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REMARKS ON THE *-TOPOLOGY 

M. E. ABD EL-MONSEF, E. F. LASHIEN AND A. A. NASEF 

Abstract. An ideal J on a. set X is a collection of subsets of X which 
is closed under the operations of subset (heredity) and finite union (ad­ 
ditivity). Ideals a.re useful in generation new spaces from the old ones. 
The central theme in this paper is to give new characterizations and 
properties to the *-topology in the sense of Hashimoto or I-topology in 
the sense of Vaidyanathaswamy and r• (I) in the sense of Hamlett, Rose 
and Jankovic. Several connections between the *-topology and other 

corresponding ones are investigated. 

1. Introduction 

One type of topology via ideals has been defined by three independent au­ 

thors. In 1945, Vaidyanathaswamy [33] called it I-topology. On the other hand 
in 1976, Hashimoto [12] named it the *-topology. Recently in 1990, Hamlett, 

Rose and Jankovic [14] and [11] called it r*(l). 
The purpose of the present paper is to investigate further characterizations, 

properties and some connections of the topology r*(I) with other corresponding 
ones. Also, in section 4, we study the topology r*(In), where In denotes the 

ideal of nowhere dense subsets. 

2. Preliminaries 

Throughout the present paper, spaces mean topological spaces on which no 

separation axiom is assumed unless explicitly stated. Let A be a subset of a space 
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(X, r). We denote the closure of A and the interior of A with respect to T by 
Cl(A) and Int(A). We denote the open nbd system for a point x in a space (X, r) 
by N(x ), i.e., N(x) = {U Er : x E U}. P(A), the power set of A,. A subset A of 
a space (X, T) is said to be regular open (resp. regular closed) if Int (Cl(A)) = A 
(resp. Cl(Int(A)) = A). A subset A of (X,T) is said to be a-open [26] (resp. 
semi-open [16], preopcn [20], ,8-open [l]) if Int(Cl(Int(A))) ::) A (resp. Cl(Int 
(A)) :J A, Int(Cl(A)) :J A, Cl(Int(Cl(A))) :J A) The complement of semi-open 

(resp. preopen) is called semi-closed (resp. preclosed). The family of all regular 
open (resp. regular closed, a-open, semi-open, semi closed, preopen, preclosed, 

,8-open ) sets of (X, r) is denoted by RO (X, r) (resp. RC (X, T), aO(X, T) or 
TOI, SO(X,T), SC(X,T), PO(X,r), PC(X,r), ,BO(_X,T)). It was observed in 
(26] that TOI is a topology on X and that SO (X, T) :J rOI :J ,. Recall that a 
subset A of (X, r), is said to be nowhere dense if Int Cl(A) = <I>, and is called 

Co-dense in X if X - A is dense or Int (A)= <I>. 
Given a nonempty set X, an ideal I [15] is defined to be a nonempty collec- 

tion of subsets of X such that: 
(1) B E I and B 2 A~ A E J (heredity), and 
(2) A E J and B E J ~ AU B E J (finite additivity) if, in addition, I satisfies 

the following condition: 
(3) {An : n = 1, 2, ...... } ~ I~ UAn EI( countable additivity) 
then I is said to be a-ideal. If X (j. I, then I is called a proper ideal and 
{ X - E : E E J) is a filter, and hence proper ideals are sometimes called dual 

filters. We will denote by (X, T, I) a non empty set X, a topology r on X, and 
an ideal I on X. If (X, r, I) is a space we denote by r*(I) the topology on X 
generated by the basis ,B(I, r) = {U - E : U E T, E E !}[3'1]. When there is 
no ambiguity we will simply write T* for r*(I) and ,8 for f3(I, r) respectively. 
Examples are provided in [33] and [14] showing that ,8 is not, in general, a 
topology. The closure operator in r*, denoted by Cl* can be described as follows: 
For A~ X, (Cl*(A) =AU A*(I,T) where A*(l,T) = {x EX: Un A (j. I for 
every U E N(x)} is called the local function of A with respect to I and r. We will 
write A* for A*.(I, T) when no ambiguity is present. In [24], N~tkaniec defines 



REMARKS ON THE *-TOPOLOGY 11 

an operator \J!(I,r): P(X)-+ T where (X,r,I) is a space as follows: for every. 
A ~ X, \J!(A) = {x : there exists an open nbd U of x such that U - A E J}. 

If (X < r) is a space, ACX and A</. r then the class {GU (G' n A): G, 

G' E r} is a topology finer than T called the simple expansion of T by A and 
denoted by r(A) [17]. If (X,r) is a space and A~ X, then teh class r[A] = 
{ U - B : U E T, A 2 B} is a topology finer than T called the local discrete 

expansion of r by A (35]. In 1970, A. S. Mashhour (19] introduced the lower 

separation axioms TJ, T{, T{' and T~. The definitions of these axioms are based 
on the basic lower separation axioms and the boundary operator on a set. Recall 
that a space (X, r) is said to be extremally disconnected (briefly E. D.) if the 
closure of every open set of X is open in X. Spaces having only the property that 
their dense subsets are open are called submaximal. A space (X, r) is said to be 
nearly compact [31] (resp. strongly compact [2], semi compact [8], a-compact 

· [22]) if each regular open (resp. preopen, semi-open, o:-open) cover has a finite 
subcover. A space (X, r) is called P1 paracompact (21] if every preopen cover of 

X has a locally finite open refinement. 
A bijection f : X -+ Y is a semi-homeomorphism if f and 1-1 preserve 

semi-open sets [6]. A space (X, r) is called inverible [9] (resp. semi-invertible 

[7]) if for each proper open (resp. semi-open) set U in (X, T) there exists a 
homeomorphism. (resp. semi homeomorphism) h : (X, r) -+ (X, r) such that 

h(X - U) CU. 

3. On the *-topology 

Theorem 3.1. Let (X, r, I) be a space. Then we have: 

(i) r*(I) = {U ~ X: Cl*(X - U) :-- X - U}[14]. 
(ii) r*(I) ={A~ X: A~ \J!(A)}[ll]. 
(iii) r*(I) = u{(G - E): U Er and EE/}. 
(iv) r*(I) ={Un Ee: U E r,E E J} where I is a proper ideal on X. 

Corollary 3.1. For every A~ (X, r, I), we have: 
(i) If I = {<I>}, then A* = Cl(A) and Cl*(A) = Cl(A) and hence in this 
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case r*(I) = r. 
(ii) If I= P(X), then A* = <I>, and hence r*(I) is the discrete topology. 

Corollary 3.2. 

(i) If I and J are ideals on (X, r) such that J 2 I then, r*(J) 2 r*(I). 
(ii) r* ( I) = r, if Ec ~ r and E E 1 where, Ec denotes the complement of 

E. 
(iii) r*(l) = r iff every member of I is r-closed [30]. 

Remark 3.1. Simple extension r(A), local discrete extension r[A] and 
r*(I) are three independent concept as the following example shows. 

Example 3.1. Let X = { a, b, c, d,} with a topology r = {X, <I>, { c }, { a, c }, 
{c,d},{a,c,d,}}, Then for an ideal I= {<I>,{c},{d},{c,d}} on X and a subset 

A = { a, b}, we can easily deduce that: 
( i) r (A) = { X, <I>, { c} , {a, c} , { c, d}, {a, b}, {a, c, d} {a, b, c}}, 
(ii) r[A] = {X,<I>,{c},{a,c},{c,d}{a,c,d},{b,c,d}}, and 
(iii) r * ( I) = { X, cl>, {a} , { c} , { d} , {a, b}, {a, c} , {a, d} , { c, d} , {a, b, c}, {a, c, 

d}, {a, b, C}} . 

. Remark 3.2. Two different topolgies r1 and r2 on a set X may have the 
same *-topology ri(J) and r2(1) where I is the ideal on a nonempty set X. 

(Example 3.2). 
Example 3.2. Let X = { a, b, c, d} with two topologies r1 = { X, 41>, {a}} and 

r2 be an indiscrete topology. Then for an ideal I = { <I>, {b }, { c }, { d}, {b, c}, { b, d}, 
{c,d},{b,c,d}}. We notice that ri(J) = {X,<I>,{a},{a,b},{a,c},{a,d},{a,b,c}, 
{ a, c, d}, { a, b, d}} = r2(I). 

Theorem 3.2. If (X, r) and (X, r*(I)) are two spaces, then for every 

A~ X, we have: 

(i) diA) ~ d-r'"(l)(A), where d denotes the derived se.t of A. 

(ii) b-r(A) 2 b-r·(I)(A), where b denotes the boundary of A. 
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Proof. 
(i) If x ff. d

7
(A), then there exists G E r such that ( G - { x}) n A = <I>, but 

GE r ~ T*(I). So x ff. d7•(I)(A). 
(ii) Follows directly from the fact that: CliA) 2 Cl7•(I)(A), for every 

A~X. 

Remark 3.3. The converse of Theorem 3.2 is not true in general, as shown 

by the following example. 

Example 3.3. Let X = {a,b,c} with topology r = {X,cI>,{a}}. Then for 
an ideal J = {cI>,{a},{c},{a,c}} and A= {b,c}. We notice that: dT(A) = {b,c} 
and d

7
•(I)(A) = {c}. Therefore dT(A) c/.. d7•(I)(A). 

Theorem 3.3. If (X, r) is submaximal, then: PO (X, r*(I)) 2 PO (X, r). 

Proof. For a submaximal space, PO(X, r) = r[32]. Then PO(X, T) = r ~ 
r*(I) ~ PO(X, r*(I)). 

Remark 3.4. Submaximality in Theorem 3.3 is necessary as shown by the 

following example . 

. Example 3.4. Let X = { a, b, c} with an indiscrete topology r. 
Then, PO(X, r) = P(X). For an ideal J = { <I>, { c} }, r*(I) = {X, ~' { a, b} }, 

and PO(X,r*(I)) = {X, ~' {a}, {b}, {a,b}, {a,c}, {b,c}}. Therefore, PO(X, 

r*(I)) 1> PO(X, r). 
One can deduce easily the following result which has obvious proof. 

Lemma 3.1. In a space (X, r), A~ X is preopen iff there exists an open 

set GE r such that CLT(A) 2 G 2 A. 

Theorem 3.4. Let (X, r) be a space with an ideal I on X and Ee E 

PO(X, r) for every E E J. Then PO(X, r) 2 PO(X, r*(I)). 

Proof. Let B E PO(X, r*(I)). Then by Lemma 3.1, there exists GE r*(J) 
su3ch that BC G ~ Cl7*(B) ~ Cl7(B), but GE T*(I) implies G = UnEc, U E 
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r, E E J, and hence. B ~ Un Ec ~ Cl,r(B). Since Ee E PO(X, r), for every 
E E I, B ~ u n EC ~ u n IntrClrEC ~ u n ClT EC ~ Clr(U n EC) ~ Clr(B). 
Therefore, Un Int

7
Cl.,-Ec is a r-open set containing Band BE PO(X, r). 

Combining the previous two theorems, we obtain the following corollary .. 

Corollary 3.3. Let (X, r, I) be a space and Ee E PO(X, r) for every EE I. 

If X is subma:z;imal, then PO(X, r) = PO((X, r*(I)). 

Theorem 3.5. If (X, r) is E. D., then SO((X, r*(I)) 2 SO (X, r). 

Proof. For an E. D. space SO (X, r) = r. Then SO(X, r) = r ~ r*(I) ~ 
SO ((X, r*(I)). 

Theorem 3.6. For a space (X,r), we have aO((X,r*(I)) 2 aO(X,r) iff 

every nowhere dense subset is closed. 

Proof. Follows from the fact that r = ret iff every nowhere dense subset is 
closed. 

Theorem 3.7. Let (X, r) be a T2 (T1, To) space, then (X, r* (I)) is T2 (T1, 

To) space. 

Proof. Obvious since T ~ r*(I) and Cl7•(U) ~ Clr(U) for any U ~ X. 

Remark 3.5. The converse of Theorem 3.7 is not true, in general as shown 

by the following example. 

Example 3.5. Let X = {a, b,c} with a topology r = {X, 4>, {a}}. Then 

for an ideal I= {</>,{b},{c},{b,c}} we have T *(I)= {X,<l>,{a},{a,b},{a,c}} 
and we observe that (X, r*(I)) is To while (X, r) is not. 

Theorem 3.8. Let (X,r) be a T;(T{,T{',TJ)-space, then (X,r*(I)) is 

THT{, T{', TJ). 

Proof. We prove the theorem for a T~-space. Let. (X, r) be TJ Then for 
every x,y EX, x f: y, there exist U, VET~ r*(I) with x EU and y EV such 
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that b
7
U n b-r V = q>_ But br *Un b-r * V ~ b-rU n b-r V = q>_ This implies that . 

(X, r*(I)) is Tr 

Theorem 3.9. If (X, r*(I)) is semi-regular, then: 
(i) (X, r) is T2(T1, To) iff (X, r*(I)) is TiT1, To), 
(ii) (X,r) is TJ(T{,T{',TJ) iff (X,r*(I)) is T;(T{,T{',TJ). 

Proof. Follows from the fact, if (X, r*(I)) is semi-regular then r = r * (I). 

Remark 3.6. The previous. theorem is vaild by replacing the condition of 

semi-regular by the condition, if every member of I is r-closed. 

Remark 3.7. In general, regularity and normality are not preserved under 

r*(I) as shown by the following examples. 

Example 3.6. Let X = {a,b,c} with a topology r = {X,<I>,{a},{b,c}}. 
Then for an ideal I= {q>,{b}}, we have r*(J) = {X,<I>,{c},{c},{a,c}{b,c}}. It 
is clear that (X, r) is regular while (X, r*(I)) is not. 

Example 3.7. Let X be as shown in Example 3.6 and r = {X, <P, {a}, 
{ a, b}}. Then for an ideal I = { q>, { b}, { c}, { b, c}} we notice r * ( I) = { X, q>, {a}, 
{a,b}{a,c}} and (X,r) is normal while (X,r*(I)) is not. 

Theorem 3.10. If (X, r, I) is submaximal and Ee E PO(X, r) for every 
E E I, then ( X, r) is strongly compact iff ( X, r* (I)) is strongly compact. 

Proof. The first implication is obvious. To prove the second implication, 

let {Ua : a E 'v} be a r*-preopen cover of (X, r*(I)), then {Ua : a E 'v} is 
a r-preopen cover ( Corollary 3.3), there exists then a finite subfamily Vo of V 

such that X = U{Ua : a E Vo}. 

Theorem 3.11. If f: (X,r"')-+ (Y,a) is open, then, f: (X,r,_I)-+ (Y,a) 
is open. 

Proof. Obvious. 
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Since the intersection of two regular open sets is regular open, the family 

of regular open sets forms a base for· a smaller topology Ts on X, called the 
semi-regularization of T. The space (X, T) is said to be semi-regular if Ts = T. 

Definition 3.1. [25] Given a space (X, T, I), I is said to be r-boundary if 
JnT={<l>}. 

Theorem 3.12. Let (X, r, I) be a space and I is r-boundary, then rs 

(r*)s = (rs)s. 
Proof. Follows from Theorem 6.4 [14] and Lemma 3 [23]. 

Theorem 3.13. If (X, T, I) is a space such that I is T-boundary and (X, T*) 

is semiregular, then T* = ( T*)s and T* = T. 
Proof. Since (X, T*) is semiregular, then r* = ( T*)5, since I is T-boundary, 

then Ts ( T*)
5 

[14]. Hence T* = ( T*)s = r5 ~ T ~ T* and by using Theorem 3.12 

we get the result. 

Theorem 3.14. If (X, T, I) is a space and In T = { ¢,}, then RO(X, T) = 
RO(X, T*). 

Proof. The result follows immediately from the fact if (X, T) is a space and 

In T ={¢,},then Ts= (T*)s. 

Corollary 3.4. If (X,T,l) is a space and X 
RC(X, r*). 

X*, then RC(X, T) 

Corollary 3.5. If (X, T, I) is a space and I is T-boundary, then (X, T) is 
nearly compact iff (X, T*) is nearly compact. 

4. On the toplogy generated by a given topology and ideal of nowhere 

dense sets 

The following Lemma is very useful in the sequel. 
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Lemma 4.1. [14] Given a topology r on X, the a-topology for T is Tex = 
r*(In), where In(r) is the ideal of nowhere dense sets. 

Theorem 4.1. If (X, r) is a space. Then: r = r*(In) if! every nowhere 
dense subset is closed. 

Proof. Obvious. 

Theorem 4.2. If (X, r,In) is a space. Then: 
(i) r*(In) is a topology on X and T = r*(In), 
(ii) ( r*(In))*(In) = r*(In), 
(iii) (X, r) and (X, r*(In)) have the same class of semi-open sets, 

(iv) Let a be any topology on X such that SO(X, a) = SO(X, r). Then 

T*(In) 2 O'. 

Proof. Follows from Lemma 4.1 and Theorem 1.2 [4]. 

Theorem 4.3. Let (X, r) be a space. Then r = r*(In) = Tex = SO(X, r) 

if one of the following holds: 
(i) (X, r) is a partition topology, 
(ii) (X, r) is a cofinite topology, 
(iii) (X, r) is the two point Sierpinski space, 
(iv) A E r or Int(A) = ¢, for every A~ X. 

Proof. 
(i) Follows from Lemma 4.1 and proposition 3 (28]. 

(ii) and (iii) Follows from Lemma 4.1 and Corollary 2 [28]. 

(iv) Obvious from Lemma 4.1 and proposition 2 (28]. 

Theorem 4.4. If (X, r) is submaximal and E. D. Then 

r = r*(In) = rex = SO(X, r) = PO(X, r) = (30(X, r). 

Proof. The result follows from Lemma 4.1 and [3]. 
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Theorem 4.5. A space (X, r) is discrete iff (X, r*(In)) is discrete. 

Proof. If (X, r) is discrete, then r*(In) 2 r. This implies that (X, r*(In)) 
is discrete. Conversely see proposition 1 [28]. 

Theorem. 4.6. If Xis finite andi > 1, Then (X,r) is Ti itf(X,r*(In)) 
is Ti. 

Proof. If X is finite, then (X, r) is Ti iff (X, r) is discrete and hence by 
Theorem 4.5 iff (X, r*(In)) is discrete and therefore iff (X, r*(In)) is Ti. 

The following example shows that Theorem 4.6 is false when i = 0. 

Example 4.1. Let X = {a,b,c} and r = {X,<P,{a}}. Then we have 
In= {~,{b},{c},{b,c}} and we notice th~t r*(In) = {X,~,{a},{a,b},{a,c}}, 
so that (X, r) is not To, while (X, r*(In)) is To. 

Theorem 4.7. (X, r) is a Hausdorff space iff (X, r*(In)) is Hausdorff. 

Pll."oof. One ·implication is immediate, since r*(In) ~ r. Conversely, follows 

from Lemma 4.1 and Theorem 2 [28]. 

Theorem 4.8. If A is a subset of (X, r, In) then: 

(i) Cl,.(A) ~ Cl,. .. (A) 2 A*(In,r), 
(ii) A E r*(In) iff there exists a regular open set G in (X, r) and a nowhere 

dense set N such that A = G - N. 

Proof. (i) Obvious from Lemma 4.1 and Proposition (1) [29]. (ii) The 
result follows from Lemma 4.1 and Proposition (4) (26]. 

Theorem 4.9. If (X, r) is P1 -paracompact. Then: 

(i) r*(In) = r*(I1) = PO(X, r), when X is Ti, 
(ii) r*(In) = r*(I) = PO(X, r) iff every member of I is closed in (X, r). 

Proof. 

(i) Follows from Lemma 4.1, see [14] and the fact that r*(I1) = r if (X, r) 
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is T1. 
(ii) Obvious from [14] and [10]. 

Theorem 4.10. If (X, r) is a Ti-space. Then: 
(i) r*(In) = T*(I1) iff every nowhere dense subset is closed, 

(ii) PO(X,T) ~ T*(ln) ~ r*(I1), 

Proof. 

(i) Obvious. 
(ii) Follows from (5] and the fact that T*(I1) = T if (X,T) is T1. 

Theorem 4.11. Let (X, T, In) be a space, then the following properties are 

satisfied, 
(i) SO(X, r) = SO(X, T*(In)), 

(ii) PO(X, T) = PO(X, T*(ln)), 

(iii) RO(X, r) = RO(X, r*(In)), 
(iv) (X, T) and (X, T*(In)) have the same class of nowhere dense sets. 

(v) (X, r) and (X, T*(In)) have the same class of dense sets. 

Proof. It is obvious by using Lemma 4.1 and Theorem 2.9 [4]. 

Corollary 4.1. Let (X, T, In) be a space, then the following properties are 

satisfied: 
(i) SC(X, T) = SC(X, T*(fn)), 

(ii) PC(X, T) = PC(X, r*(In)), and 

(iii) RC(X, T) = RC(X, T*(In)). 

Corollary 4.2. For a space (X,T) we have: 
(i) (X, T) is semi-compact iff (X, T*(In)) is semi-compact, 
(ii) (X, T) is strongly-compact iff (X, r*(In)) is strongly-compact, 
(iii) (X, T) is nearly-compact iff (X, T*(In)) is nearly-compact. 

Proof. Follows from Theorem 4.11. 
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Theorem 4.12. A space (X, r*(In)) is submaximal iff each codense set in 

(X,r) is nowhere dense in (X,r). 

Proof. Let A be a codense set in (X, r). Then A is codense in (~Y, r*(In)) 
and Since (X,r*) is submaximal, then A is closed in (X,,*(Jn)), thus A is 
nowhere dense in ( X, r*) and hence A is nowhere dense in (X, r ). 

Convcrsly, let D be a dense set in (X, r*(In)) Then D is dense in (X·, r ). 
So that X-D is codense in (X, r). By hypothesis, X-D is nowhere dense in 
(X, r) and hence is nowhere dense in (X, r*(In)). Since nowhere dense sets in 
(X, r*(In)) arc closed in (X, r*(In)). Dis open in (X, r*(In)). Then (X, r*(In)) 

is submaximal. 

Theorem 4.13. A space (X, r) is semi-invertible iff (X, r*(In)) is invert­ 

ible. 

Proof. Follows From Lemma 4.1 Theorem 3.4 [18]. 

Theorem 4.14. A topological property is semitopological iff it is shared by 

a space (X, r) and the space (X, r*(In). 

Proof. Obvious from Lemma 4.1 and see [13]. 

Theorem 4.15. If (X, r) is a semi-invertible space and contains a non­ 
empty set U E r*(In) which is Urysohn (resp. E. D.) as a subspace of (X, r), 
then (X, r) is Urysohn ( resp. E. D.) 

Proof. Follows From Lemma 4.1 and Corollary 3.6 in (18]. 

The following result is obvious from Lemma 4.1 and the definition of o:­ 

compact space. 

Theorem 4.16. A space (X, r) is a.-compact if] (X, r*(In)) is compact. 

Corollary 4.3. A subset A of a space (.,,Y, r) is a.-compact relative to (X, r) 

iff it is compact in (X, r*(In)). 
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Corollary 4.4. A function f: (X, r) - (Y,a) is a semi-homeomorphism 

iff f : (X, r*(ln)) --+ (Y, a*(In)) is a homeomorphism. 

Proof. Follows from the fact that semi-topological properties and a-topo­ 

logical properties are conincide [6]. 
Here we prove that the property of connectedness is shared by any topolog- 

ical space and its *-topology. 

Theorem 4.17. If(X,r) is a topological space, then (X,r) is disconnected 

iff (X, r*(In)) is disconnected. 

Proof. If (X,r) is disconnected, then r*(In) :::> r. This implies that 

(X, r*(ln)) is disconnected. 
Conversely follows immediately from Lemma 4.1 and Theorem 2 in (27]. 
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