TAMKANG JOURNAL OF MATHEMATICS Volume 24, Number 1, Spring 1993

COMMUTATIVITY OF RIGHT *S*-UNITAL RINGS UNDER SOME POLYNOMIAL CONSTRAINTS

M. ASHRAF, M. A. QUADRI AND V. W. JACOB

Abstract. In the present paper we discuss the commutativity of certain rings, namely rings with unity 1 and right s-unital rings under each of the following conditions: $(P_1)[yx^m - x^n f(y), x] = 0$, $(P_1)^*[yx^m - f(y)x^n, x] = 0$, where m, n are fixed non-negative integers and f(x) is a polynomial in $X^2\mathbb{Z}(X)$ varying with the pair of ring elements x, y. Further, the results have been extended to the case when m and n depend on the choice of x and y and the ring satisfies the Chacron's condition.

1. Introduction

Following [7], an associative ring R is said to be right (resp. left) *s*-unital, if for each element x in R, $x \in xR$ (resp. $x \in Rx$); R is called *s*-unital if $x \in xR \cap Rx$. There are enough examples (to mention a few [1, Examples 1-2] and [10, Remark 2]) which show that these classes of rings are generalizations of the class of rings with unity 1. Recently many results for rings with unity 1 particularly a number of commutativity theorems have been extended to one sided *s*-unital rings.

We remark, incidentally that as usual for any pair of ring elements x and y, [x, y] = xy - yx. In Section 2, we investigate the commutativity of rings with unity 1 under the ring properties:

Received October 15, 1991; revised December 10, 1991. 1990 AMS Subject Classification: 16U80.

- (P₁) For every x, y in R there exists $f(X) \in X^2 \mathbb{Z}[X]$, such that $[yx^m x^n f(y), x] = 0$, where m, n are fixed non-negative integers.
- $(P_1)^*$ For every x, y in R there exists $f(X) \in X^2 \mathbb{Z}[X]$ such that $[yx^m f(y)x^n, x] = 0$, where m, n are fixed non-negative integers.
- (P₂) For every x, y in R there exist non-negative integers m, n and $f(X) \in X^2 \mathbb{Z}(X)$ such that $[yx^m x^n f(y), x] = 0$.
- $(P_2)^*$ For every x, y in R there exist non-negative integers m, n and $f(X) \in X^2 \mathbb{Z}[X]$ such that $[yx^m f(y)x^n, x] = 0$.
- (CH) For every x, y in R there exist f(X), g(X) in $X^2 \mathbb{Z}[X]$ such that [x f(x), y g(y)] = 0.

The results obtained are further extended to the right *s*-unital rings in the subsequent section.

2. Commutativity of Rings with Unity 1

Consider the following types of rings:

(a)
$$\begin{pmatrix} GF(p) & GF(p) \\ 0 & GF(p) \end{pmatrix}$$
, p a prime.

(a)_r
$$\begin{pmatrix} 0 & GF(p) \\ 0 & GF(p) \end{pmatrix}$$
, p a prime.

- (b) $M_{\sigma}(K) = \left\{ \begin{pmatrix} a & b \\ 0 & \sigma(a) \end{pmatrix} / a, b \in K \right\}$, where K is a finite field with a non-trivial automorphism σ .
- (c) A non-commutative division ring.
- (d) $S = \langle 1 \rangle + T$, T is a non-commutative radical subring of S.
- (e) $S = \langle 1 \rangle + T$, T a non-commutative subring of S such that T[T,T] = [T,T]T = 0.

Very recently Streb [9] gave a classification for non-commutative rings, which provide a powerful tool in obtaining a number of commutativity theorems (cf. [4], [5], [6] and [8]). One can easily observe from the proof of [9, Corollar (1)] that if R is a non-commutative ring with unity 1, then there exists a factor subring of R which is of type (a), (b), (c), (d) or (e). Thus we have the following: Lemma 1. Let P be a ring property, which is inherited by factor subrings. If no rings of type (a), (b), (c), (d) or (e) satisfy P, then every ring with unity 1 satisfying P is commutative.

We apply the above lemma to prove the following theorems:

Theorem 1. If R is a ring with unity 1 satisfying any one of the properties (P_1) and $(P_1)^*$, then R is commutative (and conversely).

Theorem 2. Let R be a ring with unity 1 satisfying (CH). Suppose further that R satisfies any one of the properties (P_2) and $(P_2)^*$. Then R is commutative (and conversely).

In preparation for the proofs of the above theorems, we begin with the following lemma due to Herstein [2]. Perhaps it is sufficient to prove Theorem 1 for the rings satisfying the property (P_1) and Theorem 2 for the property (P_2) . The proofs for the cases $(P_1)^*$ and $(P_2)^*$ will follow on the same lines.

Lemma 2. (Herstein [2]). If for every x, y in R there exists $f(X) \in X^2 \mathbb{Z}[X]$ such that [x - f(x), y] = 0, then R is commutative.

Proof of Theorem 1. Suppose that R satisfies the property (P_1) . First, we consider the rings of type (a). Then in $M_2(GF(p))$, p a prime, we find that $[e_{12}e_{22}^m - e_{22}^n f(e_{12}), e_{22}] \neq 0$ for all integers $m \ge 0$, $n \ge 0$ and $f(\mathbf{x}) \in X^2 \mathbb{Z}[X]$.

Next, consider the ring $M_{\sigma}(K)$. Let

$$x = \begin{pmatrix} a & 0 \\ 0 & \sigma(a) \end{pmatrix}$$
 $(a \neq \sigma(a))$ and $y = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Then $[yx^m - x^n f(y), x] = -[x, y]x^m = (\sigma(a) - a) (\sigma(a))^m y \neq 0$ for all integers $m \ge 0, n \ge 0$ and $f(X) \in X^2 \mathbb{Z}[X]$.

Further, let R be a ring of type (c). If x is a unit of R, then for every y in R choose $f(X) \in X^2 \mathbb{Z}[X]$ such that $[yx^{-m} - x^{-n}f(y), x^{-1}] = 0$ i.e. $[yx^{-m} - x^{-n}f(y), x] = 0$. This implies that

$$x^{n}[x,y] = [x,f(y)]x^{m}$$
(1)

Next, choose $p(X) \in X^2 \mathbb{Z}[X]$ such that $[f(y)x^m - x^n p(f(y)), x] = 0$. Hence, we get

$$[x, f(y)]x^{m} = x^{n}[x, p(f(y))]$$
(2)

Compare (1) and (2), to get $x^n[x, y] = x^n[x, h(y)]$, where $h(X) = p(f(X)) \in X^2 \mathbb{Z}[X]$. Since, x is a unit [x, y - h(y)] = 0 and by Lemma 2, R is commutative, a contradiction.

Suppose that R has a factor subring of type (d). Let $s, t \in T$. Since 1 - s is a unit, by above paragraph there exists $f(X) \in X^2 \mathbb{Z}[X]$ such that

$$[s, t - f(t)] = -[1 - s, t - f(t)] = 0.$$

Hence, T is commutative by Lemma 2, again a contradiction.

Finally, consider $S = \langle 1 \rangle + T$, where T is a non-commutative subring of S such that T[T,T] = [T,T]T = 0. Suppose that R has a factor subring S. Now choose $s, t \in T$ such that $[s,t] \neq 0$. Then there exists $f(X) \in X^2 \mathbb{Z}[X]$ such that

$$[s,t] = [s,t](1+s)^m = (1+s)^n [s,f(t)] = 0,$$

a contradiction.

Thus we have seen that no rings of type (a), (b), (c), (d) or (e) satisfy (P_1) . Hence, by Lemma 1, R must be commutative.

Proof of Theorem 2. As above, it is easy to see that no rings of type (a) or (b) satisfy (P_2) . Combining this fact with the Corollary 1 of [4], we get the required result.

3. Commutativity of Right s-Unital Rings

Dualizing the proof of [6, Lemma 1], we can prove the following lemma.

Lemma 3. If R is right s-unital and not left s-unital, then R has a factor subring of type $(a)_r$.

If R is a right s-unital ring satisfying (P_1) , then a careful scrutiny of the first paragraph of the proof of Theorem 1 shows that no rings of type $(a)_r$ satisfy (P_1) . Hence, by Lemma 3, R is s-unital and in view of Proposition 1 of [3], we may assume that R has unity 1. Combining this fact together with Theorem 1, we get the following:

Theorem 3. If R is a right s-unital ring satisfying any one of the properties (P_1) and $(P_1)^*$, then R is commutative (and conversely).

Corollary 1. Let $m \ge 0$, $n \ge 0$ be fixed integers. If R is a right s-unital ring in which for every x, y in R there exists integer q = q(x, y) > 1 such that either $[yx^m - x^ny^q, x] = 0$ or $[yx^m - y^qx^n, x] = 0$, then R is commutative (and conversely).

Similarly, by using [4, Corollary 1], we can prove the following:

Theorem 4. Let R be a right s-unital ring satisfying (CH) Suppose further that R satisfies any one of the properties (P_2) and $(P_2)^*$. Then R is commutative (and conversely).

References

- M. Ashraf, M. A. Quadri and Asma Ali, "On commutativity of one sided s-unital rings", Rad. Mat., 6 (1990), 111-117.
- [2] I. N. Herstein, "Two remarks on the commutativity of rings", Canad. J. Math., 7 (1955), 411-412.
- [3] Y. Hirano, Y. Kobayashi and H. Tominaga, "Some polynomial identities and commutativity of s-unital rings", Math. J. Okayama Univ. 24 (1982), 7-13.
- [4] H. Komatsu and H. Tominaga, "Chacron's condition and commutativity theorems", Math. J. Okayama Univ., 31 (1989), 101-120.
- [5] H. Komatsu and H. Tominaga, "Some commutativity theorems for left s-unital rings", *Resultate Math.* 15 (1989), 335-342.
- [6] H. Komatsu, T. Nishinaka and H. Tominaga, "On commutativity of rings", Rad. Mat. 6 (1990), 303-311.
- [7] I. Mogami and M. Hongan, "Note on commutativity of rings", Math. J. Okayama Univ., 20 (1978), 21-23.
- [8] T. Nishinaka, "A commutativity theorem for rings", Rad. Mat., 6 (1990), 357-359.
- [9] W. Streb, "Zur Struktur nichtkommutativer Ringe", Math. J. Okayama Univ. 31 (1989), 135-140.

[10] H. Tominaga and A. Yaqub, "Some commutativity conditions for left s-unital rings satisfying certain polynomial identities", Resultate der Math. 6 (1983), 217-219.

Department of Mathematics, Aligarh Muslim University, Aligarh - 202002 - India.

28