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ON NONLINEAR INTEGRAL EQUATIONS WITH
DEVIATING ARGUMENTS

K. BALACHANDRAN AND S. ILAMARAN

Abstract. We prove an existence theorem for a class of nonlinear inte-
gral equations with deviating arguments.

1. Introduction

Several authors have studied the nonlinear Volterra integral equation with
deviating arguments [1, 4, 6, 7, 8]. Banas [5] has proved an existence theorem
for functional integral equation. Balachandran [1] has extended this theorem
to a class of nonlinear Volterra integral equations with deviating arguments.
Balachandran and Ilamaran [2, 3] established existence theorems for nonlinear
integral equations with deviating arguments. In this paper we shall derive a
set of sufficient conditions for the existence of a solution of a class of nonlinear
integral equations with deviating arguments. The technique used in this paper

is similar to the one used by Banas [5] and Balachandran and Ilamaran [2, 3].

2. Basic Assumptions

Let p(t) be a given continuous function defined on the interval [0,00) and

taking real positive values. Denote C([0,00),p(t) : R™) by Cp, the set of all
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continuous functions from [0,00) into R™ such that

sup{|z(t)|p(t) : t > 0} < oco.

It has been proved [8] that C, forms a real Banach space with regard to the

norm
llzll = sup{le(t)lp(?) : ¢ > 0}.
If z € Cp then we will denote W7 (z,¢) the usual modulus of continuity of
z on the interval [0,T] i.e.,
WT(z,e) = sup{|z(t) — z(s)| : |t — 5| < e,t,s € [0,T]}
Our existence theorem is based on the following lemma.

Lemma. [6] Let E be a bounded set in the space C,. If all functions be-
longing to E are equicontinuous on each interval [0,T] and Tlim sup{|z(¢)|p(t) :

t > T} = 0 uniformly with respect to E, then E is relatively compact in C,.

Consider the nonlinear Volterra integral equation of the form

w(t) = H(t,z(t)) + g(t,/o K(t,s,z(h(s)))ds) (1)

where 2z, H, K and g are n-vectors.
Assume the following conditions:
(i) Let A={{t,8):0< s< t < &}
The function K : A x R™ — R™ is continuous and there exists continuous

functions m : A — [0,00), a : [0,00) — (0,00) b: [0,00) — [0,00) such that
| K (t,s,2)] < m(t,s) + a(t)b8s)|z|

for all (¢,s) € A and 2z € R™.

In order to formulate other assumptions let us define

L(t) :/0 a(s)b(s)ds, t>0.
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Take an arbitrary number M > 0 and consider the space C, with p(t) =
[a(t)eML(t)+t]“1.
(ii) there exists a constant B > 0 such that for any ¢ € [0,00) the following
inequality holds t
/ m(t, s)ds < Ba(t)eML®)
0
(iii) H : [0,00) X R™ — R™ is continuous and there exists a constant A such

that
|H(¢,2(t)| < Alz(2)]

(iv) the function g : [0,00) X R™ — R™ is continuous and satisfies the
Lipschitz condition

|g(t,z) - g(ta y)l < k‘ll‘ - yl

where & is a constant and
lg(t,0)| < Ra(t)eM*H®)

(v) h : [0,00) — [0,00) is a continuous function satisfying the condition
L(h(t)) — L(t) £ N where N is a positive constant.
(vi) a(h(t))/a(t) < (M/k)(1 = A— kB — R)e MY where A+ kB+ R< 1

3. Existence Theorem

Theorem. Assume that the hypotheses (i) to (vi) hold; then the equation
(1) has atleast one solution z in the space C, such that |z(t)| < a(t)eME® for

any t > 0.

Proof. Define a transformation F' in the space C, by

(Fz)(t) = H(t,a(t)) + o(t, / K (1, 5, 2(h(s)))ds) (2)

From our assumptions we observe that (Fz)(t) is continuous on the interval
[0,00). Define the set E in C, by

E={z€Cp:la(t)| < a(t)e™O}.
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Clearly E is nonempty, bounded, convex and closed in C,. Now we prove that

F maps the set E into itself. Take z € E. Then from our assumptions we have

\(Fz)(®)]
< |H (o) + k / K (8,5, 2(h(s)))lds + |g(2,0)|

< Alz(t)| + k /Otm(t,.s)ds + ka(t)/ot b(s)|z(h(s))lds + |g(t,0)|
< Aa(t)eM™® 4 kBa(t)eMH )

+ ka(t) /0 t b(s)a(h(s))eMEMt) ds 1 Ra(t)eML(E)
< (A+ kB + R)a(t)eM)

t
+M(1—-A—-kB - R)a(?) / a(s)b(s)eML(s)e_MNeM[L(h(s))"L(S)]ds
0

t
< (A+EB + R)a(t)e™® 4 (1 A - kB - R)a(t) / Ma(s)b(s)eMH) ds
0
< (A+ kB + R)a(t)eME®) 4 (1 — A— kB — R)a(t)eME®
— a(t)eML(t)
which proves that FE C E.

Now we want to prove that F is continuous on the set E. For this let us fix
¢ > 0 and take z,y € E such that ||z — y|| < €. Further take an arbitrary fixed
T > 0. In view of (i) and (iv) the functions K(t,s,z) and H(t,z) are uniformly

continuous on
[0,7] % [0,T] x [-r(h(¢)), 7(A(T))]" and [0,T] X [~r(T"),r(T)]"

respectively, where r(T) = maz{a(s)eML(*) : s € [0,#]}. Thus, we have for
te[0,7]

(F2)(t) - (Fy)(®)] < (t,2(8)) - H (2 (1))
#k [ 5,2(h(5)) = Kty u(b(s))lds
<Bi(e) + fale) (3)
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where (; are continuous functions such that lir% Bi(¢) = 0. Further, let us take
E—>

t > T. Then we have

[(Fz)(t) = (Fy)@)] < [(Fz)@)]+ |(Fy)(@)|
< 2a(t)eML(t)

[(F2)(t) - (Fy)®)lp(t) < 2e7°

Hence for sufficiently large T' we have

|(Fz)(t) — (Fy)(@)lp(t) < € (4)

By (3) and (4) we get F is continuous on the set E. Hence F is continuous on

E.

Now we prove that F'E is relatively compact. For every z € E we have Fz €
E which gives |(Fz)(t)|p(t) < e~t. Hence Tlim sup{|(Fz)(t)|p(t) : t > T} =0

uniformly with respect to z € F.

Furthermore, let us fix ¢ > 0, T > 0; t,s € [0,T] such that |t — s| < . Then

for z € F, we have

(F2)(2) — (Fz)(s)|
< (¢, 2(t) — H(s, z(s))]

+ |g(t,v/0’ K(t,u,z(h(u)))du) — g(t,/os K(s,u,z(h(u)))du)|
+ |g(t, /(: K(s,u,z(h(u)))du) — g(s, /03 K(s,u,z(h(u)))du)|

< WH(H, &)+ kl/o K(t,u,z(h(u)))du — /Os K(s,u,z(h(u)))dy]
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T
+ W7 (g,¢)

< WT(H,e¢) + k| /(; K(t,u,z(h(u)))du — /03 K(t,u,z(h(u)))du|
+ k| /08 K(t,u,z(h(u)))du — /03 K(s,u,z(h(u)))du| + WT(g,¢)
< WT(H,¢) + k/t | K (¢, u, z(h(u)))|du

+k [ Kt wr 2(h(w))) — K (s, u, 2(h(w)))|du + W (g, ¢)
% WT(I;,E) + k € max{m(t,u) + a(t)b(w)[p(h(u))] ' : 0 < u <t < T}
+ kTWT(K,e) + W (g,¢)
which tends to zero as ¢ — 0. Thus F'E is equicontinuous on [0, T].
Therefore from the lemma F'E is relatively compact. Thus the Schauder

fixed point theorem guarantees that F' has a fixed point z € F such that
(Fz)(t) = z(t). Hence the theorem.
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