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1. Introduction 

Recursive estimation of the Best Linear Unbiased Estimators (BLUES) and residual 
sum of squares in linear models has been dealt with, among others, by Plackett (1950), 
Mitra and Bhimasankaram (1971), McGillchrist and Sandland (1979), Haslett (1985) and 
Chib, Jammalamadaka and Tiwari (1987), when one or more additional observations 
become available. While the first two papers considered the model with uncorrelated 
observations the latter three papers deal with dependent errors. All papers except that 
of Mitra and Bhimasankaram consider full rank design matrix. Golub and Styan (1973), 
Paige (1978) and Kourouklis and Paige (1981) consider numerically stable recursive com­ 
putations for the general linear model. However, the exact algebraic expressions for these 
recursions have not been available so far. 

We presently consider a general linear model with a possibly rank deficient design 
matrix and a general positive definite dispersion matrix ( corresponding to dependent 
observations). The exact algebraic expressions for recursive formulae for the BLUES as 
well as Likelihood Ratio Test (LRT) statistics are obtained in this paper for the addition 
or deletion of an observation or a parameter from the model. Surprisingly in several cases 
the LRT statistics remain unchanged although the least squares estimators are different. 
The recursive formulae for BLUES, Residual sum of squares and LRT statistics when an 
observation is deleted are very useful in regression diagnostics for detecting influential 
observations. The formulae we obtain in this context can be regarded as extensions of 
the formulae for DFBETA, DFBETAS, etc. of Belsley et. al. (1980) for general linear 
model. Addition and deletion of a parameter is a particularly important consideration in 
regression models as these correspond to the inclusion or exclusion of a predictor variable 
in the model. 

Kourouklis and Paige (1981) give a nice computational method for recursive esti­ 
mation and testing in a general linear model with a possibly singular dispersion matrix. 
However, the exact algebraic formulae for such recursions are not available and are cur- 
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rently under investigation. 
We use the following notation. We consider only real matrices in this paper. For 

a matrix A, let p(A), tr(A), A', C(A) denote its rank, trace, transpose, and column 
space respectively. A- denotes a generalized inverse (g-inverse) of A, i.e. A- is a matrix 
satisfying AA- A = A. 

The ordered triplet (Yh, Xh, Eh) denotes the linear model 

Yh = Xhf3h + f.h 
where his the number of observations and E(f.h) = 0 and D(f.h) = o-2Eh. The (h + llh 
observation is denoted by Y(h + 1) and Yh+l denotes the complete observation vector 
with h + l components. The row vector in the design matrix Xh+l corresponding to 
the observation Y(h + 1) is X'(h + 1) and o-2E(h + 1) is the variance of Y(h + 1). R5h 
denotes the residual sum of squares, namely (Yh - xhSh)''Bi:1(Yh - xhSh) where sh is 
any solution to the normal equations (X~E,:-1 Xh)f3h = X~Ei:1Yh. 

Consider a hypothesis H : Af3h = ~ where C(A') ~ C(X'). 
Let Th = Min,eh:Alh=€ (Yh - X,eh )'E,:-1 (Yh -X f3h) . We use RJI,. to denote Th - R5,.. Let 
sh be as defined above. We use D(ASh) to denote A(X~E,:-1 Xh)-A' for convenience. 
(Strictly speaking, D(ASh) = o-2 A(X~Ei:1 Xh)- A'.) Using Wald's representation we can 
write 

In section 2, we give some results on g-inverses of partitioned matrices and sums of 
matrices, some of which are new. In section 3, we give recursive formulae for BLUES and 
LRTS when an observation is added or deleted. Section 4 deals with recursive estimation 
and testing, when a parameter is added to or deleted from the model. In section 5, we 
give an application of these formulae to regression diagnostics. 

2. Some results on the g-inverses of matrices 

In this section, we give some results on g-inverses of a sum of matrices and of 
partitioned matrices which will be needed in the sequel. 

Lemma 2.1. Let A be a symmetric matrix of order n x n and let A- be a 
g-inverse of A. Let u be a column vector with n components. Case(l). u </. C(A). 
Then for any non-zero real number k, 

bb' (A+ kuu')- = (I - bu')A-(I - ub') + k 

where c = (I - A-' A)(I - AA-)u and b = /v.. Case(2). u E C(A). Then for any 
non-zero real number k, 

if u'A-u = f 
otherwise. 
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Proof of Case (1) follows, once it is observed that b'u = 1 and Ab = 0. Case (2) is 
well-known fork= 1 and u'Au- # -1. (See for example Rao and Mitra (1971), pp. 40). 
The other part can be directly verified. 

Lemma 2.2. (Rohde (1965), Bhimasankaram (1971). Let :E be a nonnegative 

definite (nnd) matrix. Partition :E = [ ~:~ ~::] where :E11 and :E22 are square 
matrices. Let :E11 be a g-inverse of :Eu. Denote F = :E22 - :E21 :E11 :E12. Then one 
choice of a g-inverse of :E is 

[ :E11 OJ + [ :E11 :E12] F-(E r;- _ J) 
0 0 -I 21 u 

where F- is any g-inverse of F. 

Lemma 2.3. {Bhimasankaram (1988). Let M = [:, :] be an nnd matrix 

of order (n + 1) x (n + 1) and let A be of order n x n. Let G = [:, ~] be an nnd 

g-inverse of M and let B be of order n x n. Then a choice of nnd g-inverse of A 
ZS 

{ 

(Ii(Bx + cy))G(I}(Bx + cy))' if x'y + cd # 1 
A-= B-~yy' ifx'y+cd=l, d=f=O andAy+dx=O 

(I OG(I ~)' if x'y + cd = 1, d # 0 and Ay + dx # 0 
where()= 1 - x'y - cd and~= IIAy + dxll-2 · (I - BA - yx') · (Ay + dx). 

Lemma 2.4. Consider the same set up as in Lemma 2.3. Then p(M) = 
p(A) + 1 if and only if x'y + cd = 1, d # 0 and Ay + dx = 0. 

The proof follows by examining the difference between tr MG and tr AA- where 
A- is as in Lemma 2.3. 

3. Updating formulae when an observation is introduced or deleted 

In this section we obtain correction terms to the estimators of (3 and cr2 in the linear 
model when an additional observation is introduced into the model or an observation is 
deleted from the model. We also obtain correction term for the likelihood ratio test for 
testing H : A(3 = ~ in the above situations. 

3(a). Introducing an additional observation 

Consider the model (Yh, Xh, :Eh) and assume the following have been computed and 
are available to us: 
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(3.1) 

[D(AJ3h)]- = [A(X~E,;:-1 Xh)- A'J- and 

Ri,. = (AJ3h - 0'[D(AJ3h)]-(A,8h - 0 
where A/3 is estimable. We want to incorporate one more observation Y(h + 1) with 

E(Y(h + 1)) =X'(h + l),B, 
V(Y(h + 1)) =E(h + 1)0"2, 

and cov(Y(h + 1), Yh) = c~0"2 

into the analysis and update the formuale for the estimators and test statistics. Denoting 

_ [ Yh l _ [ X h l " _ [ Eh Ch l Yh+I - ~h+I) 'xh+I - X'(h + 1) and '-'h+l - c~ E(h + 1) ' 

we can represent the new model by (Yh+i,Xh+1,Eh+1)- 
First we make the following computations using the available information (3.1). 

o: =E(h + 1) - c~E,;:-1ch. 
v =X~~,;:-1ch - X(h + l). 
d =c~E,;:-1Yh - Y(h + l) 
w =(X~Ei;1Xh)-v 
() =v'w 

B =I - (X~E,;:-1 Xh)-(X~E,;:-1 Xh) 

d b CY.1/2 I ( ) • / ( ) an = X(h+l)'BB'X(h+I) · BB X h + l if BX h + l -=/= 0 
We consider two cases, namely, Xh(h + 1) E C(X~) and Xh(h + 1) (/. C(X~). Notice 

that X(h+i) E C(X~) if and only if B' X(h + 1) = 0. 
We prove 

(a) 
(b) 
(c) 

Theorem 3.1. Let B'X(h + 1) = 0. 
A - d-v' /3, 
.Bh+l = ,Bh + a+e 'W 

R2 = R2 + (d-v',e1t)2 and 
01t+1 o,. a+e 

Then the fallowing hold. 

R2 + (d-v' ,e,.) (2µ + d - v',BA ) 
H,. a+B h if 6 = o: + B 

RJh+1 = R2 + (d-v' {3,.) (2µ + _6_ (d - v',B- )) 
H,. a+B a+B h 

[ 

I • ] 2 + l µ + 6(d-v /3,.) 
a+fl-6 {o+B) otherwise 
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Proof. Since B' X(h + 1) = 0, we have X(h + 1) E C(X~Ei:1 Xh) = C(X~). 
So v = X~u - X(h + 1) E C(X~Ei:1 Xh). It is easy to verify that X~+iEi:J1Xh+i = 
X~'E'i:1 xh + ~vv' and x~+l E'i:l1 Yh+l = X~E-;:1Yh + !v in view of Lemma 2.2. Since 
v E C(X~'E-,:1 Xh), 0 = v'(X~Ei:1 Xh)- v is nonnegative and since 'Eh+l is positive 
definite, a > 0. So, 1 + ! f. 0 and by Lemma 2.1, Case (2), we have 

l (X~+1 E,;l1 Xh+i)- =(X~E'i:1 Xh + -vv')- a 
1 =(X~E'i:1 Xh)- - --
8
ww'. 

a+ 
(3.2) 

Now, Sh+1 = (X~+1 Ei:l1 Xh+1)- X~+l E-;:J1 Yh+1 which easily simplifies to the expression 
given in (a). This completes the proof of (a). To prove (b), notice that , 

Rl,.+1 =Y~+l E'i:l1 (Yh+l - Xh+1Sh+1) 

Y,f"-lYi d2 Y.'"-IX /3A d '/3A = hLJh h + - - hLJh h h+l - -V h+I a a 

which simplifies to the expression given in (b) by substituting the value of Sh+l as 
obtained in (a). This completes the proof of (b). To prove (c), recall that 

Now, using (3.2) we have, 

From Lemma 2.1 Case (2), it follows that 

if 8=a+O 

(3.4) 

otherwise 

Further, 

(3.5) 

Now, (c) follows by substituting (3.4) and (3.5) in (3.3) and simplifying the expressions. 

Remark. The LRT statistic having F-distribution under H: AB=~ in this case 
is 
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since p(Xh+i) = p(Xh)- 
We shall now consider the case X(h+ 1) (/. C(X~) and prove the following somewhat 

unexpected result. 

(a) 
(b) 
(c) 

Then the following hold. 

Proof. Recall that X~+1E,:~1Xh+1 = X~:E,:1 Xh + ivv' and X~+1:E;:~1x;:~1Yh+1 
= X~Ei:1Yh + !v. Now B' X(h + 1) # 0 if and only if v (/. C(X~Ei:1 Xh). So, using 
Lemma 2.1 to get a g-inverse of (X~+l :Ei:~1 Xh+d and substituting it in the formula for 
sh+l (see (3.1)), it can easily be shown that Sh+l =sh+ (d - v' Sh)b. This proves (a). 
To prove (b ), first notice that Xhb = 0 and v'b = 1. Now, 

=R5,.. 

This completes the proof of (b). To prove (c), observe that C(A') ~ C(X') and hence 
Ab= 0. So, [A(X~+1:E,:~1Xh+1)- A']-= (A(X~E,:1 Xh)-A')- and ASh+1 = ASh. Now 
( c) follows immediately. 

This leads us to the following surprising 

Corollary 3.3. Let B'X(h + 1) # 0. Let C(A') ~ C(X~) and let~ E C(A). 
Then the value of LRT statistic for testing A(3 = ~ is the same under both the 
models (Yh, Xh, Eh) and (Yh+1, Xh+i, :Eh+i). 

Proof. Since B' X(h + 1) # 0, we have p(Xh+i) = p(Xh) + 1. Now, the LRT 
statistic for testing A(3 =~under (Yh+l, Xh+I, :Eh+1) is 

R1f,.+) p(A) _ R1f,./ p(A) 
Rt+) ( h + 1 - p( x h+ 1 ) ) - R5,. / ( h - p( x h)) 

which is precisely the LRT statistic for testing A(3 = ~ under (Yh, Xh, :Eh)- 

3(b ). Deleting an observation 

Here we consider the model (Yh+i, Xh+I, :Eh+l) and assume that the following have 
computed and are available to us: 
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R6,.+1 = Y~+1 E,;:-~1 Yh+I - Y~+I E,;:-!1 Xh+1J3h+1; 

[D(AJ3h+I )J- = [A(X~+l Eh~l Xh+I )- A']- 

359 

and 
(3.8) 

where A,B is estimable. 
Now, consider the model (Yh, Xh, Eh) obtained from (Yh+i, Xh+l, Eh+1) by deleting 

the last observation. 

Write E,;:-J1 = [ :1
1
:, ~::] where (E121 E22) is the last row of E,;!1. It is easy to 

check that 
E-1 = E11 __ 1_E12E12' 
h E22 

and hence 
-1 _ [~,;:-

1 OJ 1 [E
12J ( 12' 22 Eh+1 - 0 0 + E22 ~22 E E ). 

It now foJlows that 
(3.7) 

where 
u = X~~12 + E22 X(h + 1). (3.8) 

Clearly, u E C(X~+J = C(X~+l ~;;:-J1 Xh+1). So, in view of Lemma 2.1 Case (2), we 
have 

{ 
(X~+l E,;:-J1 Xh+1)- , 

(X~Ei;
1 
Xh)- = (X~+i E,;:-~

1 
Xh+i )- + ~2i'~u'v 

if u'v = E22 
if u'v -=/= E22 (3.9) 

where 
(3.10) 

Further, 
d '°"-1 "',,. X' °"-1 X - -u xhLJh I h = h+1 LJh+1 h+1 E22 (3.11) 

where 
(3.12) 

We first prove 

Lemma 3.4. X(h + l) (/. C(X~) if and only if ~22 = u'v. 
Proof. To prove the if part, let E22 = u'v. 

Then 
p(Xh) =p(X~E,;:-1 Xh) = tr[(X~E,;:-1 Xh)(X~E,;1 Xh)-] 

1 
=tr[(X~+1 Ei;J1 Xh+I - E22 uu')(X~+I ~;;;1 Xh+1)-J 

u'v 
=p(Xh+i) - E22 = p(Xh+1) - l. 
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Hence X(h + 1) </. C(X~). To prove the only if part, let E22 f. u'v. Then, 

Hence X(h + 1) E C(X~). We now prove 

Theorem 3.5. Consider the models (Yh+I, Xh+i, Eh+1) and (Yh, Xh, Eh) and 
let u, v and d be as defined in (3.8), (3.10) and (3.12) respectively. Let X(h + 1) </. 
C(X~). Then the following hold: 

A A d 
(a) f3h = f3h+l - E22 V. 

(b) Let A/3 be estimable under (Yh+I, Xh+l, Eh+i ). Then A/3 is estimable under 
(Yh, Xh, Eh) if and only if Av= 0. 

(c) R5,. = R5,.+1 

(d) Let A/3 be estimable under (Yh, Xh, Eh). Then R2H = R2H 
,. 1t+1 

Proof. In view of Lemma 3.4, (a) follows easily from (3.9) and (3.11). To prove 
(b), let C(A') ~ C(X~+l). Now observe that A/3 is estimable under (Yh, Xh, Eh) if and 
only if 

(3.13) 

From (3.7) and (3.9) it now follows that (3.13) holds if and only if A(X~+I E'i:li Xh+I)-uu' 
= 0, or equivalently, if and only if Av = 0. To prove ( c), first show that (~), the last 
column of the identity matrix, belongs to C(Xh+l ). For this, let f' Xn +m · X'(h+ 1) = 0. 
This clearly means that m = 0 since X(h + 1) </. C(X~). So f'O + m · 1 = 0. Hence 
(~) E C(Xh+1). Now, it immediately follows that u'Sh+l = d. Now (c) follows by 
straightforward computation while (d) is verified easily using (3.9). 

Remark 1. Let X(h + 1) </. C(X~) and let p' f3 be any estimable function under 
(Yh, Xh, Eh)- Then p' Sh = p' Sh+I since p'v = 0 in view of (b) of the preceding theorem. 
So one can choose sh = Sh+I without loss of generality. 

Remark 2. Lemma 3.4 and theorem 3.5 (c) and (d) also lead to Corollary 3.3. 

Theorem 3.6. Consider the models (Yh+i, Xh+I, Eh+i) and (Yh, Xh, Eh) and 
let u, v and d be as defined in (3.8), (3.10) and (3.12) respectively. Let X(h + 1) E 
C(X~). Then the following hold: 
(a) /3

A - /3A + ( v.' ,a,.±1 -d)v 
h - h+l E22_u'v , 

(b) R2 - R2 + ( u' 13,.t1-d)2 
'01, - 01i+i E22_v.'v , 

( c) If A/3 is estimable under (Yh+I, Xh+1, Eh+I), then it is also estimable under 
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if C = U1 
V - :E22 

otherwise 

where w = [A(Xh+I Eh~I Xh+i)- A']- Av and c = v' A'w. 

Proof follows by straightforward verification using Lemma 2.1, Case (2). 

4. Updating formulae when a parameter is introduced or deleted 

In this section we obtain correction terms for the estimators of (3 and cr2 when an 
additional parameter is introduced into the model or a parameter is deleted from the 
model. We also obtain correction terms for the likelihood ratio testing A(3 = ~ in the 
above situations. 
(a) Introducing an additional parameter. 

Consider the model (Y, X, E) and assume the following have been computed and are 
available to us: 

R5 = Y'E-1Y - Y'E-1 XS; 

[D(AS)]- = (A(X':E-1 x)- A')­ 

and 
R't = (AS- O'[D(AS)J-(AS- 0 where A(3 is estimable. 
We want to incorporate one more parameter v into the model and this introduces a 

new column x into the design matrix thus the new model can be written as 

Y=(X: x)O+E ( 4.1) 

where()=(~), E(E) = 0 and D(E) = E0"2. 
Writing W = (X : x) and 8 = (~) we can denote the model by (Y, W, E) where the 
parametric vector is 8. We are interested in computing 0, the usual unbiased estimator 
of cr2 and likelihood ratio test statistic for A(3 = ( if A,B is still estimable. We also want 
to test whether it is worthwhile to introduce the new parameter v. 

For convenience, we refer to (Y, X, E) as the old model and (Y, W, :E) as the new 
model. Accordingly R5 (old), R5 (new), RJ.i (old), R't (new) are defined as R5 and RJ.i 
respectively under old and new models. Now, 
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In view of Lemma 2.2, it follows that 

~ l if O" = 0 
0] 1 ( u ) ( u' -1) o + a -1 otherwise 

(4.2) 

where 
(4.3) 

and 
( 4.4) 

It is easy to check that a = 0 if and only if x E C(X). The following results can be 
proved by straightforward verification. 

Theorem 4.1. Consider the model (Y, W, E) as in (4.1), and let x E C(X). 
Then the following hold: 

- ,e (a) 8=(0), 
(b) R2 - R2 

O(new) - O(old)' 
( c) Let A,B be estimable under the old model. Then it is estimable under the new 

model iff Au= 0, 
( d) Let Au= 0. Then RJi(new) = Ri(old)' 
( e) v is not estimable under the new model. 

Corollary 4.2. Under the set up of theorem 4.1, let A,B be estimable under 
the old model as well as the new model (i.e., AX-x = 0). Then the LRT statistics 
for testing A,B = ~ in the old and new models are the same and have F distribution 
with the same degrees of freedom under the null hypothesis. 

Theorem 4.3. Consider the model (Y, W, E) as in (4.1) and let x <t. C(X). 
Then the following hold: 
(a) 8 = (i) where v = ~x'E-1(Y - X/3) and {3 = /3 - vu. 
(b) R~(new) = R5(old) + V · Y'E-1(Xu - x). 
( c) Let A,B be estimable under the old model. Then A,B is estimable under the 

new model and 

{ 
R2 _ v2o: - 2vv'(AJ3 - 0 

2 = Hold - I - (v'(A.B-0)2 
RH(new) R2 + v2v' Au - 2vv (A,B - 0 - a+v' Au Hold 

if v'Au=-o: 

otherwise 

( d) v is estimable under (Y, W, E) and to test H : v = 0, the usual statistic is 

R2 
(X - Xu)1E-1(x - Xu). O(new) 

n-p(x)-1 
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which has the student's t distribution with n - p(x) - 1 degrees of freedom under 
H. 

Again, the proof is computational and is omitted. 

(B) Deleting a parameter 

Consider the model (Y, X, E) and assume the following have been computed and are 
available to us 

R~ = Y'E-1Y - Y'E-1 xS; 
[D(AS)J- = (A(X'E-1 x)- A')- 

and RJI = (AS - O'[D(AS)J-(Afi - 0 where A/3 is estimable. Further let (X'E-1 X)­ 
be an nnd g-inverse of X'E-1 X. We want to delete the last component of the parametric 
vector /3 from the model and analyse the resulting model. Let us write 

X = (W : x) and /3' = ( ,' : µ) (4.5) 

where x is the last column of X and µ is the last component of /3. Then the resulting 
model is 

(4.6) 

Now 
(4.7) 

, -iy [W'E-1Y] [ui] and X 'E = x''E_1 y = u
2 

, say. 

Partition the nnd g-inverse (X'E-1 X)- as 

(4.8) 

(4.9) 

where (v' c) is a row vector and c is a scalar. Notice that x E C(W) if and only of 

p(W'E-1 W) = p(W) = p(X) = p(X'r;-1 X). 

We consider the two cases, namely, x E C(W) and x </. C(W) in the following two 
theorems. 

Case 1. Let x </. C(W). Then from Lemma 2.4, we have cf. 0, W'E-1(Wv + ex) = 
0 and x'E-1 Wv + cx'E-1x = l. The following theorem gives the new least squares 
estimator f, new R5 and new RJI when the hypothesis is testable. 
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Theorem 4.4. Consider the set up as in (4.5) and (4.6) and let x (/. C(W). 
Then the following hold: 
(a) i = f - (u2 + ~v'ui)v; 
(b) R5new = Rt,d + ~(v'u1 + cu2)2 - (1- ~)u2 · v'u1; 
(c) Let AT be estimable under both old and new models. Consider H : AT = ~ 

against Ha : AT # ~. Then 

R2H + c(u2 + 1v'u1)2 - 2(u2 + lv'u1) if c = v' A' R- Av (old) C C 

2 - RHnew - R2 + v' A' R- Av(u + .!.v'u )2 H(old) 2 C 1 
2 

-2(u2 + ~v'u1)P- , ,,L. otherwise 

where R = A(X'r:-1 x)- A', u1, u2, v and c are as defined in ( 4.8) and ( 4.9) and 
p = v'A'R-(Af - ~). 

Proof is computational and we omit. 

Case 2: Let x E C(W). Then, from Theorem 4.1, we can establish 
Theorem 4.5. Consider the set up as in (4.5) and (4.6) and let x E C(W). 

Then the following hold: 
(a) For every parametric function p'T estimable under both the models, (Y, X, E) 

and (Y, W, :E), 
,_ ,_ 
PT= pT. 

(b) R2 - R2 
O(new) - O(old) 

( c) If AT is estimable under both the models, then for testing H : AT = ~ against 
AT=/=~' R~I(new) = RJi(old) • 

5. Applic~tion to Regression Diagnostics 

Following Belsley, Kuh and Welsch (1980), in this section, we study the influence of 
an observation on the BLUE of an estimable parametric function, on the residual sum of 
squares, on the scaled measure of change and on the change of fit. Such a study is very 
important in regression diagnostics as a way of detecting influential observations as well 
as outliers. (See Belsley et. al. (1980)). 

We consider the model (Yh+l, X h+I, Eh+I) and study the effect of deleting the ( h + 
I )st observation. The effect of delecting any other observation can be studied the same 
way by using suitable permutation of the rows/columns of the matrices and vectors 
involved. 

We shall consider two cases, namely, X(h + 1) E C(Xh) and X(h + 1) (/. C(X~). 

Case 1: X(h+ I) E C(Xh). In this case, it is easily seen that any p' (3 which is estimable 
under (Yh+1,Xh+i,:Eh+1), is also estimable under (Yh,Xh,Eh). 
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We now state the results in the form of a theorem, whose proof follows from Theorem 
3.6. 

Theorem 5.1. Consider the model (Yh+I, Xh+I, Eh+1) and let X(h + 1) E 
C(X~). Then 
a) The change in the BLUE of p' ,B after deleting (h + l)st observation, 

DF BETAh+I,p is given by 
DF BETAh+I,p =p' J3h+I - p' J3h 

d- u'J3h+I , = "'22 1 p V 
LJ -UV 

a') The square of the maximum possible change in an estimable parametric func­ 
tion p',B such that p'p = l after deleting (h + l)th at most observation is 

- 2 (d-u'f3h+l) I DF BETAh+I,MAX = ,_M . '~ . V v. 

b) The change in the residual sum of squares after deleting the ( h + l) th obs er- 
vation is 

1 - 2 R2 -R2 - (u,Bh+i-d) 
o,. o,.+1 - E22 - u'v 

c) The change of fit of the h + l th observation after deleting it is given by 
DF F!Th+I ='ilh+i - Y(h+1) 

(d-u'J3h+1) X' 
E22 - u'v . h+I v. 

d) The scaled measure of change in the BLUE of an estimable p' f3 due to the 
deletion of (h + l)st observation is given by 

DF BETAS = d - u' J3h+1 · p'v 
h+I,p "'22 1 V 2 

L, - u V!!:..rw_ . '(X' E-1 X )-p 
n-r P h+l h+l h+l 

e) The square of the maximum scaled measure of charge in the BLUE of any 
estimable parametric function due to the deletion of (h + l)st observation is 
given by 

Case 2: X(h + 1) (/. C(X~). 

Let p' ,B be estimable under (Yh+l, Xh+I, Eh+I ). Then it is estimable under (Yh, Xh, 
Eh) if and only of p'v = 0. (This follows from proof of (b) of theorem 3.5). Hence 
p' J3h = p' J3h+I for all estimable p' /3 under (Yh, Xh, Eh), So (h + l)st observation does 
not have any influence on the BLUES of the parametric functions, estimable both the 
models. 
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