ON COMMUTATIVITY THEOREMS FOR

P.I. - RINGS WITH UNITY

THOMAS P. KEZLAN

Abstract

The purpose of this paper is to show how a previous commutativity theorem for general rings can be used to prove commutativity theorems for rings with unity, and to obtain several new results via this route, e.g., if a ring with unity satisfies either $x^{k}\left[x^{n}, y\right]=\left[x, y^{m}\right] x^{l}$ or $x^{k}\left[x^{n}, y\right]=\left[x, y^{m}\right] y^{\ell}(m>1)$ and if either (A) m and n are relatively prime or (B) $n[x, y]=0$ implies $[x, y]=0$, then R is commutative.

There are numerous results in the literature $[1,7,9,10,11,12]$ concerning the commutativity of rings satisfying special cases of the identities

$$
\begin{align*}
x^{k}\left[x^{n}, y\right] & =\left[x, y^{m}\right] x^{\ell}, \quad \text { or } \tag{*}\\
x^{k}\left[x^{n}, y\right] & =\left[x, y^{m}\right] y^{\ell}, \tag{**}
\end{align*}
$$

where $m>1$.
In this paper we offer a simultaneous generalization of these results for rings with unity as well as several other results which further illustrate the method used.

Theorem 1. Let R be a ring with unity satisfying either (*) or (**) where k and ℓ are non-negative integers and m and n are positive integers such that

Received October 15, 1991.
AMS (MOS) Subject Classification: 16A70, 16A38.
either

$$
\begin{align*}
& m \text { and } n \text { are relatively prime, or } \tag{A}\\
& n[x, y]=0 \text { implies }[x, y]=0 \text { in } R . \tag{B}
\end{align*}
$$

Then R must be commutative.
The main tool used in this paper is the result in [6], the statement of which we repeat here as

Lemma $\mathbb{1}$. ([6]) If R is a ring satisfying an identity of the form

$$
[x, y]+F(x, y)=0
$$

where each homogeneous component of F has (integer) coefficients totaling 0 and where F either has no linear terms in x or has none in y, then R is commutative.

An immediate corollary of Lemma 1 is
Lemma 2. Let R be a ring, p a prime such that $p[x, y]=0$ for all x, y in R, and n a positive integer not divisible by p, and suppose that R satisfies an identity of the form

$$
n[x, y]+F(x, y)=0
$$

where F satisfies the same conditions as in Lemma 1. Then R must be commutative.

Proof. If $s p+t n=1$, then multiply the identity by t and use $p[x, y]=0$ to obtain

$$
[x, y]+t F(x, y)=0
$$

whence Lemma 1 applies.
The next two lemmas are well-known and their proofs will be omitted.
Lemma 3. $[5, \mathrm{p} .221]$ If $[[x, y], y]=0$, then

$$
\left[x, y^{n}\right]=n[x, y] y^{n-1}
$$

for all positive integers n.
Lemma 4. [8] If $f: R \rightarrow R$ satisfies $f(x+1)=f(x)$ and $f(x) x^{\ell}=0$ for all $x \in R$, then $f(x)=0$ for all $x \in R$.
$\mathbb{P r o o f}$ of Theorem 1 . By the result in [3] any ring satisfying either $(*)$ or $\left({ }^{* *}\right)$ has nil commutator ideal $C(R)$: Take $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $y=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. We divide the rest of the proof into two cases.

Case $I: R$ satisfies (*). By way of contradiction suppose there exists a non-commutative ring with unity satisfying $\left(^{*}\right)$. The next step is to pass to the subdirectly irreducible case, and under hypothesis (A) this reduction can be achieved as in [6]; that is, without loss of generality we assume there is a ring R such that
(1) R is non-commutative with unity, satisfies $\left(^{*}\right)$, and is subdirectly irreducible with heart $H=C(R)$ and with $H^{2}=(0)$.

Under hypothesis (B) however, we must perform a slight variation on the argument in [6] since this hypothesis is not preserved by homomorphism. Assuming then that we have a non-commutative ring S with unity satisfying $\left(^{*}\right.$) and that (B) holds, we proceed as follows: Choose a, b, in S with $n[a, b] \neq 0$ and use Zorn's Lemma to obtain an ideal M which is maximal with respect to the exclusion of $n[a, b]$. Then the ring $\bar{S}=S / M$ is not commutative, satisfies $\left(^{*}\right)$, and is subdirectly irreducible with heart containing $n[\bar{a}, \bar{b}]$. Thus, although the ring $R=\bar{S}$ may not inherit condition (B), we can say that n does not annihilate all commutators of R.

Summarizing, we see that if hypothesis (A) holds, then we have a ring R satisfying (1), whereas if (B) holds, then in addition to (1) R satisfies
(2) n does not annihilate all commutators of R.

For fixed y, z in R define $f: R \rightarrow R$ by

$$
f(x)=\left[x,(y+z)^{m}-y^{m}-z^{m}\right] \text { for all } x \in R
$$

Clearly $f(x+1)=f(x)$, and also

$$
\begin{aligned}
f(x) x^{\ell} & =\left[x,(y+z)^{m}\right] x^{\ell}-\left[x, y^{m}\right] x^{\ell}-\left[x, z^{m}\right] x^{\ell} \\
& =x^{k}\left[x^{n}, y+z\right]-x^{k}\left[x^{n}, y\right]-x^{k}\left[x^{n}, z\right]=0
\end{aligned}
$$

whence by Lemma $4 f(x)=0$ for all $x \in R$.
Thus

$$
\begin{equation*}
\left[x,(y+z)^{m}\right]=\left[x, y^{m}\right]+\left[x, z^{m}\right] \text { for all } x, y, z \text { in } R \tag{3}
\end{equation*}
$$

Taking $z=1$ in (3), we obtain the identity

$$
\begin{equation*}
m[x, y]+\sum_{i=2}^{m-1}\binom{m}{i}\left[x, y^{i}\right]=0 \tag{4}
\end{equation*}
$$

If the additive group of R is torsion-free, then we get commutativity from (4) since the homogeneous components must vanish on R. Thus, again as in [6], the subdirect irreducibility yields a unique prime p such that R has elements of additive order p, from which it follows that $p H=(0)$ (in particular p annihilates all commutators).

If p does not divide m, then (4) provides an identity of the type in Lemma 2 , whence R is commutative. Hence p must divide m. Moreover, p cannot divide n, which is obvious if (A) holds, and is also clear if (\mathbb{B}) holds since n does not annihilate all commutators whereas p does. Thus in either case (A) or (B) we have

$$
\begin{equation*}
p \text { divides } m \text { but does not divide } n \text {. } \tag{5}
\end{equation*}
$$

For consistency of notation in what follows, we re-write (3), interchanging x and y :

$$
\begin{equation*}
\left[y,(x+z)^{m}\right]=\left[y, x^{m}\right]+\left[y, z^{m}\right] \text { for all } x, y, z \text { in } R \tag{6}
\end{equation*}
$$

In (*) we replace x by $x+1$ to obtain the identity

$$
\begin{equation*}
\sum_{i=0}^{k} \sum_{j=1}^{n}\binom{k}{i}\binom{n}{j} x^{i}\left[x^{j}, y\right]=\sum_{i=0}^{\ell}\binom{\ell}{i}\left[x, y^{m}\right] x^{i} \tag{7}
\end{equation*}
$$

We next show that $H \subseteq Z$, the center of R. If $x \in H$ and $y \in R$, then recalling that $H^{2}=(0)$, we reduce (7) to

$$
\begin{equation*}
n[x, y]=\left[x, y^{m}\right] \text { for } x \in H, y \in R, \tag{8}
\end{equation*}
$$

while taking $z=y$ in (6), we obtain

$$
\begin{gather*}
{\left[y, x y^{m-1}+y x y^{m-2}+\cdots+y^{m-1} x\right]=0, \text { and hence }} \\
{\left[x, y^{m}\right]=0 \text { for } x \in H, y \in R .} \tag{9}
\end{gather*}
$$

Now (8), (9), and the fact that p does not divide n imply that $[x, y]=0$ for $x \in H, y \in R$, that is

$$
\begin{equation*}
H \subseteq Z . \tag{10}
\end{equation*}
$$

Since all commutators are now central, we obtain from Lemma 3

$$
\begin{equation*}
\left[x, y^{m}\right]=m[x, y] y^{m-1}=0 \text { for all } x, y \text { in } R . \tag{11}
\end{equation*}
$$

using the fact that m, being divisible by p, annihilates all commutators.
Hence (7) reduces to

$$
n[x, y]+\sum_{j=2}^{n}\binom{n}{j}\left[x^{j}, y\right]+\sum_{i=1}^{k} \sum_{j=1}^{n}\binom{k}{i}\binom{n}{j} x^{i}\left[x^{j}, y\right]=0,
$$

an identity of the form to which Lemma 2 applies, whence R is commutative.
Case III: R satisfies (**). The reduction to a subdirectly irreducible ring R satisfying (1) in case (A) holds and both (1) and (2) in case (B) holds is valid, as in Case I.

Replacing x by $x+1$ and y by $y+1$ successively in (${ }^{* *}$) yields the two identities

$$
\begin{align*}
& n[x, y]+F(x, y)=0 \tag{12}\\
& m[x, y]+G(x, y)=0 . \tag{13}
\end{align*}
$$

where F and G satisfy the conditions of Lemma 1. Just as in Case I we have a unique prime p with $p H=0$, so in view of Lemma $2, p$ must divide both m and n, an impossiblity if (A) holds. On the other hand since n is divisible by p, it must annihilate all commutators, contradicting (2) if (B) holds. This completes the proof.

We suggest that Lemmas 1 and 2 can be used to prove other commutativity theorems for \mathbb{P}. I.-rings with unity, and we illustrate this by re-proving several recent results. Consider the

Theorem. (Ashraf and Quadri [2]). Let R be a ring with unity in which $\left[x y-x^{n} y^{m}, x\right]=0$ for all x, y in R and fixed integers $m>1, n \geq 1$. Then R is commutative.

Proof. Replace x by $x+1$ in the identity to obtain $[x, y]=\sum_{i=0}^{n-1}\binom{n}{i} x^{i}\left[x, y^{m}\right]$ and use Lemma 1.

The identity in this theorem can be written $x[x, y]=x^{n}\left[x, y^{m}\right]$, which is a special case of

$$
x^{k}\left[x^{n}, y\right]=x^{\ell}\left[x, y^{m}\right](m>1), \quad(* * *)
$$

and the latter identity, assuming of course the additional hypothesis of condition (A) or (B), can be handled in virtually the same way as $\left(^{*}\right)$. Indeed the same applies to

$$
x^{k}\left[x^{n}, y\right]=y^{\ell}\left[x, y^{m}\right](m>1), \quad(* * * *)
$$

and so we have, with proof omitted,
Theorem 2. If R is a ring with unity satisfying ($* * *$) or ($* * * *$) and if either (A) or (B) of Theorem 1 holds, then R is commutative.

For a final example we re-prove the
Theorem. (Bell, Quadri, and Khan [4]). Let R be a ring with unity satisfying an identity of the form

$$
[x y-p(x y), x]=0
$$

where $p(X) \in X^{2} \mathbb{Z}(X)$. Then R is commutative.
Proof. Let $p(X)=\alpha_{2} X^{2}+\alpha_{3} X^{3}+\ldots+\alpha_{n} X^{n}$ where the α_{i} are integers. Replacing x by $x+1$ in

$$
\begin{equation*}
x[x, y]=[x, p(x y)] \tag{14}
\end{equation*}
$$

yields

$$
\begin{aligned}
& (x+1)[x, y] \\
= & {\left[x, \alpha_{2}((x+1) y)^{2}+\alpha_{3}((x+1) y)^{3}+\ldots+\alpha_{n}((x+1) y)^{n}\right] } \\
= & (x+1)\left[x, \alpha_{2} y(x+1) y+\alpha_{3} y(x+1) y(x+1) y+\ldots\right. \\
& \left.+\alpha_{n} y(x+1) y(x+1) \ldots(x+1) y\right] \\
= & x\left[x, \alpha_{2} y x y+\alpha_{3} y x y x y+\ldots+\alpha_{n} y x y x \ldots x y\right] \\
& \quad+\left[x, \alpha_{2} y^{2}+\alpha_{3} y^{3}+\ldots+\alpha_{n} y^{n}\right]+G(x, y),
\end{aligned}
$$

where each homogeneous component of G has coefficients totaling $0, G$ has no terms linear in y, and each term of G has degree greater than 1 in x. Thus we have

$$
\begin{equation*}
x[x, y]+[x, y]=[x, p(x y)]+[x, p(y)]+G(x, y), \tag{15}
\end{equation*}
$$

and subtracting (14) from (15) yields

$$
[x, y]=[x, p(y)]+G(x, y)
$$

whence R is commutative by Lemma 1 .
A similar use of Lemma 1 yields commutativity when R satisfies [xy$p(y x), x]=0$.

References

[1] H. A. S. Abujabal, "A generalization of some commutativity theorems for rings I", Tamkang Journ. Math., 21 (1990), 239-245.
[2] Mohd. Ashraf and Murtaza A. Quadri, "On commutativity of associative rings", Bull. Austral. Math. Soc., 38 (1988), 267-271.
[3] Howard E. Bell, "On some commutativity theorems of Herstein", Arch. Math., 24 (1973), 34-38.
[4] H. E. Bell, M. A. Quadri, and M. A. Khan, "Radovi Matematički", 3(1987), 255-260.
[5] Nathan Jacobson, "Structure of Rings", Amer. Math. Soc. Colloquium Publ., 37, Providence, 1964.
[6] Thomas P. Kezlan, "On identities which are equivalent with commutativity", Math. Japonica, 29 (1984), 135-139.
[7] Hiroaki Komatsu, "A commutativity theorem for rings", Math. J. Okayama Univ., 26 (1984), 109-111.
[8] W. K. Nicholson and Adil Yaqub, "A commutativity theorem for rings and groups", Canad. Math. Bull., 22 (1979), 419-423.
[9] Evagelos Psomopoulos, "Commutativity theorems for rings and groups with constraints on commutators", Internat. J. Math. \& Math. Sci., 7 (1984), 513-517.
[10] Evagelos Psomopoulos, "A commutativity theorem for rings and groups with constraints on commutators", Glasnik Matematički, 20 (1985), 7-14.
[11] Evagelos Psomopoulos, "A commutativity theorem for rings with polynomial identities", Bull. Cal. Math. Soc., 77 (1985), 113-114.
[12] Murtaza A. Quadri and Moharram A. Khan, "A commutativity theorem for left s-unital rings", Bull. Inst. Math. Acad. Sinica, 15 (1987), 323-327.

University of Missouri-Kansas City, Department of Mathematics, 5100 Rockhill Road, Kansas City, Missouri 64110-2499, U. S. A.

