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GENERALIZED CLASS OF UNIVALENT FUNCTIONS
WITH TWO FIXED POINTS

B. A. URALEGADDI AND C. SOMANATHA

s
Abstract. Univalent functions of the form f(z) = a1z — E anz®,
n=2

where a, > 0, are dealt with. We examine the subclasses for which
(1 = N)f(20)/20 + Af'(20) =1 (-1 < 20 < 1). The coefficient inequali-
ties and the extreme points of the classes that are starlike and convex of
order « are determined. Many of the results of Silverman are obtained
as particular cases.

1. Introduction

In [1], Silverman examined the class of functions of the form

f(Z)=2-)laals"
n=2

that are univalent in the unit disk A = {z : |z| < 1}. In [2], silverman studied

the class of univalent functions of the form
(o o]
f(z) =a12 - Zanzn, a, >0
n=2

where either

o) =265 (=1 <2< 15 26 #£0)

or
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fll)=1 (-1<z <1).
In this paper we consider functions of the form
(o 0]
f(z) = a1z — Eanz"
n=2
where
an >0, (1-X)f(20)/z0 + Af'(20) =1 (-1<z<1;0<2<1). (1)
A function f(z) is said to be starlike of order a, 0 < a < 1, if

Re{zf'(2)/f(2)} > a (l2l < 1)

and is said to be convex of order « if

Re{l +2f"(2)/f'(2)} > « (l2] < 1).

Given a and 2 fixed let S3(a,20) and K(a, 2) be the subclasses of func-
tions starlike of order @ and convex of order a respectively satisfying (1). For
these classes we obtain coefficient estimates, comparable results and extreme
points. _

The special cases of S3(a,20) and Kx(a,z) are the subclasses S3(a,2),
S1(e,20), Ko(a,29) and Ki1(a,z0) respectively. Several results on these sub-
classes may be found in [2].

We need the following results due to Silverman [2].
(o]

Theorem A. A function f(z) = a12— Y anz™ (an > 0) is starlike of order
n=2

a if and only if 3 (n - a)a, < a1(1 - a).
n=2

Theorem B. A function f(z) = a;z — Y. anz™ (a, > 0) is convez of order

n=2

[e.0)
a if and only if 3 n(n - a)a, < a;(1 - a).
 n=2
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9. Coefficient Inequalities
Theorem 1. Suppose an, > 0 for every n. Then f(z) = a1z — %2 ap,z™ is
n=
in S3(a,20) if and only if 2022 an[g’;—:—g)l —((@=-N+n0)" L1
Proof. Since
(1= X)f(20)/20 + Af'(20)

(o o] o o)
= (1-A)(a1 - Eanz;;-l) 4 Mex = Znanzg-l)
n=2

n=2

=01 - Y a[(1-A)+nAg ™" =1,
=2

we have

ag = 14 ian[(l —A) + Azt (2)

n=2

Substituting this value of a; in the statement of Theorem A we get

;““[?f = 23 — (1= +aN)z 7] < L.

Corollary 1. If f(z) = a1z — § anz" is in S3(a, zo) then
n=2
a, < (1-0a)/[(n—a) - (1=-a)((1=A)+n))z "] (n=23,...)

with equality for

(n—0a)z—(1-a)z"
(n—a)=(1=a)((1=A)+nrA)zg~ 1

f(z) =

Theorem 2. Let f(z) = a1z — Y, anz™ (an > 0) and satisfy (1). Then
n=2

[0 0]
f(2) is univalent if and only if Yoapn—-((1-A)+ n/\)z(’,"'l] o 1.
n=2
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Proof. Since a; = 1+ 3 a,[(1 — A) + nA]zf ™", it suffices to show that
n=2

o o]
f(2) is univalent if and only if > na, < a;.
n=2

Suppose Z na, > a;. We can write Z na, = a1 +¢, (¢ > 0). Then there

n=2 n=2
exists an integer N such that

. €
Znan > a1+ —2-
n=72

For z in the interval (a; /(a1 + %))(Nl—l) < z < 1, we have

N
f'(2) <a1 — Znanz"’l
n=2

N
<aj — g1 E na,

n=2

<ai — ZN_I(G,I -+ ‘;') < 0.

Since f'(0) > 0, there exists a real number 25, 0 < 29 < 1, such that Flz0) = 1.
Hence f is not univalent o
Conversely, let E an[n — (1 = A) + nA)z8~1] < 1. Then by Theorem 1,

f € 5% (0,2). Hence f is univalent.

o0
Theorem 3. Suppose a, > 0 for every n. Then f(z) = a1z — 3 a,z" is

n=2

in Kx(a,z2) if and only if E an["(ln a‘; - (1= 42z 1< 1.

Proof. Substituting the value of a; given by (2), in the statement of The-

orem B the result follows.

(o o]
Corollary 2. If f(z) = a12— 3 anz™ is in Kx(a, 29) then

n=2

By < (1' —a)/[n(n—a) = (1—a)((1=A)+ )zl (=0 .)
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with equality for

n(n—a)z—(1-a)z"
n(n—a)—(1-0a)((1=X)+nA)z0?

f(z) =

3. Comparable Results

Theorem 4. If f(z) € Kx(a,z) then f(z) € S3(2/(3 — a), 2).

Proof is similar to that of Theorem 3 in [2]. The result is sharp, with

extremal function

B 2(2 - a)z — (1 - a)z?
f(z) = 22— a)— (1 —a)((1 - A) + 22z

Theorem 5. If f(z) € S3(a,2) then f(z) is convez in the disk

gl cr = o)y = inf

[ n—aoa
n

n—1
m] =2, 9.5

The result is sharp for the extremal function

(n—a)z—(1-a)z"

fa(z) =

=3 e T, B
oo - (-a(l-N+mymt ™ )
Proof. It suffices to show that
f"(2)
z <1 for |z| < r(a).
oL 2] < r(a)
We have -
f”(z) Z n(n e 1)anlzln—l
|z | < 2=
f'(2) ay — Y nay|z|n-1
Thus ;
E e )| <1 if

f'(2)
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oo [e.o]
Z n(n —1)an|z|" ™! < a1 — Z na,|z|*
n=2 n=2

=1+ Z an((1 = A) + nA)gf~! - Z:na,n|z|"_1
n=2 n=2

that is if

Z galnt 2™t — (I =X+ sX) M £ 1. (3)
n=2

From Theorem 1, we have

ZZ N R (CEPVRR Ve as PR

Hence (3) will be true if

22" = (1= X) +aX)zl " < El ; - (A=A +nA)zg~ (4)

solving (4) for |z| we get

n—ao

|z] < [m]n—l n=2,3,i04;

the result follows.

Remark. The conclusions in Theorem 4 and 5 are independent of A and

the fixed point 2.

4. Extreme Points

Theorem 6. The extreme points of S(a,zp) are given by fi(z) = z and

S (n—a)z—-(1-a)z" .
R e e g TR

Proof. It suffices to show that f(z) € Sx(a,2) if and only if it can be
expressed in the form f(z) = z Anfn(2) where Ay, > 0 and z An = L.

n=1
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Suppose f(z) = 3 Anfn(z), where A, > 0and 3 A, = 1. Then
n=1 n=1

f(z) = MAE)+ D Anfa(?)

= An(n — @)
= |& z
1+Z(n—-a)—(l—a)((l-/\)+n/\)z" 1

o0

B An(l — @)z
Z (n—a)—(1-a)((1=A)+n))zg

=2

Note that

=M+ ) An=1
n=2
Also we see that
An(l—a) [(n—a)—(l—a)((l——)\)—l—n/\)z{f"
(n—a)—(1-a)((1=A)+nr)zy~ 1 -«

[(1 = A)f(20)/20] + Af'(20)
= [(1 = MAfi(20)/20]+ (1 = A) D Anfal20)/20

n=2

+Aifi(20) + A ) Anfal20).
=2

. 5 e e oF

-5

Therefore from Theorem 1, f(z) € S3(«, 20).

Set

A ={l(n=a) = (1-a)((1=XN)+2N)z" /(1 - )}an (n=2,3,..

and

Conversely, if f(z) € S3(a, zp), then

an <(1-a)/[(n—a)—(1-a)(L=A)+nN)zp™'] (n=2,3,..

).

)

]
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n=2

Then f(2) = Y. Anfa(2).
n=1
Similarly, the coefficients bounds on K, (e, zp) enable us to prove

Theorem 7. The extreme points of Kx(a, z) are given by fi(2) = z and

) = n(n —a)z — (1 - a)z" .
f(2) a(n —a) - (1-a)((1 =) +nX)z5™! ( 23,2)-

5. Convex Families

Suppose B is nonempty subset of the real interval (0,1), we define 53(a, B)
by

Si(eB) = | Si(ez).
z4€EB

If B consists of a single element say zp then S3(a,2p) is a convex family. Because
if fi(2) and fo(z) are in Sx(a,2p), then it can be seen that for 0 < § < 1,
f(2) =6f1(2)+(1—8)f2(z) is in S3(a, 20). Next we examine this class for other
subsets of B. We need the following.

Lemma. If f(2) € Si(a, 20)NS5(a,21), where zy and z, are distinct positive

numbers then f(z) = z.

(o}
Proof. Taking f(2) = a1z — ) a,2z" (an > 0), we have
n=2

[oe)
a =14 Z ax[(1 = A) + nA]2p 1

n=2

=1+ ian[(l - A) + nA)2f T

n=2

That is
an[(1 =)+l — 7] = 0.

Hence a, = 0 for n > 2, and the result follows.
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Theorem 8. If B is contained in the interval (0,1) and 0 < a < 1, then

Si(a, B) is a convex family if and only if B is connected.

Proof Let B be connected. Suppose 2, 23 E B with zg < z. If f(2) =
a1z — Z anz" is in Si(e,20) and ¢(2) = b1z - E bnz™ is in S3(a,z1) then
for 0 < 6 < 1, we shall prove that there exists a 22(20 < z3 £ z1) such that
h(z) = 6f(z) + (1 — 8)g(2) is in S3(a,22). Set

t(z) = [(1-Ah(2)/2] + AR'(2)
= 6{a1 — Y anz" (1= A) + nA)}

=2

+ (1= 8){b1— ) _ baz" (1 - A) + nA)}
n=2
t(z) =146 ian{(l = A4 a2y — 1) (5)
n=2

+(1=8) ) ba{(1=XN)+nA}(zp™ - 2"7)

and we observe that #(z) is real when z is real with #(z) > 1 and #(z;) < 1.
Hence for some z3, 290 < 2z < 21, we have t(z;) = 1. Since 21, 23 and § are

arbitrary, the family S3(a, B) is convex.

Conversely, suppose B is not connected. Then we can take zp, z; € B,
zy € B such that zp < 22 < 2. Let us assume f(z) and g(z) are not both

identity function. Then using (5) and fixing z = 23 and allow § to vary,
t(6) = t(z2,90)

:1+5Zan[(1_,\)+n,\](z(’,‘ -z
=2

+(1=8) ) bal(1=A) +nA(z7 ™ = 2277).

Since t(z2,0) > 1 and #(22,1) < 1, there must exists a dp, 0 < do < 1, for
which t(z2,80) = 1. Hence h(z) € S3(a,22) for § = 8. Since zp ¢ B from the
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above lemma it follows that k(z) ¢ S3(a, B). Therefore 5%(a, B) is not a convex

family.
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