TAMKANG JOURNAL OF MATHEMATICS Volume 24, Number 1, Spring 1993

GENERALIZED CLASS OF UNIVALENT FUNCTIONS WITH TWO FIXED POINTS

B. A. URALEGADDI AND C. SOMANATHA

Abstract. Univalent functions of the form $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$, where $a_n \ge 0$, are dealt with. We examine the subclasses for which $(1-\lambda)f(z_0)/z_0 + \lambda f'(z_0) = 1$ (-1 < z_0 < 1). The coefficient inequalities and the extreme points of the classes that are starlike and convex of order α are determined. Many of the results of Silverman are obtained as particular cases.

1. Introduction

In [1], Silverman examined the class of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$$

that are univalent in the unit disk $\Delta = \{z : |z| < 1\}$. In [2], silverman studied the class of univalent functions of the form

$$f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n, \quad a_n \ge 0$$

where either

$$f(z_0) = z_0, \quad (-1 < z_0 < 1; \ z_0 \neq 0)$$

or

Received Decemeber 16, 1991.

1980 Mathematics subject classifications (1985 revision). Primary 30C45.

Key words and phrases: Univalent functions, starlike, convex, extreme points.

$$f'(z_0) = 1 \quad (-1 < z_0 < 1).$$

In this paper we consider functions of the form

$$f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$$

where

$$a_n \ge 0, \ (1-\lambda)f(z_0)/z_0 + \lambda f'(z_0) = 1 \quad (-1 < z_0 < 1; \ 0 \le \lambda \le 1).$$
 (1)

A function f(z) is said to be starlike of order α , $0 \le \alpha < 1$, if

$$\operatorname{Re}\{zf'(z)/f(z)\} > \alpha \quad (|z| < 1)$$

and is said to be convex of order α if

$$\operatorname{Re}\{1 + zf''(z)/f'(z)\} > \alpha \quad (|z| < 1).$$

Given α and z_0 fixed let $S_{\lambda}^*(\alpha, z_0)$ and $K_{\lambda}(\alpha, z_0)$ be the subclasses of functions starlike of order α and convex of order α respectively satisfying (1). For these classes we obtain coefficient estimates, comparable results and extreme points.

The special cases of $S_{\lambda}^{*}(\alpha, z_{0})$ and $K_{\lambda}(\alpha, z_{0})$ are the subclasses $S_{0}^{*}(\alpha, z_{0})$, $S_{1}^{*}(\alpha, z_{0})$, $K_{0}(\alpha, z_{0})$ and $K_{1}(\alpha, z_{0})$ respectively. Several results on these subclasses may be found in [2].

We need the following results due to Silverman [2].

Theorem A. A function $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n \ (a_n \ge 0)$ is starlike of order α if and only if $\sum_{n=2}^{\infty} (n-\alpha)a_n \le a_1(1-\alpha)$.

Theorem B. A function $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$ $(a_n \ge 0)$ is convex of order α if and only if $\sum_{n=2}^{\infty} n(n-\alpha)a_n \le a_1(1-\alpha)$.

2. Coefficient Inequalities

Theorem 1. Suppose $a_n \ge 0$ for every n. Then $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$ is in $S_{\lambda}^*(\alpha, z_0)$ if and only if $\sum_{n=2}^{\infty} a_n [\frac{(n-\alpha)}{(1-\alpha)} - ((1-\lambda) + n\lambda)z_0^{n-1}] \le 1$.

Proof. Since

$$(1 - \lambda)f(z_0)/z_0 + \lambda f'(z_0)$$

= $(1 - \lambda)(a_1 - \sum_{n=2}^{\infty} a_n z_0^{n-1}) + \lambda(a_1 - \sum_{n=2}^{\infty} n a_n z_0^{n-1})$
= $a_1 - \sum_{n=2}^{\infty} a_n [(1 - \lambda) + n\lambda] z_0^{n-1} = 1,$

we have

$$a_1 = 1 + \sum_{n=2}^{\infty} a_n [(1-\lambda) + n\lambda] z_0^{n-1}.$$
 (2)

Substituting this value of a_1 in the statement of Theorem A we get

$$\sum_{n=2}^{\infty} a_n \left[\frac{(n-\alpha)}{(1-\alpha)} - ((1-\lambda) + n\lambda) z_0^{n-1} \right] \le 1.$$

Corollary 1. If $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$ is in $S_{\lambda}^*(\alpha, z_0)$ then

$$a_n \le (1-\alpha)/[(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}] \quad (n = 2, 3, ...)$$

with equality for

$$f(z) = \frac{(n-\alpha)z - (1-\alpha)z^n}{(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}}.$$

Theorem 2. Let $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$ $(a_n \ge 0)$ and satisfy (1). Then f(z) is univalent if and only if $\sum_{n=2}^{\infty} a_n [n - ((1 - \lambda) + n\lambda)z_0^{n-1}] \le 1$.

Proof. Since $a_1 = 1 + \sum_{n=2}^{\infty} a_n [(1 - \lambda) + n\lambda] z_0^{n-1}$, it suffices to show that f(z) is univalent if and only if $\sum_{n=2}^{\infty} na_n \leq a_1$.

Suppose $\sum_{n=2}^{\infty} na_n > a_1$. We can write $\sum_{n=2}^{\infty} na_n = a_1 + \varepsilon$, $(\varepsilon > 0)$. Then there exists an integer N such that

$$\sum_{n=2}^{N} na_n > a_1 + \frac{\varepsilon}{2}.$$

For z in the interval $(a_1/(a_1 + \frac{\varepsilon}{2}))^{\frac{1}{(N-1)}} < z < 1$, we have

$$f'(z) \le a_1 - \sum_{n=2}^N n a_n z^{n-1} \\ \le a_1 - z^{N-1} \sum_{n=2}^N n a_n \\ < a_1 - z^{N-1} (a_1 + \frac{\varepsilon}{2}) < 0$$

Since f'(0) > 0, there exists a real number z_0 , $0 < z_0 < 1$, such that $f'(z_0) = 0$. Hence f is not univalent.

Conversely, let $\sum_{n=2}^{\infty} a_n [n - ((1 - \lambda) + n\lambda)z_0^{n-1}] \le 1$. Then by Theorem 1, $f \in S_{\lambda}^* (0, z_0)$. Hence f is univalent.

Theorem 3. Suppose $a_n \ge 0$ for every n. Then $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$ is in $K_{\lambda}(\alpha, z_0)$ if and only if $\sum_{n=2}^{\infty} a_n [\frac{n(n-\alpha)}{(1-\alpha)} - ((1-\lambda) + n\lambda)z_0^{n-1}] \le 1$.

Proof. Substituting the value of a_1 given by (2), in the statement of Theorem B the result follows.

Corollary 2. If
$$f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$$
 is in $K_{\lambda}(\alpha, z_0)$ then
$$a_n \leq (1-\alpha)/[n(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}] \qquad (n = 2, 3, \ldots)$$

60

with equality for

$$f(z) = \frac{n(n-\alpha)z - (1-\alpha)z^n}{n(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}}$$

3. Comparable Results

Theorem 4. If $f(z) \in K_{\lambda}(\alpha, z_0)$ then $f(z) \in S_{\lambda}^*(2/(3 - \alpha), z_0)$.

Proof is similar to that of Theorem 3 in [2]. The result is sharp, with extremal function

$$f(z) = \frac{2(2-\alpha)z - (1-\alpha)z^2}{2(2-\alpha) - (1-\alpha)((1-\lambda) + 2\lambda)z_0}$$

Theorem 5. If $f(z) \in S^*_{\lambda}(\alpha, z_0)$ then f(z) is convex in the disk

$$|z| < r = r(\alpha) = \inf_{n} \left[\frac{n-\alpha}{n^2(1-\alpha)} \right]^{\frac{1}{n-1}} \quad n = 2, 3, \dots$$

The result is sharp for the extremal function

$$f_n(z) = \frac{(n-\alpha)z - (1-\alpha)z^n}{(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}} \quad (n = 2, 3, \ldots).$$

Proof. It suffices to show that

$$\left|z\frac{f''(z)}{f'(z)}\right| \le 1$$
 for $|z| < r(\alpha)$.

We have

$$|z\frac{f''(z)}{f'(z)}| \leq \frac{\sum_{n=2}^{\infty} n(n-1)a_n |z|^{n-1}}{a_1 - \sum_{n=2}^{\infty} na_n |z|^{n-1}}$$

Thus

$$|z\frac{f''(z)}{f'(z)}| \le 1$$
 if

$$\sum_{n=2}^{\infty} n(n-1)a_n |z|^{n-1} \le a_1 - \sum_{n=2}^{\infty} na_n |z|^{n-1}$$
$$= 1 + \sum_{n=2}^{\infty} a_n ((1-\lambda) + n\lambda) z_0^{n-1} - \sum_{n=2}^{\infty} na_n |z|^{n-1}$$

that is if

$$\sum_{n=2}^{\infty} a_n [n^2 |z|^{n-1} - ((1-\lambda) + n\lambda) z_0^{n-1}] \le 1.$$
(3)

From Theorem 1, we have

$$\sum_{n=2}^{\infty} a_n \left[\frac{(n-\alpha)}{(1-\alpha)} - ((1-\lambda) + n\lambda) z_0^{n-1} \right] \le 1.$$

Hence (3) will be true if

$$n^{2}|z|^{n-1} - ((1-\lambda) + n\lambda)z_{0}^{n-1} \le \frac{(n-\alpha)}{(1-\alpha)} - ((1-\lambda) + n\lambda)z_{0}^{n-1}$$
(4)

solving (4) for |z| we get

$$|z| \leq \left[\frac{n-\alpha}{n^2(1-\alpha)}\right]^{\frac{1}{n-1}} \quad n = 2, 3, \dots,$$

the result follows.

Remark. The conclusions in Theorem 4 and 5 are independent of λ and the fixed point z_0 .

4. Extreme Points

Theorem 6. The extreme points of $S_{\lambda}^*(\alpha, z_0)$ are given by $f_1(z) = z$ and $f_n(z) = \frac{(n-\alpha)z - (1-\alpha)z^n}{(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}}$ (n = 2, 3, ...).

Proof. It suffices to show that $f(z) \in S^*_{\lambda}(\alpha, z_0)$ if and only if it can be expressed in the form $f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z)$ where $\lambda_n \ge 0$ and $\sum_{n=1}^{\infty} \lambda_n = 1$.

Suppose
$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z)$$
, where $\lambda_n \ge 0$ and $\sum_{n=1}^{\infty} \lambda_n = 1$. Then

$$f(z) = \lambda_1 f_1(z) + \sum_{n=2}^{\infty} \lambda_n f_n(z)$$

= $\left[\lambda_1 + \sum_{n=2}^{\infty} \frac{\lambda_n (n-\alpha)}{(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}}\right] z$
 $- \sum_{n=2}^{\infty} \frac{\lambda_n (1-\alpha)z^n}{(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}}.$

Note that

$$[(1 - \lambda)f(z_0)/z_0] + \lambda f'(z_0)$$

= $[(1 - \lambda)\lambda_1 f_1(z_0)/z_0] + (1 - \lambda)\sum_{n=2}^{\infty} \lambda_n f_n(z_0)/z_0$
+ $\lambda \lambda_1 f'_1(z_0) + \lambda \sum_{n=2}^{\infty} \lambda_n f'_n(z_0).$
= $\lambda_1 + \sum_{n=2}^{\infty} \lambda_n = 1.$

Also we see that

$$\sum_{n=2}^{\infty} \frac{\lambda_n (1-\alpha)}{(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}} \left[\frac{(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}}{1-\alpha} \right]$$
$$= \sum_{n=2}^{\infty} \lambda_n = 1 - \lambda_1 \le 1.$$

Therefore from Theorem 1, $f(z) \in S^*_{\lambda}(\alpha, z_0)$.

Conversely, if $f(z) \in S^*_{\lambda}(\alpha, z_0)$, then

$$a_n \le (1-\alpha)/[(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}] \quad (n = 2, 3, ...).$$

Set

$$\lambda_n = \{ [(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}]/(1-\alpha) \} a_n \quad (n = 2, 3, \ldots)$$

and

$$\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n.$$

Then $f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z)$.

Similarly, the coefficients bounds on $K_{\lambda}(\alpha, z_0)$ enable us to prove

Theorem 7. The extreme points of
$$K_{\lambda}(\alpha, z_0)$$
 are given by $f_1(z) = z$ and $f_n(z) = \frac{n(n-\alpha)z - (1-\alpha)z^n}{n(n-\alpha) - (1-\alpha)((1-\lambda) + n\lambda)z_0^{n-1}}$ $(n = 2, 3, ...).$

5. Convex Families

Suppose B is nonempty subset of the real interval (0,1), we define $S^*_{\lambda}(\alpha, B)$ by

$$S_{\lambda}^{*}(\alpha, B) = \bigcup_{z_{\gamma} \in B} S_{\lambda}^{*}(\alpha, z_{\gamma}).$$

If B consists of a single element say z_0 then $S^*_{\lambda}(\alpha, z_0)$ is a convex family. Because if $f_1(z)$ and $f_2(z)$ are in $S^*_{\lambda}(\alpha, z_0)$, then it can be seen that for $0 \leq \delta \leq 1$, $f(z) = \delta f_1(z) + (1-\delta)f_2(z)$ is in $S^*_{\lambda}(\alpha, z_0)$. Next we examine this class for other subsets of B. We need the following.

Lemma. If $f(z) \in S^*_{\lambda}(\alpha, z_0) \cap S^*_{\lambda}(\alpha, z_1)$, where z_0 and z_1 are distinct positive numbers then f(z) = z.

Proof. Taking
$$f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$$
 $(a_n \ge 0)$, we have
 $a_1 = 1 + \sum_{n=2}^{\infty} a_n [(1 - \lambda) + n\lambda] z_0^{n-1}$
 $= 1 + \sum_{n=2}^{\infty} a_n [(1 - \lambda) + n\lambda] z_1^{n-1}$

That is

$$a_n[(1-\lambda)+n\lambda][z_1^{n-1}-z_0^{n-1}] = 0.$$

Hence $a_n \equiv 0$ for $n \geq 2$, and the result follows.

64

Theorem 8. If B is contained in the interval (0,1) and $0 \le \alpha < 1$, then $S^*_{\lambda}(\alpha, B)$ is a convex family if and only if B is connected.

Proof. Let B be connected. Suppose $z_0, z_1 \in B$ with $z_0 \leq z_1$. If $f(z) = a_1 z - \sum_{n=2}^{\infty} a_n z^n$ is in $S_{\lambda}^*(\alpha, z_0)$ and $g(z) = b_1 z - \sum_{n=2}^{\infty} b_n z^n$ is in $S_{\lambda}^*(\alpha, z_1)$ then for $0 \leq \delta \leq 1$, we shall prove that there exists a $z_2(z_0 \leq z_2 \leq z_1)$ such that $h(z) = \delta f(z) + (1 - \delta)g(z)$ is in $S_{\lambda}^*(\alpha, z_2)$. Set

$$t(z) = [(1 - \lambda)h(z)/z] + \lambda h'(z)$$

= $\delta \{a_1 - \sum_{n=2}^{\infty} a_n z^{n-1}((1 - \lambda) + n\lambda)\}$
+ $(1 - \delta)\{b_1 - \sum_{n=2}^{\infty} b_n z^{n-1}((1 - \lambda) + n\lambda)\}$
 $t(z) = 1 + \delta \sum_{n=2}^{\infty} a_n\{(1 - \lambda) + n\lambda\}(z_0^{n-1} - z^{n-1})$ (5)
+ $(1 - \delta) \sum_{n=2}^{\infty} b_n\{(1 - \lambda) + n\lambda\}(z_1^{n-1} - z^{n-1})$

and we observe that t(z) is real when z is real with $t(z_0) \ge 1$ and $t(z_1) \le 1$. Hence for some $z_2, z_0 \le z_2 \le z_1$, we have $t(z_2) = 1$. Since z_1, z_2 and δ are arbitrary, the family $S^*_{\lambda}(\alpha, B)$ is convex.

Conversely, suppose B is not connected. Then we can take $z_0, z_1 \in B$, $z_2 \notin B$ such that $z_0 < z_2 < z_1$. Let us assume f(z) and g(z) are not both identity function. Then using (5) and fixing $z = z_2$ and allow δ to vary,

$$t(\delta) = t(z_2, \delta)$$

= $1 + \delta \sum_{n=2}^{\infty} a_n [(1 - \lambda) + n\lambda] (z_0^{n-1} - z_2^{n-1})$
+ $(1 - \delta) \sum_{n=2}^{\infty} b_n [(1 - \lambda) + n\lambda] (z_1^{n-1} - z_2^{n-1}).$

Since $t(z_2,0) > 1$ and $t(z_2,1) < 1$, there must exists a δ_0 , $0 < \delta_0 < 1$, for which $t(z_2,\delta_0) = 1$. Hence $h(z) \in S^*_{\lambda}(\alpha, z_2)$ for $\delta = \delta_0$. Since $z_2 \notin B$ from the

above lemma it follows that $h(z) \notin S^*_{\lambda}(\alpha, B)$. Therefore $S^*_{\lambda}(\alpha, B)$ is not a convex family.

References

- H. Silverman, "Univalent functions with negative coefficients", Proc. Amer. Math. Soc. 51 (1975), 109-116.
- [2] H. Silverman, "Extreme points of univalent functions with two fixed points", Trans. Amer. Math. Soc. 219 (1976), 387-395.

Department of Mathematics, Karnatak University, Dharwad-580003, India.