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REMARKS ON THE *_TOPOLOGY

M. E. ABD EL-MONSEF, E. F. LASHIEN AND A. A. NASEF

Abstract. An ideal I on a set X is a collection of subsets of X which
is closed under the operations of subset (heredity) and finite union (ad-
ditivity). Ideals are useful in generation new spaces from the old ones.
The central theme in this paper is to give new characterizations and
properties to the *_topology in the sense of Hashimoto or I-topology in
the sense of Vaidyanathaswamy and 7*(I) in the sense of Hamlett, Rose
and Jankovié. Several connections between the *-topology and other
corresponding ones are investigated.

1. Introduction

One type of topology via ideals has been defined by three independent au-
thors. In 1945, Vaidyanathaswamy [33] called it I-topology. On the other hand
in 1976, Hashimoto [12] named it the *-topology. Recently in 1990, Hamlett,
Rose and Jankovié [14] and [11] called it (1)

The purpose of the present paper is to investigate further characterizations,
properties and some connections of the topology 7*(I) with other corresponding
ones. Also, in section 4, we study the topology 7*(I5), where I, denotes the

ideal of nowhere dense subsets.

2. Preliminaries

Throughout the present paper, spaces mean topological spaces on which no

‘separation axiom is assumed unless explicitly stated. Let A be a subset of a space
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(X,T). We denote the closure of A and the interior of A with respect to 7 by
Cl(A) and Int(A). We denote the open nbd system for a point = in a space (X, T)
by N(z),i.e,N(z)={U€er:z€ U}. P(A), the power set of A,. A subset A of
a space (X, T) is said to be regular open (resp. regular closed) if Int (CI(4)) = A
(resp. Cl(Int(A)) = A). A subset A of (X,7) is said to be a-open [26] (resp.
semi-open [16], preopen [20], S-open [1]) if Int(Ci(Int(A))) D A (resp. Ci(Int
(A)) D A, Int(Cl(4)) D 4, Ci(Int(CI(A))) D A) The complement of semi-open
(resp. preopen) is called semi-closed (resp. preclosed). The family of all regular
open (resp. regular closed, a-open, semi-open, semi closed, preopen, preclosed,
B-open ) sets of (X,7) is denoted by RO (X,) (resp. RC(X,7), aO(X,T) or
r* S0 (X,7), $C(X,7), PO (X,1), PC(X,T1), BO (X, 7)). It was observed in
[26] that 7 is a topology on X and that SO(X,7) D 7 D 7. Recall that a
subset A of (X,T), is said to be nowhere dense if Int CI(A) = @, and is called
Co-dense in X if X — A is dense or Int (4) = @.
Given a nonempty set X, an ideal I [15] is defined to be a nonempty collec-

tion of subsets of X such that:

(1) BEeTand BDA— A€l (heredity), and

(2) Aeland Bel - AU B € I (finite additivity) if, in addition, I satisfies

the following condition:

(3) {An:n=1,2,:--""" } € I — UA, € I(countable additivity)

then I is said to be g-ideal. If X ¢ I, then [ is called a proper ideal and
{(X-E:Ecl)isa filter, and hence proper ideals are sometimes called dual
filters. We will denote by (X, 7,I) a non empty set X, a topology 7 on X, and
an ideal I on X. If (X,7,I) is a space we denote by 7*(I) the topology on X
generated by the basis B(I,7) = {U-E:Uce€r,E € I}[34]. When there is
no ambiguity we will simply write 7% for 7*(I) and B for B(I ,7) tespectively.
Examples are provided in [33] and [14] showing that 8 is not, in general, a
topology. The closure operator in 7*, denoted by CI* can be described as follows:
For A C X, (CI*(A) = AU A*(I,7) where A(I,r)={zeX:UNA¢I for
every U € N(z)} is called the local function of A with respect to I and 7. We will
~write A* for A*(I,7) when no ambiguity is present. In [24], Natkaniec defines
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an operator ¥(I,7): P(X) =7 where (X,7,I) is a space as follows: for every
AC X, U(A) = {z : there exists an open nbd U of z such that U-AelI}.

If (X < ) is a space, A C X and A ¢ 7 then the class {G U (G'nA): G,
G' € 7} is a topology finer than 7 called the simple expansion of 7 by A and
denoted by 7(A) [17). If (X,7) is a space and A C X, then teh class T[A] =
{U-B:Uer, A2 B} is a topology finer than 7 called the local discrete
expansion of T by A [35]. In 1970, A. S. Mashhour [19] introduced the lower
separation axioms Tg, 77, Ty’ and T}. The definitions of these axioms are based
on the basic lower separation axioms and the boundary operator on a set. Recall
that a space (X, 7) is said to be extremally disconnected (briefly E. D.) if the
closure of every open set of X is open in X. Spaces having only the property that |
their dense subsets are open are called submaximal. A space (X,7) is said to be
nearly compact [31] (resp. strongly compact [2], semi compact [8], a-compact
" [22]) if each regular open (resp. preopen, semi-open, a-open) cover has a finite
subcover. A space (X, 7) is called Py paracompact [21] if every preopen cover of
X has a locally finite open refinement.

A bijection f: X — Y isa semi-homeomorphism if f and f —1 preserve
semi-open sets [6]. A space (X,7) is called inverible [9] (resp. semi-invertible
[7]) if for each proper open (resp. semi-open) set U in (X,7) there exists a
homeomorphism. (resp. semi homeomorphism) & : (X,7) = (X,7) such that
(X -U)CU.

3. On the *-topology

Theorem 3.1. Let (X,7,I) be a space. Then we have:
(i) () ={UcX: CrX-U)=X- U}[14].
(i) ™(I)={ACX:AC U(A)}M11].
(iii) 7*(I) = U{(G - E):Uerand E€I}.
(iv) T*(I) ={UnE*:UenEE I} where I is a proper ideal on X.

Corollary 3.1. For every A C (X,1,I), we have: |
(i) If I = {®}, then A* = Ci(A) and CI*(A) = CI(A) and hence in this
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case T*(I) = 7.

(ii) If [ = P(X), then A* = @, and hence 7*(I) is the discrete topology.

Corollary 3.2.
(i) If I and J are ideals on (X,7) such that J 2 I then, 7(J) 2 7*(I).
(i) (I) = 7, if E° C 7 and E € I where, E° denotes the complement of
E.
(iii) 7*(I) = 7 iff every member of I is T-closed [30].

Remark 3.1. Simple extension 7(A), local discrete extension 7[A] and

7*(I) are three independent concept as the following example shows.

Example 3.1. Let X = {a,b,c,d,} with a topology 7 = {X,®,{c},{a,c},
{¢,d},{a,c,d,}}, Then for an ideal I = {®,{c},{d},{c,d}} on X and a subset
A = {a,b}, we can easily deduce that:

() 7(A) = {X, @, {c}, @}, {exd}, {a, b}, {a, ¢, d}{a,b,c},

(i) r[4] = {X, ®,{c},{a,c},{c,dH{a,c, d},{b,c,d}}, and

i) () = {X,®,{a}, e} {d}, {ab}, {a,c} {a, d}, {e,d}, {a, b, {are,

d},{a,b,c}}.

Remark 3.2. Two different topolgies 71 and 72 on a set X may have the
same *-topology 7i(I) and 75(I) where I is the ideal on a nonempty set X.
(Example 3.2).

Example 3.2. Let X = {a,b,c,d} with two topologies 7, = {X,®,{a}}and
7, be an indiscrete topology. Then for an ideal I = {®,{b},{c},{d}, {b,c},{b,d},
{c,d},{b,c,d}}. We notice that 7y°(I) = {X, ®,{a},{a,b},{a,c},{a,d},{a,b,c},
{a,c,d},{a,b,d}} = 75 (I)-

Theorem 3.2. If (X,7) and (X,7*(I)) are two spaces, then for every
A C X, we have:

(i) dr(A) 2 d.-(1)(A), where d denotes the derived set of A.
(i) b7(A) 2 bs-(1)(A), where b denotes the boundary of A.
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Proof.
(i) If z € d-(A), then there exists G € T such that (G — {£})N A= &, but
GerCr*(I). Soz ¢ dr-(1)(A)-
(ii) Follows directly from the fact that: Cl.(A) 2 Cl= 1)(A), for every
ACX.

Remark 3.3. The converse of Theorem 3.2 is not true in general, as shown

by the following example.

" Example 3.3. Let X = {a,b,c} with topology 7 = {X,®,{a}}. Then for
an ideal I = {&,{a},{c},{a,c}} and A= {b,c}. We notice that: d.(A) = {b,c}
and d,-(1)(A) = {c}- Therefore d-(A) ¢ dr-(1)(4)-

Theorem 3.3. If (X,T) is submazimal, then: PO (X,7*(I)) 2 PO (X, 7).

Proof. For a submaximal space, PO(X,7) = 7[32). Then PO(X,7) =7 C
(I) € PO(X,7*(1))

Remark 3.4. Submaximality in Theorem 3.3 is necessary as shown by the

following example.

'Example 3.4. Let X = {a,b,c} with an indiscrete topology 7.

Then, PO(X,r) = P(X). For an ideal I = {®,{c}}, (1) = {X,®,{a,b}},
and PO(X,7*(I)) = {X, &, {a}, {b}, {a,b}, {a,c}, {b, c}}. Therefore, PO(X,
*(I)) D PO(X, 7).

One can deduce easily the following result which has obvious proof.

Lemma 3.1. In a space (X,7), A C X is preopen iff there exists an open
set G € T such that Cl.(A) 2 G 2 A.

Theorem 3.4. Let (X,7) be a space with an ideal T on X and E° €
PO(X,7) for every E € I. Then PO(X,7) 2 PO(X,7*(I)).

Proof. Let B € PG{X,7*(I)). Then by Lemma 3.1, there exists G € 7*(I)
sudch that B C G C Cl.+(B) C Cl,(B),but G € 7*(I) implies G = UNE®,U €
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r, E € I, and hence. BC UN EC C Cl,(B). Since E° € PO(X, ), for every
Eel, BCcUnNE®CUNItCl, EC cUNCL, E€ CCl, (U n E€) ¢ Cl(B).
Therefore, UN Int,Cl;E° is a T-open set containing B and B € PO(X, Tl

Combining the previous two theorems, we obtain the following corollary.

Corollary 3.3. Let (X, 7,I) be a space and E¢ € PO(X, 1) for every I € I.
If X is submazimal, then PO(X, ) = PO((X,7*(1))

Theorem 3.5. If (X,7) is E. D., then SO((X,m*(I)) 2 SO (X, 7).

Proof. For an E. D. space SO (X,7) = 7. Then So(X,7l=rE )
S0 (X, 7*(I))-

Theorem 3.6. For a space (X, ), we have aO((X,m*(I)) 2 eO(X, 1) iff

every nowhere dense subset 1s closed.

Proof. Follows from the fact that 7 = 7% iff every nowhere dense subset is

closed.

Theorem 3.7. Let (X,7) be a T2 (Th, To) space, then (X, T* (1)) is Ty (Th,
To) space.

Proof. Obvious since 7 C 7*(I) and Cl-(U) C Cl.(U) for any U C X.

Remark 3.5. The converse of Theorem 3.7 is not true, in general as shown

by the following example.

Example 3.5. Let X = {a,b,c} with a topology T = {X,®,{a}}. Then
for an ideal I = {¢, {b},{c},{b,c}} we have 7 * (I) = {X,®,{a},{a,b},{a,c}}
and we observe that (X, 7*(I)) is To while (X, 7) is not.

Theorem 3.8. Let (X,7) be a Ti(T!, Ty, Tg)-space, then (X,7*(I)) s
T,(T1, Ty, Tg)-

Proof. We prove the theorem for a Tj-space. Let (X,7) be Ty Then for
every z,y € X, = # y, there exist U,V € 7 C *(I) withz € U and y € V such
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that b, U Nb,V =&. But b, *xUNb, xV C b, U N _bTV = ®. This implies that
(X, (1)) is T3. |

Theorem 3.9. -If (X,7*(I)) is semi-regular, then:
() (X,7) is To(T1,To) iff (X, (1)) is TyT1,To),
(i) (X,7) is T4(T{, 7', Tg) iff (X, 7*(I)) is T5(T1, 17, To)-

Proof. Follows from the fact, if (X, 7*([)) is semi-regular then 7 = 7 % (I).

Remark 3.6. The previous theorem is vaild by replacing the condition of

semi-regular by the condition, if every member of I is T-closed.

Remark 3.7. In general, regularity and normality are not preserved under

7*(I) as shown by the following examples.

Example 3.6. Let X = {a,b,c} with a topology 7 = {X,®,{a}, {b,c}}.
Then for an ideal I = {®, {b}}, we have 7*(I) = {X, ®,{c},{c},{a,c}{b,c}}. It
is clear that (X, ) is regular while (X, 77(I)) is not.

Example 3.7. Let X be as shown in Example 3.6 and 7 = {X,®,{a},
{a,b}}. Then for an ideal I = {®,{b},{c},{b,c}} we notice 4 = {X, 8, {a};
{a,b}{a,c}} and (X, 7) is normal while (X, 7*(I)) is not.

Theorem 3.10. If (X,7,I) is submazimal and E¢ € PO(X,7) for every
E € I, then (X, 1) is strongly compact iff (X, 7*(I)) is strongly compact.

Proof. The first implication is obvious. To prove the second implication,
let {Uy : @ € V} be a 7*-preopen cover of (X,7*(I)), then {Uy : @ € V}is
a 7-preopen cover (Corollary 3.3), there exists then a finite subfamily Vo of V

such that X = U{U, : @ € Vo}.

Theorem 3.11. If f : (X,7*) — (Y, 0) is open, then, f:(X,7,I) — (Y, 0)

s open.

Proof. Obvious.
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Since the intersection of two regular open sets is regular open, the family
of regular open sets forms a base for-a smaller topology 7s on X, called the

semi-regularization of . The space (X, 7) is said to be semi-regular if 7, = 7.

Definition 3.1. [25] Given a space (X,7,1), I'is said to be T-boundary if
Iny ={®}

Theorem 3.12. Let (X,7,I) be a space and I is r-boundary, then 75 =

(7*)s = (7s)s-
Proof. Follows from Theorem 6.4 [14] and Lemma 3 [23].

Theorem 3.13. If (X, 7,I) is a space such that I is T-boundary and (X, T*)

is semiregular, then 7* = (7*)s and 7° = 7.

Proof. Since (X, 7*) is semiregular, then 7* = (7%);, since I'is 7-boundary,
then 7, (%), [14]. Hence 7* = (7*); = 7, C 7 C 7" and by using Theorem 3.12

we get the result.

Theorem 3.14. If (X,7,I) is a space and INT = {¢}, then RO(X,T) =
RO(X,T*).

Proof. The result follows immediately from the fact if (X, 7) is a space and
INnT = {¢}, then 7, = (7%);.

Corollary 3.4. If (X,7,I) is a space and X = X*, then RC(X,7) =
RC(X,T*).

Corollary 3.5. If (X,7,I) is a space and I is T-boundary, then (X,7) is

nearly compact iff (X,7*) is nearly compact.

4. On the toplogy generated by a given topology and ideal of nowhere

dense sets

The following Lemma is very useful in the sequel.



REMARKS ON THE *-TOPOLOGY 17

Lemma 4.1. [14] Given a topology T on X, the a-topology for T is el —

7*(I,), where I(7) is the ideal of nowhere dense sets.

Theorem 4.1. If (X,7) is a space. Then: 7 = 7*(I5) iff every nowhere

dense subset is closed.
Proof. Obvious.

Theorem 4.2. If (X,7,I,) is a space. Then:
(i) 7*(I,) is a topology on X and T = g 1 7Y 9
(i) ()" (In) = 7*(In),
(iii) (X,7) and (X,7*(I,)) have the same class of semi-open sets,
(iv) Let o be any topology on X such that SO(X,0) = SO(X,7). Then
™(In) 2 0

Proof. Follows from Lemma 4.1 and Theorem 1.2 [4].

Theorem 4.3. Let (X,7) be a space. Then T =1(Ip) =7% = SO(X,T)
if one of the following holds:
(i) (X,7) is a partition topology,
(ii) (X,7) is a cofinite topology,
(iii) (X, T) is the two point Sierpinski space,
(iv) A € 7 or Int(A) = ¢, for every A C X.

Proof. :

(i) Follows from Lemma 4.1 and proposition 3 [28].

(ii) and (iii) Follows from Lemma 4.1 and Corollary 2 [28].
(iv) Obvious from Lemma 4.1 and proposition 2 [28].

Theorem 4.4. If (X, 1) is submazimal and E. D. Then

F =7 () =1 =80[X;,r)= PO(X, 1) = BO(X,*).

Proof. The result follows from Lemma 4.1 and [3].
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Theorem 4.5. A space (X,7) is discrete iff (X,7%(I5)) is discrete.

Proof. If (X, ) is discrete, then 7*(I,) 2 7. This implies that (X, 7*(1,))

is discrete. Conversely see proposition 1 [28].

Theorem. 4.6. If X is finite and i > 1, Then (X, 7) is T; iff (X, 7*(In))
18 T,',
Proof. If X is finite, then (X,7) is T; iff (X,7) is discrete and hence by

Theorem 4.5 iff (X, 7*(I,,)) is discrete and therefore iff (X, *(I.)) is T.
The following example shows that Theorem 4.6 is false when 7 = 0.

Example 4.1. Let X = {a,b,c} and 7 = {X,®,{a}}. Then we have
I, = {&,{b},{c},{b,c}} and we notice that 7*(I5) = {X,®,{a},{a,b},{a,c}},
so that (X, 7) is not Tp, while (X,7*(I,)) is To.

Theorem 4.7. (X,7) is a Hausdorff space iff (X, 7*(I,,)) is Hausdorff.

Proof. One implication is immediate, since 7%(I,) 2 7. Conversely, follows
from Lemma 4.1 and Theorem 2 [28]. -

Theorem 4.8. If A is a subset of (X,7,I,) then:
(i) Ci,(A) D Cl,-(A) 2 A*(In,T),
(i) A € 7°(I,) iff there exists a regular open set G in (X, 7) and a nowhere
dense set N such that A= G — N.

Proof. (i) Obvious from Lemma 4.1 and Proposition (1) [29]. (ii) The

result follows from Lemma 4.1 and Proposition (4) [26].

Theorem 4.9. If (X, 1) is P,-paracompact. Then:

(i) 7*(I,) = *(If) = PO(X,T), when X is T;,

(i) 7*(I,) = 7*(I) = PO(X,7) iff every member of I is closed in (X, T).
Proof. .

(1) Follows from Lemma 4.1, see [14] and the fact that 7*(Iy) = 7 if (X, 7)
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is T1.
(ii) Obvious from [14] and [10].

Theorem 4.10. If (X,7) is a Ty-space. Then:

(i) (In) = 7(I5) iff every nowhere dense subset is closed,
(i) PO(X,7) 2 7(Ia) 2 7*(1s).

Proof.
(i) Obvious.
(ii) Follows from [5] and the fact that v*(Iy) = 7 if (X,7) is T1.

Theorem 4.11. Let (X, 7,I) be a space, then the following properties are
satisfied,

(i) SO(X,r) = SO(X, *{1.)),
(i) PO(X,r) = PO(X, *(1a))
(iii) RO(X,7) = RO(X, (1)),
(iv) (X,7) and (X,T*(In)) have the same class of nowhere dense sets.

(v) (X,7) and (X, r*(I,)) have the seme class of dense sets.

Proof. It is obvious by using Lemma 4.1 and Theorem 2.9 [4].

Corollary 4.1. Let (X, 7,1,) be a space, then the following properties are
satisfied:

(i) SC(X,7) = SC(X,7*(In)),
(i) PC(X,7) = PC(X,m*(I)), and
(i) RC(X,T) = RC(X,7*(In))-

Corollary 4.2. For a space (X,T) we have:

(i) (X, ) is semi-compact iff (X,7*(I5)) is semi-compact,

(ii) (X,7) is strongly-compact iff (X, 7*(I,)) is strongly-compact,
(iii) (X, 7) is nearly-compact iff (X, 7*(I)) is nearly-compact.

Proof. Follows from Theorem 4.11.
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Theorem 4.12. A space (X,7*(I,)) is submazimal iff each codense set in

(X, ) is nowhere dense in (X,T).

Proof. Let A be a codense set in (X, 7). Then A is codense in (X,7*(1n))
and Since (X,7*) is submaximal, then A is closed in (X,7*(I)), thus A is
nowhere dense in (X,7*) and hence A is nowhere dense in LX)

Conversly, let D be a dense set in (X,7%(/»)) Then D is dense in (X, 7).
So that X-D is codense in (X, 7). By hypothesis, X-D is nowhere dense in
(X,7) and hence is nowhere dense in (X,7*(I,)). Since nowhere dense sets in
(X, 7*(I,.)) are closed in (X, 7*(15)). D is open in (X, 7*(I,.)). Then (X,7*(I5))

is submaximal.

Theorem 4.13. A space (X,7) is semi-invertible iff (X, 7"(In)) is invert-
ible.

Proof. Follows From Lemma 4.1 Theorem 3.4 [18].

Theorem 4.14. A topological property is semitopological iff 1t is shared by
a space (X, 7) and the space (X, 7*(I5).

Proof. Obvious from Lemma 4.1 and see [13].

Theorem 4.15. If (X,7) is a semi-invertible space and contains a non-
empty set U € 7*(I,) which is Urysohn (resp. E. D.) as a subspace of (X, ),
then (X,7) is Urysohn (resp. E. D.)

Proof. Follows From Lemma, 4.1 and Corollary 3.6 in [18].

The following result is obvious from Lemma 4.1 and the definition of a-

compact space.
Theorem 4.16. A space (X,7) is a-compact iff (X,7*(I,)) is compact.

Corollary 4.3. A subset A of a space (X, T) is a-compact relative to (X, T)
iff it is compact in (X, 7*(In)). '
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Corollary 4.4. A function f:(X,7)—= (Y,0) isea s_emi-homeomorphism
iff f:(X,m*(In)) — (Y,0%(I,)) is a homeomorphism.

Proof. Follows from the fact that semi-topological properties and a-topo-
logical properties are conincide [6].
Here we prove that the property of connectedness is shared by any topolog-

ical space and its *_topology.

Theorem 4.17. If (X, ) is a topological space, then (X,) is disconnected
iff (X,7*(In)) is disconnected.

Proof. If (X,7) is disconnected, then 7*(I;) 2 7. This implies that
(X, r*{1s)) 18 disconnected.

Conversely follows immediately from Lemma 4.1 and Theorem 2 in [27].
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