [2-10], the oscillation and nonoscillation of solutions of 
delay difference equations are being extensively investigated. In paticular the oscillation 
of solutions of the neutral difference equation 

(1.1) 

has been investigated in [3, 6, 8, 9, 10], where Pn > 0, c E (0, 1), 6. denotes the forward 
difference operator 6.·yn = Yn+I - Yn· Equation (1.1) was considered by Brayron and 
Willoughby [1] from the numerical analysis point of view. 

In this paper we consider the case that c ~ 1 in (1.1), or the equations which we 
will consider are neutral difference equations of the form 

m 

6.(yn - PYn-k) + L Q~Yn-k, = 0, n = 0, l, 2, ... 
i=l 

(1.2) 
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Let M = max{k,k1, ... ,k1n}, Im= {l, ... ,m}, k = max{iEim}ki. where k,ki are 
nonnegative integers i = 1, ... , m and p ~ 1. 

By a solution of (1.2) we mean a sequence {yn} which is defined for n ~ -Mand 
satisfies equation (1.2) for n = 0, 1, 2, ... , clearly, if 

Yn = An, for n = -M, ... , -1,0 (1.3) 

are given, then equation (1.2) has a unique solution satisfying the iriitial condition (1.3). 
A nontrivial solution {Yn} of equation (1.2) is said to be oscillatory if for every N > 0 
there exists an n ~ N such that YnYn+I ::; 0, otherwise it is nonoscillatory. In this 
paper sufficient conditions for all solutions of (1.2) to be oscillatory and (1.2) to have a 
nonoscillatory solution are obtained respectively. As a consequence we prove that the 
oscillation of equation (1.2) with periodic coefficients is equivalent to the equation with 
constant coefficients. Finally, a comparison result for the oscillation of equation (1.2) is 
derived. 

2. Main Results 

We assume through out this paper that (H) ~:,1 q~ can not be _identically zero on 
[N1, N2] with N1 < N2 where N1, N2 are any two positive integers 

Lemma 2.1. Assume that p ~ 1, q~ ~ 0, i E Im and 

oo m 

I: I:q; =00- 
j=N i=l 

(2.1) 

Let {Yn} be an eventually positive solution of (1.2). Then Zn < 0 and ~Zn < 0 
eventually, where 

Zn= Yn - PYn-k· (2.2) 

Proof. From (1.2), ~Zn < 0. If Zn ~ 0, then Yn ~ PYn-k which implies that there 
exists an d > 0 such that Yn ~ d > 0 for all large n. Hence from (1.2) 

m 

~Zn +dI:q~ ::5 0. 
i=l 

(2.3) 

(2.1) and (2.3) lead to that Zn - -oo as n - oo, a contradiction. Therefore Zn < 0 
eventually. The proof is completed. 

Lemma 2.2. In addition to assumptions of Lemma 2.1, we further assume 
that 

i < i . I qn - qn-k• i E m, n = N,N + 1, .... (2.4) 
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Let {Yn} be an eventually positive solution of (1.2) and Zn is defined by (2.2). 
Set 

AZn > 0. 
Wn = Zn (2.5) 

The eventually 

l n+k-1 l m . n+k-k;-1 

Wn ~ -Wn+k II (l+wi)+- Lq~ II (l+wi). 
p i=n p i=l i=n 

(2.6) 

Proof. From (2.1) and (2.2) we have 

m 

Azn = - L Q~Yn-k, 
i=l 
m 

= - L q~(Yn-k; - PYn-k;-k + PYn-k;-k) 
i=l 
m ,n 

= - L q~Zn-k; - PL Q~Yn-k,-k 
i=l i=l 
,n m 

~ - L q~Zn-k; - PL Q~-kYn-k;-k 
i=l i=l 
m 

= - L q~Zn-k; + pAZn-k· 
i=l 

Exchanging terms in the above inequality we obtain 

(2.7) 

By (2.5), Zn+i/ Zn = 1 + Wn and hence 

Zn+k = (1 + Wn+k-1), .. (1 + Wn), 
Zn 

(2.8) 

Substituting (2.5) into (2.7} we obtain (2.6). The proof is finished. 

Remark 2.1. If m = 1 and Qn > 0 for all large n, then (2.4) is not necessary. 
(2.6) is replaced by 

n+k-1 n+k-k1 -1 II (1 + Wi) + Qn II (1 + Wi), 
i=n p i=n 

(2.9) 
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Theorem 2.1. Assume that 
(1) p > 1, k ~ k + 2; 
(2) q~ ~ 0, n = N - k, N - k + l, ... , q~:::; q~-k, i E Im, n = N, N + l, ... ; 

[" i] n+ T -1 m 
lim inf """ (""" q}) > O; n~ CX) L....J L....J (2.10) 

j=n i=l 

(3) 

. . 1 k l m 1 n+T-1 
n~wt>O T=k,~1~,iEl,,,{p(l+µ) +pµ~(T ~ q}+k)(l+µ)k-k,}>l. 

i=l J=n 

Then every solution of (1.2) is oscillatory. 

Proof. Suppose the contrary. Let {Yn} be a positive solution of (1.2). It is easy to 
see that (2.10) implies (2.1). Then Lemma 2.2 holds, i.e., (2.6) holds. Define sequence 
{,\~)}, n = N, N + l, ... , l = l, 2, ... as follows: 

{,\~)} = {O}, n = N, N + 1, ... , 

(2.11) 

n = N, N + l, ... , l = l, 2, ... 
Define a sequence of numbers as follows: 

. . l l m l n+T-1 . 
µr+l = mf mm. [-µr(l + µrl + - """(- """ q~ k)(l + µ l-k;] n~NT=k,k-k,,iEI.,. p p !,- T L....J J+ r 

i=l J=n 

r = 1,2, ... (2.12) 

Condition (3) implies that 

(2.6) implies that 

,\~+l) :::; Wn, l = 0, l, 2, ... , n = N, N + l, ... 

and 
l n+T-1 
- """ ,\(l+l) > l - T L....J n - µ1+1, - 0, 1,2, ... 

j=n 
(2.13) 
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where T = k, k - ki, i E Im, n = N, N + 1, ... From (2.12) and condition (3), ifµ* = 
lim µk exists and µ* is finite, then 
k-+oo 

1 l m l n+T-1 
µ* = inf min . {-µ*(1 + µ*l + - "'(- "' l )(1 + µ*)k-ki} 

n?:_N T=k,k-k; ,iE/m p p L..J T L..J J+k ' 
i=l j=n 

hence 

. . 1 k 1 m 1 n+T-1 
n?:.W,t>O T=k,~T.,iEl,.. {:p(l + µ) + pµ L(T L q}+k)(l + µl-k;} :'.S 1, 

i=l J=n 

a contradiction. Therefore lim µk = +oo. Hence from (2.12) and (2.13) we have 
k-+oo 

l n+T-1 - L Wj - oo as n - oo T . J=n 

and hence from (2.8) 
Zn+T - 00 as n ~ 00. 
Zn 

(2.14) 

On the other hand, Zn> -PYn-k, therefore from Lemma 2.1 

m. 1m. 1m. 
~Zn= - L Q~Yn-k; < - L Q~Zn+k-k; < (- L q~)zn+k-k" 

i=l p i=l p i=l 

Hence 
[k-i.:l n+ -2- -1 m L ( ! L q}) Zn+k-~ :'.S 1. 

. p . I Z +[k-k] J=n i= n -2- 

(2.15) 

By (2.10) and (2.15) we have 

z -/ . b n+k-k z n+[ k2i.:] IS OUnded, 

which contradicts (2.14). The proof is completed. 
Form= 1, from (2.9) the following theorem holds. 

Theorem 2.2. Assume that 
( 1) p > 1, k ~ k1 + 2; 
(2) Qn > 0 and 

n+[ k-2k1 J-1 

lim inf "' Qj > O; 
n-+oo L..J 

j=n 
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(3) 

(l )k n+k-k1 -1 . (l + )k-ki n+k-k1 -1 . f . { + µ ~ Qi µ ~ } 1 mmm ~ --+ ~ Qi > . 
n'?:_N,µ>0 p(k - ki) i=n Qi+k pµ(k - k1) i=n 

Then every solution of (1.2) is oscillatory. 

Theorem 2.3. Assume that 
(1) p > 1,k > ki,i E Im; 
(2) 

(2.16} 

lim inf (~ q~) > O; 
n-+cx:> ~ 

i=l 

(3) there exist µ > 0 and N such that 

1 1 ,n 1 n+T-1 . 
!up . . [-(1 + µt + - LT ( L q.i+k)(l + µ)k-k;] ~ 1. (2.17) 

n>N, T-k,k-k.,iEl,,. P pµ · 1 · 
- t= J=n 

Then equation (1.2} has a positive solution. 

Proof. Define 
{A~)}= {O}, n = N, N + 1, ... , 

n = N, N + 1, ... , l = 1, 2, ... 
(l) (l+l) - - . Clearly An ~ An , l - 1, 2, ... , n - N, N + 1, .... We claim that 

l n+T-1 
- ~ A ~l) < µ n > N. y~i-'- 

i=n 
(2.18) 

In fact, l = 1 is true. Assume that (2.18) is true for some l', then 

n+T-l n+T-1 i+k-1 m i+k-kj-1 
~ L A~l'+l) =~ I: {tA~:t II (1 + Af>) + ! I:Q1+k II c1 + Af>n 

i=n i=n j=i p j=l j=i 
l n+T-1 1n 

~µ(l + µt + T L (Lqf+k)(l + µl-k; ~ µ. 
p p i=n j=l 

Hence {A~)} -t {An} as l - oo, n = N, N + 1, ... , and 
l n+T-1 
T ~ Ai ~ µ, n ~ N 

i=n 
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and 

(2.19) 

Set ZN = l, Zn+l = 1 + An, n = N, N + l, ... , therefore z,., 

Zn n-1 

ZN = Zn = .IT (l + An), An = 6.zn 
i=N Zn ' 

hence (2.19) becomes 

m 
6Zn l 6zn+k Zn+k l """ i Zn+k-k; -- = - -- + - L Qn+k , 
ZN p Zn+k Zn p i=l Zn 

and hence 

m 

pb..zn = 6.zn+k + L q~+kZn+k-k;' 
i=l 

which implies that equation (1.2) has a positive solution 

n-1 

ZN = l, Zn = IT (1 + Ai), n = N + l, ... 
i=N 

For m = 1, we have the following 
Theorem 2.4. Assume that 

(1) p > l, k > k1; 
(2) lim infn--.oo Qn > O; 
(3) There existµ> 0 and N such that 

(2.20) 

Then equation (1.2) has a positive solution. 

Corollary 2.1. If m = l,p > l,k > k1,qn = q > 0, then every solution of 
(1.2) is oscillatory if and only if 

(2.21) 
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Remark 2.2. Theorem 2.2 includes Theorem 4.1 of [8] and Theorem 4 (a) in [4], 
since 

Remark 2.3. Equation (1.2) with constant coefficients has been studied in [3}. 
The result in Corollary 2.1 is better. 

As an application of Theorem 2.1 and 2.3 we consider equation (1.2) with periodic 
coefficients, i.e., we assume that there exists an integer 8 > 0 such that 

i i . I £ Qn+6 = qn, i E m or any n. (2.22) 

Then 
l n+6-1 
J L qJ = ci 
j=n 

(2.23) 

is a constant, i E Im. 

Theorem 2.5. Assume that p ~ 1 and there exist positive integers mo and 
mi, i E Im such that k = moo, ki = mio, k _- ki 2: 2, i E Im. Then following 
statements are equivalent. 
(1) Every solution of (1.2) is oscillatory; 
(2) Every solution of the neutral difference equation with constant coefficients 

m 

~(Yn - PYn-k) + L <iYn-k; = 0 
i=l 

(2.24) 

is oscillatory. 

Proof. Suppose that (2.24) has a nonoscillatory solution. Then the characteristic 
equation [6) 

m 

(.\-1)(1- p,\-k) + I:ci,\-k; = 0 
i=l 

(2.25) 

has a positive root. It is easy t~ see that ,\ > 1. Set ,\ = 1 + µ. Then (2.25) is reduced to 

1 1 m · -c1 + µl + - I: ttc1 + µ)k-k. = 1, 
p pµ i=1 

(2.26) 

which implies that Theorem 2.3 holds. Hence (1.2) has a positive solution, a contraction. 
If (2) holds, then (2.25) has no real roots. Therefore 

m 

(,\-1)(1-p,\-k) + I:t,\-k; > 0. 
i=l 

(2.27) 
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Setting A = 1 + µ, then we have 
1 1 m 
-(1 + µl + -I:<i(l + µt-k; > 1. 
p pµ i=l 

(2.28) 

By Theorem 2.1, every solution of (1.2) is oscillatory. The proof is completed. 

Remark 2.4. Using the average method to Theorems 3.5 and 3.6 in [8], it is not 
difficult to show that Theorem 2.5 is true for p E [O, 1] too, where k > k is not required. 

Now we present a comparison result for oscillation of (1.2). we consider (1.2) asso 
ciated with 

A(yn - PYn-k) + L Q~Yn-k; = 0. 
i~l 

(2.29) 

Theorem 2.6. Assume that 
(1) k ~ k + 2; 

oo n 
(2) P > 1, Q~-k ~ Q~ > 0, L L Q~ = oo and 

j=N i=l 

p Q~ - . -<-. <1 n-N,N+l, ... , iEim. 
- t - ' p Qn 

(2.30) 

Then if every solution of (1.2) is oscillatory, so is (2.29). 

Proof. Suppose not. Let {xn} be a positive solution of (2.29). By Lemma 2.2, 

l n+k-l l m . n+k-k;-l 

Un~ PUn+k IJ (1 +ui) + p LQ~+k IT (1 +ui) 
i=n i=l i=n 

where 

In view of (2) 

(2.31) 

Define 
{A~)}= {un}, n = N, N + 1, ... 

and 
n+k-1 ,n n+k-k; -1 

A(l+l)=!A(l) II (l+A~l))+!~qi II (l+A(I)). 
n n+k i p L n+k t 

p i=n i=l i=n 
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n=N,N+l, .. :, l=l,2, ... (2.32) 

In view of (2.31), we have 

A~+i) :::; A~), l = l, 2, ... , n = N, N + l, ... 

Hence 
lim A (l) = An 
l n . 
-+(X) 

exists and An > 0 satisfies 

Similar to Theorem 2.3, we obtain a positive solution of (1.2) 

n-1 

ZN = l, Zn = IT ( 1 + Ai), n = N + 1, ... 
i=N 

which contradicts the assumption. The proof is completed. 
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