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REMARKS ON THE *-TOPOLOGY 

M. E. ABD EL-MONSEF, E. F. LASHIEN AND A. A. NASEF 

Abstract. An ideal J on a. set X is a collection of subsets of X which 
is closed under the operations of subset (heredity) and finite union (ad 
ditivity). Ideals a.re useful in generation new spaces from the old ones. 
The central theme in this paper is to give new characterizations and 
properties to the *-topology in the sense of Hashimoto or I-topology in 
the sense of Vaidyanathaswamy and r• (I) in the sense of Hamlett, Rose 
and Jankovic. Several connections between the *-topology and other 

corresponding ones are investigated. 

1. Introduction 

One type of topology via ideals has been defined by three independent au 

thors. In 1945, Vaidyanathaswamy [33] called it I-topology. On the other hand 
in 1976, Hashimoto [12] named it the *-topology. Recently in 1990, Hamlett, 

Rose and Jankovic [14] and [11] called it r*(l). 
The purpose of the present paper is to investigate further characterizations, 

properties and some connections of the topology r*(I) with other corresponding 
ones. Also, in section 4, we study the topology r*(In), where In denotes the 

ideal of nowhere dense subsets. 

2. Preliminaries 

Throughout the present paper, spaces mean topological spaces on which no 

separation axiom is assumed unless explicitly stated. Let A be a subset of a space 
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(X, r). We denote the closure of A and the interior of A with respect to T by 
Cl(A) and Int(A). We denote the open nbd system for a point x in a space (X, r) 
by N(x ), i.e., N(x) = {U Er : x E U}. P(A), the power set of A,. A subset A of 
a space (X, T) is said to be regular open (resp. regular closed) if Int (Cl(A)) = A 
(resp. Cl(Int(A)) = A). A subset A of (X,T) is said to be a-open [26] (resp. 
semi-open [16], preopcn [20], ,8-open [l]) if Int(Cl(Int(A))) ::) A (resp. Cl(Int 
(A)) :J A, Int(Cl(A)) :J A, Cl(Int(Cl(A))) :J A) The complement of semi-open 

(resp. preopen) is called semi-closed (resp. preclosed). The family of all regular 
open (resp. regular closed, a-open, semi-open, semi closed, preopen, preclosed, 

,8-open ) sets of (X, r) is denoted by RO (X, r) (resp. RC (X, T), aO(X, T) or 
TOI, SO(X,T), SC(X,T), PO(X,r), PC(X,r), ,BO(_X,T)). It was observed in 
(26] that TOI is a topology on X and that SO (X, T) :J rOI :J ,. Recall that a 
subset A of (X, r), is said to be nowhere dense if Int Cl(A) = <I>, and is called 

Co-dense in X if X - A is dense or Int (A)= <I>. 
Given a nonempty set X, an ideal I [15] is defined to be a nonempty collec- 

tion of subsets of X such that: 
(1) B E I and B 2 A~ A E J (heredity), and 
(2) A E J and B E J ~ AU B E J (finite additivity) if, in addition, I satisfies 

the following condition: 
(3) {An : n = 1, 2, ...... } ~ I~ UAn EI( countable additivity) 
then I is said to be a-ideal. If X (j. I, then I is called a proper ideal and 
{ X - E : E E J) is a filter, and hence proper ideals are sometimes called dual 

filters. We will denote by (X, T, I) a non empty set X, a topology r on X, and 
an ideal I on X. If (X, r, I) is a space we denote by r*(I) the topology on X 
generated by the basis ,B(I, r) = {U - E : U E T, E E !}[3'1]. When there is 
no ambiguity we will simply write T* for r*(I) and ,8 for f3(I, r) respectively. 
Examples are provided in [33] and [14] showing that ,8 is not, in general, a 
topology. The closure operator in r*, denoted by Cl* can be described as follows: 
For A~ X, (Cl*(A) =AU A*(I,T) where A*(l,T) = {x EX: Un A (j. I for 
every U E N(x)} is called the local function of A with respect to I and r. We will 
write A* for A*.(I, T) when no ambiguity is present. In [24], N~tkaniec defines 



REMARKS ON THE *-TOPOLOGY 11 

an operator \J!(I,r): P(X)-+ T where (X,r,I) is a space as follows: for every. 
A ~ X, \J!(A) = {x : there exists an open nbd U of x such that U - A E J}. 

If (X < r) is a space, ACX and A</. r then the class {GU (G' n A): G, 

G' E r} is a topology finer than T called the simple expansion of T by A and 
denoted by r(A) [17]. If (X,r) is a space and A~ X, then teh class r[A] = 
{ U - B : U E T, A 2 B} is a topology finer than T called the local discrete 

expansion of r by A (35]. In 1970, A. S. Mashhour (19] introduced the lower 

separation axioms TJ, T{, T{' and T~. The definitions of these axioms are based 
on the basic lower separation axioms and the boundary operator on a set. Recall 
that a space (X, r) is said to be extremally disconnected (briefly E. D.) if the 
closure of every open set of X is open in X. Spaces having only the property that 
their dense subsets are open are called submaximal. A space (X, r) is said to be 
nearly compact [31] (resp. strongly compact [2], semi compact [8], a-compact 

· [22]) if each regular open (resp. preopen, semi-open, o:-open) cover has a finite 
subcover. A space (X, r) is called P1 paracompact (21] if every preopen cover of 

X has a locally finite open refinement. 
A bijection f : X -+ Y is a semi-homeomorphism if f and 1-1 preserve 

semi-open sets [6]. A space (X, r) is called inverible [9] (resp. semi-invertible 

[7]) if for each proper open (resp. semi-open) set U in (X, T) there exists a 
homeomorphism. (resp. semi homeomorphism) h : (X, r) -+ (X, r) such that 

h(X - U) CU. 

3. On the *-topology 

Theorem 3.1. Let (X, r, I) be a space. Then we have: 

(i) r*(I) = {U ~ X: Cl*(X - U) :-- X - U}[14]. 
(ii) r*(I) ={A~ X: A~ \J!(A)}[ll]. 
(iii) r*(I) = u{(G - E): U Er and EE/}. 
(iv) r*(I) ={Un Ee: U E r,E E J} where I is a proper ideal on X. 

Corollary 3.1. For every A~ (X, r, I), we have: 
(i) If I = {<I>}, then A* = Cl(A) and Cl*(A) = Cl(A) and hence in this 
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case r*(I) = r. 
(ii) If I= P(X), then A* = <I>, and hence r*(I) is the discrete topology. 

Corollary 3.2. 

(i) If I and J are ideals on (X, r) such that J 2 I then, r*(J) 2 r*(I). 
(ii) r* ( I) = r, if Ec ~ r and E E 1 where, Ec denotes the complement of 

E. 
(iii) r*(l) = r iff every member of I is r-closed [30]. 

Remark 3.1. Simple extension r(A), local discrete extension r[A] and 
r*(I) are three independent concept as the following example shows. 

Example 3.1. Let X = { a, b, c, d,} with a topology r = {X, <I>, { c }, { a, c }, 
{c,d},{a,c,d,}}, Then for an ideal I= {<I>,{c},{d},{c,d}} on X and a subset 

A = { a, b}, we can easily deduce that: 
( i) r (A) = { X, <I>, { c} , {a, c} , { c, d}, {a, b}, {a, c, d} {a, b, c}}, 
(ii) r[A] = {X,<I>,{c},{a,c},{c,d}{a,c,d},{b,c,d}}, and 
(iii) r * ( I) = { X, cl>, {a} , { c} , { d} , {a, b}, {a, c} , {a, d} , { c, d} , {a, b, c}, {a, c, 

d}, {a, b, C}} . 

. Remark 3.2. Two different topolgies r1 and r2 on a set X may have the 
same *-topology ri(J) and r2(1) where I is the ideal on a nonempty set X. 

(Example 3.2). 
Example 3.2. Let X = { a, b, c, d} with two topologies r1 = { X, 41>, {a}} and 

r2 be an indiscrete topology. Then for an ideal I = { <I>, {b }, { c }, { d}, {b, c}, { b, d}, 
{c,d},{b,c,d}}. We notice that ri(J) = {X,<I>,{a},{a,b},{a,c},{a,d},{a,b,c}, 
{ a, c, d}, { a, b, d}} = r2(I). 

Theorem 3.2. If (X, r) and (X, r*(I)) are two spaces, then for every 

A~ X, we have: 

(i) diA) ~ d-r'"(l)(A), where d denotes the derived se.t of A. 

(ii) b-r(A) 2 b-r·(I)(A), where b denotes the boundary of A. 
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Proof. 
(i) If x ff. d

7
(A), then there exists G E r such that ( G - { x}) n A = <I>, but 

GE r ~ T*(I). So x ff. d7•(I)(A). 
(ii) Follows directly from the fact that: CliA) 2 Cl7•(I)(A), for every 

A~X. 

Remark 3.3. The converse of Theorem 3.2 is not true in general, as shown 

by the following example. 

Example 3.3. Let X = {a,b,c} with topology r = {X,cI>,{a}}. Then for 
an ideal J = {cI>,{a},{c},{a,c}} and A= {b,c}. We notice that: dT(A) = {b,c} 
and d

7
•(I)(A) = {c}. Therefore dT(A) c/.. d7•(I)(A). 

Theorem 3.3. If (X, r) is submaximal, then: PO (X, r*(I)) 2 PO (X, r). 

Proof. For a submaximal space, PO(X, r) = r[32]. Then PO(X, T) = r ~ 
r*(I) ~ PO(X, r*(I)). 

Remark 3.4. Submaximality in Theorem 3.3 is necessary as shown by the 

following example . 

. Example 3.4. Let X = { a, b, c} with an indiscrete topology r. 
Then, PO(X, r) = P(X). For an ideal J = { <I>, { c} }, r*(I) = {X, ~' { a, b} }, 

and PO(X,r*(I)) = {X, ~' {a}, {b}, {a,b}, {a,c}, {b,c}}. Therefore, PO(X, 

r*(I)) 1> PO(X, r). 
One can deduce easily the following result which has obvious proof. 

Lemma 3.1. In a space (X, r), A~ X is preopen iff there exists an open 

set GE r such that CLT(A) 2 G 2 A. 

Theorem 3.4. Let (X, r) be a space with an ideal I on X and Ee E 

PO(X, r) for every E E J. Then PO(X, r) 2 PO(X, r*(I)). 

Proof. Let B E PO(X, r*(I)). Then by Lemma 3.1, there exists GE r*(J) 
su3ch that BC G ~ Cl7*(B) ~ Cl7(B), but GE T*(I) implies G = UnEc, U E 



14 
M. E. ABD EL-MONSET, LASHIEN AND A. A. NASEF 

r, E E J, and hence. B ~ Un Ec ~ Cl,r(B). Since Ee E PO(X, r), for every 
E E I, B ~ u n EC ~ u n IntrClrEC ~ u n ClT EC ~ Clr(U n EC) ~ Clr(B). 
Therefore, Un Int

7
Cl.,-Ec is a r-open set containing Band BE PO(X, r). 

Combining the previous two theorems, we obtain the following corollary .. 

Corollary 3.3. Let (X, r, I) be a space and Ee E PO(X, r) for every EE I. 

If X is subma:z;imal, then PO(X, r) = PO((X, r*(I)). 

Theorem 3.5. If (X, r) is E. D., then SO((X, r*(I)) 2 SO (X, r). 

Proof. For an E. D. space SO (X, r) = r. Then SO(X, r) = r ~ r*(I) ~ 
SO ((X, r*(I)). 

Theorem 3.6. For a space (X,r), we have aO((X,r*(I)) 2 aO(X,r) iff 

every nowhere dense subset is closed. 

Proof. Follows from the fact that r = ret iff every nowhere dense subset is 
closed. 

Theorem 3.7. Let (X, r) be a T2 (T1, To) space, then (X, r* (I)) is T2 (T1, 

To) space. 

Proof. Obvious since T ~ r*(I) and Cl7•(U) ~ Clr(U) for any U ~ X. 

Remark 3.5. The converse of Theorem 3.7 is not true, in general as shown 

by the following example. 

Example 3.5. Let X = {a, b,c} with a topology r = {X, 4>, {a}}. Then 

for an ideal I= {</>,{b},{c},{b,c}} we have T *(I)= {X,<l>,{a},{a,b},{a,c}} 
and we observe that (X, r*(I)) is To while (X, r) is not. 

Theorem 3.8. Let (X,r) be a T;(T{,T{',TJ)-space, then (X,r*(I)) is 

THT{, T{', TJ). 

Proof. We prove the theorem for a T~-space. Let. (X, r) be TJ Then for 
every x,y EX, x f: y, there exist U, VET~ r*(I) with x EU and y EV such 
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that b
7
U n b-r V = q>_ But br *Un b-r * V ~ b-rU n b-r V = q>_ This implies that . 

(X, r*(I)) is Tr 

Theorem 3.9. If (X, r*(I)) is semi-regular, then: 
(i) (X, r) is T2(T1, To) iff (X, r*(I)) is TiT1, To), 
(ii) (X,r) is TJ(T{,T{',TJ) iff (X,r*(I)) is T;(T{,T{',TJ). 

Proof. Follows from the fact, if (X, r*(I)) is semi-regular then r = r * (I). 

Remark 3.6. The previous. theorem is vaild by replacing the condition of 

semi-regular by the condition, if every member of I is r-closed. 

Remark 3.7. In general, regularity and normality are not preserved under 

r*(I) as shown by the following examples. 

Example 3.6. Let X = {a,b,c} with a topology r = {X,<I>,{a},{b,c}}. 
Then for an ideal I= {q>,{b}}, we have r*(J) = {X,<I>,{c},{c},{a,c}{b,c}}. It 
is clear that (X, r) is regular while (X, r*(I)) is not. 

Example 3.7. Let X be as shown in Example 3.6 and r = {X, <P, {a}, 
{ a, b}}. Then for an ideal I = { q>, { b}, { c}, { b, c}} we notice r * ( I) = { X, q>, {a}, 
{a,b}{a,c}} and (X,r) is normal while (X,r*(I)) is not. 

Theorem 3.10. If (X, r, I) is submaximal and Ee E PO(X, r) for every 
E E I, then ( X, r) is strongly compact iff ( X, r* (I)) is strongly compact. 

Proof. The first implication is obvious. To prove the second implication, 

let {Ua : a E 'v} be a r*-preopen cover of (X, r*(I)), then {Ua : a E 'v} is 
a r-preopen cover ( Corollary 3.3), there exists then a finite subfamily Vo of V 

such that X = U{Ua : a E Vo}. 

Theorem 3.11. If f: (X,r"')-+ (Y,a) is open, then, f: (X,r,_I)-+ (Y,a) 
is open. 

Proof. Obvious. 
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Since the intersection of two regular open sets is regular open, the family 

of regular open sets forms a base for· a smaller topology Ts on X, called the 
semi-regularization of T. The space (X, T) is said to be semi-regular if Ts = T. 

Definition 3.1. [25] Given a space (X, T, I), I is said to be r-boundary if 
JnT={<l>}. 

Theorem 3.12. Let (X, r, I) be a space and I is r-boundary, then rs 

(r*)s = (rs)s. 
Proof. Follows from Theorem 6.4 [14] and Lemma 3 [23]. 

Theorem 3.13. If (X, T, I) is a space such that I is T-boundary and (X, T*) 

is semiregular, then T* = ( T*)s and T* = T. 
Proof. Since (X, T*) is semiregular, then r* = ( T*)5, since I is T-boundary, 

then Ts ( T*)
5 

[14]. Hence T* = ( T*)s = r5 ~ T ~ T* and by using Theorem 3.12 

we get the result. 

Theorem 3.14. If (X, T, I) is a space and In T = { ¢,}, then RO(X, T) = 
RO(X, T*). 

Proof. The result follows immediately from the fact if (X, T) is a space and 

In T ={¢,},then Ts= (T*)s. 

Corollary 3.4. If (X,T,l) is a space and X 
RC(X, r*). 

X*, then RC(X, T) 

Corollary 3.5. If (X, T, I) is a space and I is T-boundary, then (X, T) is 
nearly compact iff (X, T*) is nearly compact. 

4. On the toplogy generated by a given topology and ideal of nowhere 

dense sets 

The following Lemma is very useful in the sequel. 
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Lemma 4.1. [14] Given a topology r on X, the a-topology for T is Tex = 
r*(In), where In(r) is the ideal of nowhere dense sets. 

Theorem 4.1. If (X, r) is a space. Then: r = r*(In) if! every nowhere 
dense subset is closed. 

Proof. Obvious. 

Theorem 4.2. If (X, r,In) is a space. Then: 
(i) r*(In) is a topology on X and T = r*(In), 
(ii) ( r*(In))*(In) = r*(In), 
(iii) (X, r) and (X, r*(In)) have the same class of semi-open sets, 

(iv) Let a be any topology on X such that SO(X, a) = SO(X, r). Then 

T*(In) 2 O'. 

Proof. Follows from Lemma 4.1 and Theorem 1.2 [4]. 

Theorem 4.3. Let (X, r) be a space. Then r = r*(In) = Tex = SO(X, r) 

if one of the following holds: 
(i) (X, r) is a partition topology, 
(ii) (X, r) is a cofinite topology, 
(iii) (X, r) is the two point Sierpinski space, 
(iv) A E r or Int(A) = ¢, for every A~ X. 

Proof. 
(i) Follows from Lemma 4.1 and proposition 3 (28]. 

(ii) and (iii) Follows from Lemma 4.1 and Corollary 2 [28]. 

(iv) Obvious from Lemma 4.1 and proposition 2 (28]. 

Theorem 4.4. If (X, r) is submaximal and E. D. Then 

r = r*(In) = rex = SO(X, r) = PO(X, r) = (30(X, r). 

Proof. The result follows from Lemma 4.1 and [3]. 
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Theorem 4.5. A space (X, r) is discrete iff (X, r*(In)) is discrete. 

Proof. If (X, r) is discrete, then r*(In) 2 r. This implies that (X, r*(In)) 
is discrete. Conversely see proposition 1 [28]. 

Theorem. 4.6. If Xis finite andi > 1, Then (X,r) is Ti itf(X,r*(In)) 
is Ti. 

Proof. If X is finite, then (X, r) is Ti iff (X, r) is discrete and hence by 
Theorem 4.5 iff (X, r*(In)) is discrete and therefore iff (X, r*(In)) is Ti. 

The following example shows that Theorem 4.6 is false when i = 0. 

Example 4.1. Let X = {a,b,c} and r = {X,<P,{a}}. Then we have 
In= {~,{b},{c},{b,c}} and we notice th~t r*(In) = {X,~,{a},{a,b},{a,c}}, 
so that (X, r) is not To, while (X, r*(In)) is To. 

Theorem 4.7. (X, r) is a Hausdorff space iff (X, r*(In)) is Hausdorff. 

Pll."oof. One ·implication is immediate, since r*(In) ~ r. Conversely, follows 

from Lemma 4.1 and Theorem 2 [28]. 

Theorem 4.8. If A is a subset of (X, r, In) then: 

(i) Cl,.(A) ~ Cl,. .. (A) 2 A*(In,r), 
(ii) A E r*(In) iff there exists a regular open set G in (X, r) and a nowhere 

dense set N such that A = G - N. 

Proof. (i) Obvious from Lemma 4.1 and Proposition (1) [29]. (ii) The 
result follows from Lemma 4.1 and Proposition (4) (26]. 

Theorem 4.9. If (X, r) is P1 -paracompact. Then: 

(i) r*(In) = r*(I1) = PO(X, r), when X is Ti, 
(ii) r*(In) = r*(I) = PO(X, r) iff every member of I is closed in (X, r). 

Proof. 

(i) Follows from Lemma 4.1, see [14] and the fact that r*(I1) = r if (X, r) 
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is T1. 
(ii) Obvious from [14] and [10]. 

Theorem 4.10. If (X, r) is a Ti-space. Then: 
(i) r*(In) = T*(I1) iff every nowhere dense subset is closed, 

(ii) PO(X,T) ~ T*(ln) ~ r*(I1), 

Proof. 

(i) Obvious. 
(ii) Follows from (5] and the fact that T*(I1) = T if (X,T) is T1. 

Theorem 4.11. Let (X, T, In) be a space, then the following properties are 

satisfied, 
(i) SO(X, r) = SO(X, T*(In)), 

(ii) PO(X, T) = PO(X, T*(ln)), 

(iii) RO(X, r) = RO(X, r*(In)), 
(iv) (X, T) and (X, T*(In)) have the same class of nowhere dense sets. 

(v) (X, r) and (X, T*(In)) have the same class of dense sets. 

Proof. It is obvious by using Lemma 4.1 and Theorem 2.9 [4]. 

Corollary 4.1. Let (X, T, In) be a space, then the following properties are 

satisfied: 
(i) SC(X, T) = SC(X, T*(fn)), 

(ii) PC(X, T) = PC(X, r*(In)), and 

(iii) RC(X, T) = RC(X, T*(In)). 

Corollary 4.2. For a space (X,T) we have: 
(i) (X, T) is semi-compact iff (X, T*(In)) is semi-compact, 
(ii) (X, T) is strongly-compact iff (X, r*(In)) is strongly-compact, 
(iii) (X, T) is nearly-compact iff (X, T*(In)) is nearly-compact. 

Proof. Follows from Theorem 4.11. 
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Theorem 4.12. A space (X, r*(In)) is submaximal iff each codense set in 

(X,r) is nowhere dense in (X,r). 

Proof. Let A be a codense set in (X, r). Then A is codense in (~Y, r*(In)) 
and Since (X,r*) is submaximal, then A is closed in (X,,*(Jn)), thus A is 
nowhere dense in ( X, r*) and hence A is nowhere dense in (X, r ). 

Convcrsly, let D be a dense set in (X, r*(In)) Then D is dense in (X·, r ). 
So that X-D is codense in (X, r). By hypothesis, X-D is nowhere dense in 
(X, r) and hence is nowhere dense in (X, r*(In)). Since nowhere dense sets in 
(X, r*(In)) arc closed in (X, r*(In)). Dis open in (X, r*(In)). Then (X, r*(In)) 

is submaximal. 

Theorem 4.13. A space (X, r) is semi-invertible iff (X, r*(In)) is invert 

ible. 

Proof. Follows From Lemma 4.1 Theorem 3.4 [18]. 

Theorem 4.14. A topological property is semitopological iff it is shared by 

a space (X, r) and the space (X, r*(In). 

Proof. Obvious from Lemma 4.1 and see [13]. 

Theorem 4.15. If (X, r) is a semi-invertible space and contains a non 
empty set U E r*(In) which is Urysohn (resp. E. D.) as a subspace of (X, r), 
then (X, r) is Urysohn ( resp. E. D.) 

Proof. Follows From Lemma 4.1 and Corollary 3.6 in (18]. 

The following result is obvious from Lemma 4.1 and the definition of o: 

compact space. 

Theorem 4.16. A space (X, r) is a.-compact if] (X, r*(In)) is compact. 

Corollary 4.3. A subset A of a space (.,,Y, r) is a.-compact relative to (X, r) 

iff it is compact in (X, r*(In)). 



REMARKS ON THE *-TOPOLOGY 
21 

Corollary 4.4. A function f: (X, r) - (Y,a) is a semi-homeomorphism 

iff f : (X, r*(ln)) --+ (Y, a*(In)) is a homeomorphism. 

Proof. Follows from the fact that semi-topological properties and a-topo 

logical properties are conincide [6]. 
Here we prove that the property of connectedness is shared by any topolog- 

ical space and its *-topology. 

Theorem 4.17. If(X,r) is a topological space, then (X,r) is disconnected 

iff (X, r*(In)) is disconnected. 

Proof. If (X,r) is disconnected, then r*(In) :::> r. This implies that 

(X, r*(ln)) is disconnected. 
Conversely follows immediately from Lemma 4.1 and Theorem 2 in (27]. 
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