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ON SOME PROJECTION METHODS FOR
THE SOLUTION OF NONLINEAR EQUATIONS
WITH NONDIFFERENTIABLE OPERATORS

IOANNIS K. ARGYROS

Abstract. We consider a nonlinear equation with a nondifferentiable
operator in a Banach space. We approximate a solution of the nonlinear
equation using an iteration, whose iterates can be obtained by solving a
certain operator equation in a finite dimensional space.

1. Introduction

We study the problem of approximating a fixed point z* of the equation
z = F(z), (1)

in a Banach space E, where F is a nondifferentiable continuous operator defined
on some convex subset D C E with values in E. Let F; be another continuous
operator defined on E with values in E, and let P be a linear projection operator
(P = P?) which projects E on its subspace Ep and set Q = I — P.  We will
assume that the operator PF is Fréchet differentiable on D C E.

We will approximate a fixed point z* of equation (1), using the approxima-

tions
Tntt = F(2n)+ PF{(2p)(Tn41 —2,), n=0,1,2,... (2)
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for some z¢ € D, where PF}(z,) is the Fréchet derivative of PFi(z) at z,,. The
iteration (2) has been considered by many authors when P = I, the identity
operator [4], [7], [8], [9], or when P = I and F = F, [1], [2], [3], [5], [6].

In this paper we assume that for z5 € D the inverse (I — PF{(z0))~! exists

and for A € (0, 1], the following Holder-continuity assumptions are satisfied

I ~ PF{(20)) ' [PFi(z) -~ PF{(9)]ll < x|z — y||*, (3)
IT ~ PFi(20)) ' [QF1(2) - Qi (9)]]| < eallz — o] (4)

and
It = PF{(20))7[G(z) - G| < esllz ~ 3], G(z) = F(z) - Fi(z) (5)

for all z,y € D and some ¢, ¢z and ¢3 > 0.

Note that in case of convergence, the iteration (2) converges to a fixed point
2" of equation (1). Moreover, the problem of computing the iterates foa ) n >0
is equivalent to solving a system of linear algebraic equations of order at most
N, where N = dim(E,), if Ep is finite dimensional.

We finally apply our results to solve an integral equation with a nondiffer-

entiable kernel.

2. Existence-Uniqueness Theorems

We now provide some sufficient conditions for the convergence of iteration

(2) to fixed point of equation (1).

Theorem 1. Assume that the following conditions hold:

(i) for zo € D the linear operator (I — PF{(z))™! ezists and
It7 = PFy(z0)]~ (2o — F(zo))|| < m; (6)

(ii) the operators PF{(z), QFi(z) and G(z) satisfy the conditions (3)-(5) re-
spectively, for some A € (0,1];
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(iii) the ball U(zo, Ro) = {z € E| ||z — zo|| £ Ro} C D where

h
—_ <

bC]_ b
b= -— 8
h T te e b(ez + ¢3), (8)

and

(iv) the quantities h, b, ¢1, ¢ and Ry satisfy

1

h<l, 1R} <1 andb> ——.
c1 Ity an _l—clR(’,‘

(9)

Then, the iterates generated by (2) are well defined for all n > 0, remain n
U(zo, Ro) and converge to a fized point z* € U(zo, Ro) of equation (1), with

n

" h
”zn—x ”_<_7]m, n=0,1,2,.... (10)

Proof. Using the Banach lemma on invertible operators, (9), (3) and (2)
we obtain that the linear operator I — PF}(z) is invertible of U(zo, Ro) and

I(I = PFi(2))""(I - PF{(z0))ll < b. (11)
By (2) we get

ent1 = ||Zas1 — zall S I — PF{(2a)]7 (I = PF{(z0))l
[I(I = PF{(x0)) {PFi(2s) — PFi(zn-1) = PF{(2n-1)(zn — Tn-1)}
+||(I = PF{(20)) " (QFi(zn) — QF1(zn-1))ll
+ ||(I = PF{(20)) ' (G(zn) = G(zn-1))ll]- (12)

Using (3)-(5), (11), (12) and the finite difference formula, we get

bCl

be
en+151+)‘ :

14+ A

e}f’\ + begen, + beze, = [ ef‘ + c] €n- (13)
We will now show using induction on n that

gngi T H, a=0,1,9,.. .. (14)
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From (13) for » = 0, we get using (6) and (8) that e; < nh. Hence, inequality
(14) is true for n = 1.

Let us assume that inequality (14) is true for all £ < n. Then

bC]
14 A

That is, (14) is true for all n = 0,1, 2,....

We now assume that z; € U(zo, Rp) for j = 0,1,2,...,n. Then, we get

ery1 < [ eﬁ + c] e < hnh’c < 17hk+l.

n+1 n+1 ' 1 — pk+1
lzo — znt1l| Zej = ﬂZhJ = Uh——l-—_T— < Ro.
1=1 =1
Hence, zn4+1 € U(zo, Ro).
Moreover,
g I i |
£ ~ Zakll S;enﬂénh" e S g, (15)

That is, the sequence {z,} is Cauchy in a Banach space and as such it converges
to some z* € U(zo, Rp). By taking the limit in (15) we obtain (10). Furthermore,
by taking the limit in (2) we obtain that z* = F(z*).

That completes the proof of the theorem.

We can now prove the following theorem.

Theorem 2. Assume that the following are true:
(i) equation (1) has a fized point z* € U(xo, Ry);
(ii) the hypotheses (i) and (ii) of Theorem 1 are true;
(iii) the ball U(zo, Ry) C D with

R2 Z (1 + h])R],

where

blcl ’
hy = me‘+c< 1, aR} ;1
and
by > :

1_1—C1R1>‘.
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3. Applications

Consider the integral equation of the form

pli] = /0 K(t,s,z(s))ds

in the space I/ = C[0, 1], where K (¢, s, z(s)) is nondifferentiable on some 5 C E.

Set :

Plz) = /0 K(t,s,z(s))ds and Fl(z):/ L(t, s,z(s))ds,

0
where L(t,s,z(s)) is a differentiable operator on D. Then

1
PR()= [ Tu(t,s.a(s))ds,
0

where

L(t,s,x(s)) = sz(t)zv,-(s,z(s))

is a degenerate kernel approximating the function L(t,s,z) on S. The operator
L can be a portion of the Taylor or Fourier series for the operator L(t, s, z) if we

consider it as a function of t. The iteration (2) can now be written as
1 1,
Eaggll) = / K(t,s,2n(s))ds — / L1, 8, 24(8))2,.(3)ds,
0 0
1
+/ f;(t,s,a:n(:c)):cnﬂ(.s)ds.
0

Set,
1

1
Fll) = / Ix"(t,s,xn(s))ds—/ Z;(t,s,xn(s))zn(s)ds,
0 0
then iteration (17) becomes
m 1
Fan(®) = FuD)+ MO [ N, ma()ensa(s)ds,
1=1 0

which can be solved to give a family of equations

m

cJ-—E ajici=b;;, 7=1,...,m,
i=1
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where

1
:/0 N;(s,zn(s))xnﬂ(s)ds, 32 1,...,00

1
aji = /0 Ni(s,za(s))Mi(s)ds, j=1,...,m, i=1,...,m,

and

1
by = /0 Ni(s,zn(3))fa(s)ds, j=1,...,m.

The above family is a system of linear algebraic equation. If the determinant

D(z,,) of this system is not equal to zero, then
g kai(mn)bk
D((Bn) k=1

and

mn+1(t) = fn(t) + Z z D'ﬁ(zmn)akz ,

i=1 k=1
where Dy;(z,) is the cofactor of the element in the i-th row and k-th column of
the determinant D(z,).
Let us suppose now that the operators f;(t,s,z), Q(t,s,z), G(t,s,z) and
T(t,s,z), where Q(t,s,z) = L(t,s,z) — L(t,s,z), G(t,s,z) = K(t, s,z)— L(t,s,

z), and

Tlaym, ) = D(z ZZ i(t)Dri(z)Ni(s, z),

satisfy the conditions
Za(t,5,2) = T'(t,5,9)| < ea(t,8)|e = oI,
1Q(t,s,2) — QL 5,9)| < ea(t, )|z - yl,
|G(t,s,z) — G(t,s,y)| < es(t,s)|z — vy,
and
|T(¢,s,z)| < r1(t,s) on §.

Then the constants appearing in Theorem 1 can be estimated as follows:

1 1
c; sup / ci(t,s)ds, ¢y < sup / c2(t, s)ds,
tefo,1] Jo t€l0,1]z Jo
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and

1 1
c3 < sup / c3(t,s)ds and b < 1+ sup / r1(2,8)ds.
tel0,1) Jo tef0,1] Jo

Once this is achieved on a specific example, we then define ¢, ¢3, ¢3, and b to be
equal to the quantities appearing at the right hand side of the above inequalities
respectively. Then we try various guesses for the starting point z¢ until we find
one that together with the rest of the parameters satisfy the hypotheses (i)-(iv)

of Theorem 1. Theorem 1 can then be applied to solve the integral equation.
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