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ON COMMUTATIVITY THEOREMS FOR 

P. I. - RINGS WITH UNITY 

THOMAS P. KEZLAN 

Abstract. The purpose of this paper is to show how a previous com­ 
mutativity theorem for general rings can be used to prove commutativity 
theorems for rings with unity, and to obtain several new results via this 
route, e.g., if a ring with unity s~tisfies either xk[xn, y] = [x, ym]x' or 
xk[xn, y] = [x, ym]yl (m > 1) and if either (A) m and n are relatively 
prime or (B) n[x, y] = 0 implies [x, y] = O, then R is commutative. 

There are numerous results in the literature [1, 7, 9, 10, 11, 12] concerning 

the commutativity of rings satisfying special cases of the identities 

xk[xn' y] 
xk[xn' y] 

[x, ym]xl, or 

[x, ym]ye, 

where m > 1. 
In this paper we offer a simultaneous generalization of these results for rings 

with unity. as well as several other results which further illustrate the method 

used. 

Theorem 1. Let R be a ring with unity satisfying either ( *) or ( **) where 
k and l are non-negative integers and m and n are positive integers such that 
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either 

m and n are relatively prime, or 

n[x, y] = 0 implies [x, y] = 0 in R. 

(A) 

(B) 

Then R must be commutative. 

The main tool used in this paper is the result in (6], the statement of which 

we repeat here as 

Lemma 1. ([6]) If R is a ring satisfying an identity of the form 

[x,y]+F(x,y) = 0 

where each homogeneous component of F has ( integer) coefficients totaling O and 
where F either has no linear terms in x or has none in y, then R is commutative. 

An immediate corollary of Lemma 1 is 

Lemma 2. Let R be a ring, p a prime such that p[ x, y] = 0 for all x, y in 
R, and n a positive integer not divisible by p, and suppose that R satisfies an 
identity of the form 

n[x,y]+F(x,y) = 0 

where F satisfies the same conditions as in Lemma l. Then R must be commu­ 
tative. 

Proof. If sp + tn = l, then multiply the identity by t and use p[x, y] = 0 
to obtain 

[x,y]+tF(x,y) = 0, 
whence Lemma 1 applies. 

The next two lemmas are well-known and their proofs will be omitted. 

Lemma 3. [5, p. 221) If [[x, y], y] = 0, then 
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for all positive integers n. 

Lemma 4. [8] If f : R ~ R satisfies f(x + 1) = f(x) and f(x )xi = 0 for 
all x ER, then f(x) = 0 for all x ER. 

Proof of Theorem 1. Ily the result in [3) any ring satisfying either (*) or 

(**) has nil commutator ideal C( R): Take x = ( ~ ~) and y = ( ~ ~). We 

divide the rest of the proof into two cases. 

Case I: R satisfies (*). By way of contradiction suppose there exists 
a non-commutative ring with unity satisfying (*). The next step is to pass to 
the subdirectly irreducible case, and under hypothesis (A) this reduction can be 
achieved as in [6); that is, without loss of generality we assume there is a ring R 
such that 

(1) R is non-commutative with unity, satisfies (*), and is sub directly irre­ 
ducible with heart H = C(R) and with JI2 = (0). 

Under hypothesis (B) however, we must perform a slight variation on the 
argument in [6] since this hypothesis is not preserved by homomorphism. As­ 
suming then that we have a non-commutative ring S with unity satisfying (*) 
and that (B) holds, we proceed as follows: Choose a, b, in S with n[a, b] i= 0 and 
use Zorn's Lemma to obtain an ideal M which is maximal with respect to the 
exclusion of n[a, b]. Then the ring S = S / M is not commutative, satisfies (*), 
and is sub directly irreducible with heart containing n[a, b]. Thus, although the 
ring R = Smay not inherit condition (Il), we can say that n does not annihilate 
all commutators of R. 

Summarizing, we see that if hypothesis (A) holds, then we have a ring R 
satisfying (1), whereas if (B) holds, then in addition to (1) R satisfies 

(2) n does not annihilate all commutators of R. 

For fixed y, z in R define f: R ~ R by 

f(x) = [x,(y + z)m - ym - zm] for all x ER. 
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Clearly f( x + 1) = f( x ), and also 
f(x)xl = [x,(y + z)m]xl - [x,ym]xl - [x,zm]xl 

= xk[xn, y + z] - xk[xn, y] - xk[xn, z] = 0 
whence by Lemma 4 f(x) = 0 for all x ER. 

Thus 
(3) 

Taking z = 1 in (3), we obtain the identity 

m-1 ( ) m[x,y] + ~ 7 [x,yi] = 0. (4) 

If the additive group of R is torsion-free, then we get commutativity from 
( 4) since the homogeneous components must vanish on R. Thus, again as in [6], 
the subdirect irreducibility yields a unique prime p such that R has elements of 

additive order p, from which it follows that pH = (0) (in particular p annihilates 
all commutators)'. 

If p does not divide m, then ( 4) provides an identity of the type in Lemma 
2, whence R is commutative. Hence p must divide m. Moreover, p cannot divide 

n, which is obvious if (A) holds, and is also clear if (B) holds since n does not 
annihilate all commutators whereas p does. Thus in either case (A) or (B) we 
have 

p divides m but does not divide n. (5) 

For consistency of notation in what follows, we re-write (3), interchanging 
x and y: 

(6) 

In (*) we replace x by x + 1 to obtain the identity 

(7) 
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We next show that H C Z, the center of R. If x E H and y E R, then 
recalling· that H2 = (0), we reduce (7) to 

n[x,y] = [x,ym]forxEH,yER, (8) 

while taking z = yin (6), we obtain 

[y,xym-l + yxym-2 + · · · + ym-lx] = 0, and hence 

[x, ym] = 0 for x E H, y E R. (9) 

Now (8), (9), and the fact that p does not divide n imply that [x, y] = 0 for 
x E H, y E R, that is 

H CZ. (10) 

Since all commutators are now central, we obtain from Lemma 3 

[x, ym] = m[x, y]ym-l = 0 for all x,·y in R. (11) 

using the fact that m, being divisible by p, annihilates all commutators. 
Hence (7) reduces to 

an identity of the form to which Lemma 2 applies, whence R is commutative. 

Case II: R satisfies (**). The reduction to a subdirectly irreducible ring R 
satisfying (I) in case (A) holds and both (1) and (2) in case (B) holds is valid, 
as in Case I. 

Replacing x by x + l and y by y + l successively in (**) yields the two 
identities 

n[x, y] + F(x, y) = 0, 
m[x, y] + G(x, y) = 0. 

(12) 

(13) 
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where F and G satisfy the conditions of Lemma 1. Just as in Case I we have a 

unique prime p with pH = 0, so in view of Lemma 2, p must divide both m and 
n, an impossiblity if (A) holds. On the other hand since n is divisible by p, it 
must annihilate all commutators, contradicting (2) if (B) holds. This completes 

the proof. 
We suggest that Lemmas 1 and 2 can be used to prove other commutativity 

theorems for P. I.-rings with unity, and we illustrate this by re-proving several 

recent results. Consider the 

Theorem. (Ashraf and Quadri [21). Let R be a ring with unity in which 
[xy - xnym, x] = 0 for all x, y in R and fixed integers m > l, n > l. Then R is 
commutative. 

n-1 
Proof. Replace x by x + I in the identity to obtain [x, y] = ~ (~)xi[x, ym] 

i=O 
and use Lemma 1. 

The identity in this theorem can be written x[x,y] = xn[x,ym], which is a 

special case of 

and the latter identity, assuming of course the additional hypothesis of condition 

(A) or (B), can be handled in virtually the same way as (*). Indeed the same 

applies to 

and so we have, with proof omitted, 

Theorem 2. If R is a ring with unity satisfying ( * * *) or ( * * * *) and if 
either (A) or (B) of Theorem l holds, then R is commutative. 

For a final example we re-prove the 

Theorem. (Bell, Quadri, and Khan [4]). Let R be a ring with unity satis­ 

fying an identity of the form 

[xy-p(xy),x] = 0 
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where p(X) E X2Z(X). Then R is commutative. 

Proof. Let p(X) = a2X2 + a3X3 + ... + anXn where the O:i are integers. 

Replacing x by x + 1 in 
x[x, y] = [x,p(xy)] (14) 

yields 
(x + l)[x, y] 

=[x,a2((x + l)y)2 + a3((x + l)y)3 +,,. + an((x + l)yr] 

= (x + l)[x,a2y(x + l)y + a3y(x + l)y(x + l)y + ... 
+ any(x + l)y(x + 1) (x + l)y] 

= x[x, a2yxy + a3yxyxy + + anyxyx ... xy] 

+ [x, a2y2 + a3y3 + + O:nYn] + G(x, Y ), 
where each homogeneous component of G has coefficients totaling 0, G has no 
terms linear in y, and each term of G has degree greater than 1 in x. Thus we 
have 

X [ X, y] + [ X, y] = [ X, p( X y)] + [ X, p( y)] + G ( X, y), 
and subtracting (14) from (15) yields 

(15) 

[ X' y] = [ X' p( y)] + G ( X' y)' 

whence R is commutative by Lemma 1. 

A similar use of Lemma 1 yields commutativity when R satisfies [xy - 

p(yx ), x] = 0. 
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