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TOTALLY UMBILICAL CR-SUBMANIFOLDS OF A 

KAEHLER MANIFOLD 

S. M. KHURSHEED HAIDER, V. A. KHAN ANDS. I. HUSAIN 

Abstract. In the present paper we study totally umbilical CR-submani 
folds of a Kaehler manifold. A classification theorem for a D..L-totally 
umbilical CR-submanifold is proved. The conditions under which a CR 
submanifold becomes a CR-product are obtained, and finally a theorem 
for a CR-submanifold to be a proper CR-product is also established. 

1. Introduction 

The notion of a Cauchy-Riemann (CR)-submanifold of a Kaehler manifold 
was introduced by A. Bejancu [1,2]. Subsequently a number of authors stud 
ied these, and in particular the totally umbilical CR-submanifold of a Kaehler 

manifold ([3], [5], [6], [8]). 
B. Y. Chen [8] classified the totally umbilical CR-submanifold of a Kaehler 

manifold and showed that they are either totally geodesic, or totally real, or dim 
(Dl.) = 1. Analogous to this we studied Dl.-totally umbilical CR-submanifolds 

of a Kaehler manifold in §3 and obtained a classification theorem for such sub 
manifolds in a Kaehler setting. In §4 we have investigated the situation under 

which the CR-submanifolds become a CR-product. Moreover, in the context of 
Chen's theorem that a complex space form M(c) with c < 0 does not admit a 

proper CR-product, it was interesting to establish the existance of a proper CR 
product in a complex space form M(c) when c > 0. Finally we have investigated 
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the situation under which the CR-submanifold becomes a proper CR-product in 
general. 

2. Preliminaries 

In this section we shall give a brief summary of basic formulas and definitions 
which are frequently used in the sequel. Let M be a Kaehler manifold with 
almost complex structure J and M be a submanifold of M. If there exists on 
M a holomorphic distribution ·D such that its orthogonal complement D1- is 
totally real in M (i.e., J Dx = Dx and JD; ~ Tj- M, x E M), then M is called 
a CR-submanifold of M [1]. If D = {O}, (resp. D1- = {O} ), then Mis said to be 
totally real (resp. holomorphic) submanifold. It follows that the normal bundle 

rt splits as r1- = JD EB u, where u is the orthogonal complement of J D1- and 
is invarient subbundle of rt under J. Let V be the Riemannian connection on 
M, then the Gauss and Weingarten formulas are given respectively by 

Vx Y + h(X, Y), 

-ANX+v}N 

(2.1) 

(2.2) 

for each vector fields X, Y tangent to M and N normal to M, where V is the 
Riemannian connection of M, h and A are both the second fundamental forms 
related by 

g(ANX, Y) = g(h(X, Y), N), (2.3) 

and V1_ the connection in the normal bundle T(t) of M. 

A CR-submanifold M is said to be totally umbilical if 

h(X, Y) = g(X, Y)H, (2.4) 

where JI = ~ (trace of h), caJled the mean curvature vector. M is said to 
be D1--totally umbilical (resp. D-totally umbilical) if h(Z, W) = g(Z, W)Rv.i. 
(resp. h(X, Y) = g(X, Y)Hn) holds for every Z, Win D1_ (.X, Y belongs to D) 
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[9]. Mis called (DJ. - u) totally geodesic if ANZ= 0 for each Nin u and Zin 
DJ.. For the vector field N normal to M, we put 

JN=BN+CN, (2.5) 

where BN and CN are the tangential and normal components of JN. 

3. DJ.-Totally Umbilical CR-Submanifold 

In the present section we shall prove a classification theorem for a DJ.-totally 
umbilical CR-submanifold of a Kaehler manifold. In fact we prove the following: 

Theorem 3.1. Let M be a Dl.-totally umbilical CR-submanifold of a 
Kaehler manifold M. Then 
(1) M is Dl.-totally geodesic, or 
( 2) M is totally real, or 
(3) M is proper, and not ( DJ. - u) totally geodesic, or 
( 4) the totally real distribution is one-dimensional, i.e., dim D1- = 1. 

Proof. We take Z, W in DJ. and using DJ.-totally umbilicalness of M 
together (2.1) and (2.2) with the fact the Mis Kaehler, we have 

Taking inner product with Z in DJ. it follows that 

g(Hn.i.,JW)IIZll2 = g(Z, W)g(lln.i.,JZ). (3.1) 

Interchanging Zand Win (3.1) we obtain 

g(Hn.i.,JZ)IIWll2 = g(Z,W)g(Hn.i.,JW). (3.2) 

:From (3.1) and (3.2), one can immediately get 

(3.3) 
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The possible solutions of (3.3) are: 

(a) }!DJ. = 0, or (b) HDJ.1-JW, or (c) z11w. 
Suppose condition (a) holds, i.e., JIDJ. = 0 which implies that Mis Dl.-totally 
geodesic. This proves part ( 1) of the theorem. Next, suppose that II DJ. -:/ 0 
which implies Dl. 'I O (where D may or may not be zero) swhowing that Mis 
either totally rea1 or proper. Further since IlDJ. belongs to u, there exist a N 
in u such that g(h(Z, Z), N) f O which implies that ANZ f:- 0 showing that it 
is not ( Dl. ~ u) totally geodesic. This proves ( 2) and ( 3). Finally if ( c) satisfies 
(3.3), then dim Dl. = 1, which completes the proof of the classification theorem. 

From the above theorem, the following is obvious: 

Corollary 3.1. Let M be Dl.-totally umbilical generic CR-submanifold of 
a Kaehler manifold. Then one of the following holds 

(1) M is Dl.-totally geodesic 

(2) dim Dl. = 1. 

4. CR-Product Submanifolds 

In this section we study CR-submanifolds of a Kaehler manifold, and the 
conditions under which these submanifolds become CR-product. We recall that 
a CR-submanifold M of a Kaehler manifold M is called CR-product if it is 
locally Riemannian product of a holomorphic submanifold MT and a totally 
real submanifold M .L of M. 

B. Y. Chen [6] proved that a CR-submanifold Min a Kaehler manifold M 
is a CR-product if and only if AJDJ. D = 0. Now since for totally umbillical 
CR-submanifold M of a kaehler manifold with dim(Dl.) ~ 2, H lies in u [10], as 
a result M turns out to be a CR-product. Consequently for D-totally umbilical 
CR-submanifold with dim(Dl.) ~ 2, D is parallel. In addition to this if Jyf is 
mixed totally geodesic, the underlying manifold becomes.a CR-product. In view 
of this it is easy to infer: 
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Lemma 4.1. Let M be a D-totally umbilical CR-submanifold of a Kaehler 
manifold M. Then M is a CR-product if and only if the leaf of D1- is totally 
geodesic in M. 

In terms of second fundamental form, the idea of CR-product can be put 

as: 

Proposition 4.1. Let M be a CR-submanifold of a Kaehler manifold M. 
Then M is a CR-product if and only if any one of the following holds. 

(1) h(U,X) Eu. 
(2) h(U,JX) = Jh(U,X). 
for each X in D and U tangent to M. 

Proof. The first part follows from the characterization of CR-product given 

by D. Y. Chen [6], that Mis a CR-product if and only if AJn.1. D = 0. For the 
second part, put 

h(U,JX) = VuJX - VuJX, or 

h(U,JX) = JVu X + Jh(U,X)-VuJX ( 4.1) 

Form ( 4 .1) it follows that 

h(U, JX) - Jh(U,X) = J Vu X - Vu JX. ( 4.2) 

If M is a CR-product, then the left hand side of ( 4.2) belongs to u, by part ( 1) 
whereas the right hand side belongs to D. Thus both sides are zero which proves 
that h(U,JX) = Jh(U,X) and the converse is obvious. 

Furthermore, for the CR-product su bmanifold to be proper we have the 
following result. 

Theorem 4.2. Let M be a D-totally geodisic, but not totally geodesic, CR 
submanifold of a Kaehler manifold M. If the leaf of D1_ is totally· geodesic in 

M, then M is a proper CR-product. If in addition, M is a complex space farm 
of constant curvature c, then c > 0. 
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Proof. It is obvious to see that the leaves of D and D1- are totally geodesic 
in M, and hence M is a CR-product. Moreover, using (2.5) and the fact that 

llh(X, Z)ll2 > 0 for each O f= X in D and Of= Zin D1_ we have 

g(h(X, Z), J B(X, Z)) + g(h(X, Z), JCh(X, Z)) < 0. ( 4.3) 

Since Mis a CR-product, therefore first term of ( 4.3) vanish and we arc left with 

g(AJch(X,z)X, Z) < 0 ( 4.4) 

From ( 4.4) follows that AuX as well as AuZ are non zero for each O f= X in D 
and Of= Zin DJ.. 

On the contrary, suppose Mis not pr9per. Then either D = 0 or DJ. = 0. 

Case 1. Suppose DJ. = 0 but D f= 0. Then ANX does not belong to DJ. 
for each X in D and N in r1, which contradicts the fact that M is D-totally 
geodesic. Similarly, 

Case 2. Suppose D = 0 but DJ. f= 0. Then ANZ does not belong to D 
for each Z in DJ. and N in r1, which again contradicts the fact that M is 
DJ.-totally geodesic. Hence neither D nor DJ. can be zero, which completes the 
proof of the theorem. 
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