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ON THE SCHWARZIAN COEFFICIENTS OF THE 

KOEBE TRANSFORM OF A UNIVALENT FUNCTION 

STEPHEN M. ZEMYAN 

Abstract. For f E S, we compute the Schwarzia.n coefficients of the 
Koebe Transform /4>Q of f in terms of successive derivatives of the 
Schwar- zian derivative, then provide some estimates on certain com­ 
binations of them. 

Let S denote the class of functions J(z) = z + a2z2 + ... which are analytic 
and univalent in the unit disk U = {z: lzl < 1}. 

The Schwarzian derivative of a function f ( z) in S is defined by the relation 

- ( J" ( z) ) I ! ( !" ( z) ) 2 
{f,z} - f'(z) - 2 f'(z) (1) 

and the Schwarzian coefficients of the function f ( z) are the Taylor coefficients 
in the series expansion 

00 

{J,z} = LSnZn 
n=O 

(2) 

In a previous paper, the author [14] determined sharp estimates on the co­ 
efficients s0, s1 and s2, as well as a general estimate on Sn, and general estimates 

on certain linear combinations of Schwarzian coefficients. In this paper, we de­ 

termine explicit formulas for the Schwarzian coefficients of the Koebe Transform 

of a function f E S in terms of the successive derivatives of the Schwarzian 
derivative, and then provide growth estimates on certain combinations of them. 
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Let w(z) be an analytic, univalent function in U with lw(z)I < 1. If f E S, 
then 

f ( ) = f( w(z)) - f( w(O)) 
w z fl( w(O))w'(O) 

also belongs to S. The Schwarzian derivatives of f and f w, and hence their 
coefficients, are related by the composition law [4, p.376) 

{fw,z} = {f,w(z)}(w'(z))2 + {w,z}. (3) 

If we now choose 

w(z) = </>0(z) = z - a 
1 - az 

00 

-a + (1 - lal2) L am-1 zm' ( a E U) 
m=l 

(4) 

then fw = /tJ,o,. E Sis known as the ICoebe Transform off, and the composition 
law becomes 

{!¢a,z} = {f,</>a(z)}(</>~(z))2• 

Let us investigate the Schwarzian coefficients off 4>
0
• If we write, for n ~ 0, 

then 

00 

(<t>a(z)r = I: c~>(a)zm, 
m=O 

00 

{l,<l>a(z)} = I:sn(f)(<l>a(z)r 
n=O 
00 - L Cm(f; a)zm 

m=O 

00 

Co(f; a) = L sn(f)c~n\a) 
n=O 

00 

Cm(f;a) = Lsn(f)c~>(a). (m > 1) 
n=l 

( ef,~( z ))2 = (1 - lal2 )' f ( m: 3) amzm' 

(5) 

where 

and 

(6) 

Since 
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a comparison of coefficients in the composition law shows that the Schwarzian. 
coefficients of the Koebe Transform are given by 

· 22~(n+3-m) Sn(f<J>0) = (1 - lal ) ~ J O'.n-mCm(f; O'. ). (7) 

In order to estimate these coefficients and linear combinations of them, we must 

first determine the sums Cm(!; a)( m = 0, 1, 2, ... ). 

Lemma. Let f E S and let {J, z}(r)(r = 1, 2,3, ... ) denote the rth deriva­ 
tive of {J,z}. Then, 

Co(!; a) {J, -a} 

and, form> 1, 

Cm(!; o) = t, :, (; .::- D (1- 1012r c,m-r {f, -o}(r). (8) 

Proof. We must first determine the coefficients c~\ a) defined by (5). It 
is clear from (4) that c~0\a) = 1, given by c~\a) = 0 (m = 1,2~ ... ), and 

00 

that c~n)(a) = (-at(n = 1,2,3, ... ). Clearly, Co(f;a) = I: sn(f)(-at = 
n=O 

{f, -a}. For all n, m > 1, a tedious induction on n, using the relation given by 
m 

c~+1\a) = I: c~n)(a) · c~~/a), shows that 
j=O 

c!;:>< o) = t, (; .::- D G) (1 - 1012r "'m-r(-oin-r, (9) 

where it is understood that (;) = 0, if r > n. Substituting (9) into (6) and 

carefully interchanging sums establishes (8) for all m > 1. 
In [14], the author established the sharp inequalities !sol :S 6, ls1 I :S 16 and 

ls21 < 30(1 + 2e-3413). As of a consequence of these estimates and the above 

lemma, we may obtain sharp bounds on the quantities 

So (J <l>c) = (1 - lal2 )2 {j, -a} 
s1(f<1>

0
) = (1- lal2)2[4a{f,-a} + (1- lal2){f,-o}(l)] 

and 
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s2(f<1>a) = (1- lol2)2[10ci{f, -o} + 5o(l - lol2){f, -o}(l) 

+ ~(l - Jol2 )2 {J, -a }(2)] 
for any o E U. Also, an application of the triangle inequality now shows that 

I{! }P>I < 16 + 24lzl_ 
'z - (l - lzl2 )3' 

which is sharp if z = 0, and has the correct order of growth for lzJ near 1. This 
inequality may be used in turn to provide an estimate for I {f, z }(2) I. 

We are now ready to state our general result. Here, ( a )r represents the 
Appell symbol defined by (a)o = 1 and (a)r = a(a + l) ... (a+ r - l) for r ~ l. 

Theorem. Let f E S and let f <t>a denote the Koe be Transform off. Then, 

the Schwarzian coefficients off <t>a are given by 

Sn(/¢.) = {1 - lal2)2 ( n; 3) t ( ~!n~t)r {1 - lal2)' C<n-r {f, -c,}(r) {10) 
r=O 

for all n 2 0, where {J, -a }(r) ( r = 0, 1, 2, ... ) denotes the rth derivative of 
{f, z} evaluated at z = -a. Consequently, for every N > 0, we have 

N 
~ 1 ( . -)( I 12 r{ }(r) (N + 1)3 ~ (4)r(l)r P N,r,a 1- o ) J,-a ~ (1 - joj2)2 (11) 

where 

P( N, r; a) = 2 F1 ( - N + r, r + 4; - N + r - l; a). 
is a hypergeometric polynomial of degree (N - r) in the variable a. 

Proof. Substituting (8) into (7), and then interchanging sums, we obtain 

sn(f<t>a) (n + 3)-n 
(1 - lol2)2 = 3 o {J, -n} 

+ t. [,t (n+~-m) (;:J] :,(1-lal')'a"-r{t,--a}(r) 
(n+ 3) 3 an{J, -n} 

+ t (n + 3) (-lY(-n)r (l _ lol2r 0n-r{J, -o}<r> 
r=l 3 (4)r(l)r 



THE KOEBE TRANSFORM OF A UNIVALENT FUNCTION 71 

which establishes (10). (The inner sum was evaluated by using Vandermonde's 
formula, after a shift of index.) Hence, after interchanging sums, we get 

where 

P(N, r; a) 

N-r ( ) n+r+3 n ; (N + 1 - n - r) 3 (-n - r)ra 

Since 
Pn+t 
Pn 

(-N + r + n)(r + 4 + n) 
(-N + r - 1 + n)(l + n)' 

it is clear that 

Pn = (-N + r)n(r + 4)n 
(-N + r - l)n 

1 
n! 

so that P(N, r; a) is a hypcrgeometric polynomial of degree (N - r) in a, as we 
have claimed. The conclusion (11) now follows directly from the inequality 

N 
E (N + l - n)sn I ~ (N + l)(N + 2)(N + 3) 
n=O 

which was established in [14, Theorem 3). 
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