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CHARACTERIZATION OF SEMINORMABILITY 

OF A TOPOLOGICAL ALGEBRA 

PAMMY MANCHANDA 

Abstract. Let A be an algebra over a field F and let N be a norm on F. 
A seminorm (norm) on A associated with N is defined. It is proved that 
if (A, :1) is a proper topological algebra over a proper topological field 
(F, T), then Tis defined by a norm N and :T is defined by a seminorm 
JI · II associated with N ( a norm II · II associated with N if .J is Hausdorff) 
if and only if the following three conditions are satisfied. 

(i) (F, T) has a nonempty open bounded set. 
(ii) (F, T) has a nonzero topological nilpotent element. 
(iii) (A, :T) has a nonempty open bounded set. 

1. Introduction 

A. Kolmogorov [1] was the first to give necessary and sufficient conditions 
for a topological vector space ( over real or complex numbers) to have its topology 
defined by a norm. Later G. Kothe [2] extended the result of Kolmogorov and 
gave necessary and sufficient conditions for a topological vector space ( over real 
or complex numbers) to have its topology defined by a p-norm, 0 < p < I. By a 
p-norm, 0 < p < I we mean a real valued function II· II defined on a vector space 
V( over real or complex numbers) satisfying the following properties: 

i) llxll > 0 for all x E V and llxll = 0 if and only if x = 0. 
ii) llx + YII < llxJI + IIYII for all x, Y E V 
iii) IIAxll = IAIPllxll for all x E V and scalar A. 

Received January 6, 1991; revised April 13, 1992. 

73 



74 PAMMY MANCHANDA 

Here and subsequently(} will denote the zero vector. In [4) S. Singh defined 
a seminorm on a vector space V associated with a norm N defined on the scalar 
field F of V. He gave necessary and sufficient conditions for a proper topological 
vector space V over a proper topological field F to have the topology on F defined 
by a norm N and the topology on V defined by a seminorm II· II associated with 
N. In this note we define seminorm (norm) on an algebra A associated with 
a norm N defined on the scalar field F of A and find necessary and sufficient 
conditions for a proper topological algebra A over a proper topological field F 
to have the topology on F induced by a norm N and topology on A induced by 
a seminorm (norm) associated with N. It is shown that if (A, .J) is a topological 
algebra over a topological field ( F, T) such that the topology .J on A is defined 
by a semi norm ( treating A as a vector space over F) associated with a norm N 
defining T, then the topology .J on A is define by a semi norm ( treating A as an 
algebra over F) associated with a norm N' defining T. Moreover, an example of 
a topological algebra (A, .J) over a topological field (F, T) is given, where T is 
defined by a norm N but .J is not defined by any seminorm associated with N 
or any other norm N' on F defining the topology T. For the proof of the main 
theorem we use the techniques of Seth Warner [3). 

2. Normed Fields and Algebras 

In this section we give basic definitions and elementary properties of norms 
on fields and algebras. 

Definition 1. Let F be a field. By a norm on F we mean a real valued 
function N defined on F such that 

1) N (a) > 0 for all a E F and N (a) = 0 if and only if a = 0 
2) N(afj) ~ N(a) N(fj) for all a,{3 E F. 

3) N(a - {3) ~ N(a) + N(f3) for all a,{3 E F. 

A norm N is said to be nontrivial if there exists a nonzero a E F satisfying 
0 < N (a) < 1, otherwise it is said to be a trivial norm, A norm N is non 
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archimedean if it satisfies the ultrametric inequality 

3') N(a - /3) < max{N(a),N(/3)} for all a,/3 E F. 
A norm N is said to be an absolute value if it satisfies the equality 

2') N(a/3) = N(a)N(/3) for all a,/3 E F. 

Remark 1. Every norm Non a field F gives rise to a topology defined by 
the metric d(a,/3) = N(a - /3) for all a,/3 E F. Clearly the topology defined by 
a trivial norm is discrete. 

Remark 2. If Fis a finite field and N is a norm on F, then N is a trivial 
norm. Because for each a E F, a f:. 0 there exists a positive integer n such that 
an = 1. Therefore 

and hence N( a) 2: 1. 

In light of Remarks 1 and 2 the study of trivial norms on fields is not of 
much importance. Therefore from now onwards, by a norm on a field F we 
always mean a hon trivial norm on F. This will ensure that if N is a norm on 
F there always exists a nonzero element a in F satisfying O < N( a) < 1. 

Definition 2. Let A be an algebra over a filed F and let N be a norm on 

F. A seminorm on A associated with N is a real valued function II· II defined on 
A with the following properties: 
1. llxll 2: 0 for all x E A, IIBII = 0 and there exists at least one x E A for which 

llxll f:. 0. 
2. Ila.xii ::; N(a) llxll for all a E F, x EA. 

3. !Ix - YII < llxll + IIYII for all x, y E A. 
4. llxyll ::; llxll IIYII for all x, Y E A. 

A seminorm II · II associated with N is called a norm if 

llxll = 0, x EA if and only if x = B. 
A scminorm (norm) II· II associated with N is called non archimedean if it satisfies 
the ultrametric inequality 



76 PAMMY MANCHANDA 

3') llx - YII < Max{llxll, IIYII} for all x, Y EA. 

Remark 3. Let F be a field with a norm N defined on it. Let A be an 
algebra over F and II· II be a seminorm on A associated with norm N, then one 
can check that for all x, y E A 
i) II - xii = llxll; 
ii) llx + YII < IJxll + IIYII- 

In fact, (i) and (ii) together are equivalent to condition 2 in Definition 2. 

Remark 4. Let A be an algebra over a field F. If II · II is a seminorm on A 
associated with an absolute value N on F then for every a-:/ 0 in F and x E A 

llxll = lla-1axll ::; N(a-1 )llaxll 

::; N( a-1 )N( a )llxll 

= N(I )llxll 
= llxll 

and hence llxll = N(a-1 )llaxll. Therefore llaxll = N(a)llxll· The equality 

llaxjj = N(a)llxll 

also holds for a = 0 and every x E A. Therefore we have 

llaxll = N(a)llxll for all a E F, x EA. 

This shows that our definition of seminorm (norm) on an algebra associated 
with a norm on a scalar field coincides with the classical definition of seminorm 
(norm) defined over an absolute valued scalar field. 

Remark 5. Let F be a field with a norm N defined on it. Let A be an 
algebra over F and II · II be a seminorm on A associated with N. Then there 
exists a unique topology .:Jon A defined by the pseudometric d'(x,y) = llx - YII 
for all x, y E A. This topology .:J is non discrete as justified below. There exists 
a nonzero element x in A for which llxll j 0. Also there exists a nonzero a E F 
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for which O < N(a) < 1. Now for a given£> 0, there exists a positive integer n 
such that 

Therefore 

and hence every £ neighbourhood of(} contains a nonzero element anx of A for 
some positive integer n. This shows that the topology .J is non discrete. 

Example 1. Every field F with a norm N defined on it can be regarded 
as a normed algebra over itself or its subfield with norm II · II associated with N 
defined by llxll = N(x) for all x E F. 

Example 2. Let F be any field with a non archimedean norm defined on it. 
The set F[[X]] consisting of all power series in X with coefficients from F forms 
an algebra over F with respect to the usual operations. It is straightforward to 
verify that the subcollection A of all those power series f(X) = I: anXn such 

n~O 
that lim N( an) = 0 forms a subalgebra. The function II · II defined on A by 

n 

11/(X)II = sup N(an) 
n 

is a non archimedean norm on A associated with N. Clearly the collection F[X] 
of polynomials is a subalgebra of A and hence the restriction of above norm on 
F[XJ is also a norm on F[X] associated with N. 

Definition 3. Let F be a field. A pair ( F, T) is said to be a topological 
field if T is a topology on F and the mappings (a, {3) ----+ a ± {3, (a, {3) ----+ a{3 
and a ----+ a-1 ( a -:J 0) are continuous. If T is neither discrete nor antidiscrete 
we say that T is a proper field topology on F and ( F, 1') is a proper topological· 
field. 

Definition 4. Let (F, T) be a topological field and A be an algebra over F. 
A pair (A, .J) is said to be a topological algebra over a topological field ( F, T) 
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if .J is a topology on A and the mappings (x,y)----+ x ± y, (x,y)---+ xy and 
(a,x)----+ ax for all x,y EA, a E Fare continuous. If J is neither discrete nor 
antidiscrete we say that J is a proper algebra topology on A and (A, .:J) is a 
proper topological algebra. 

Remark 6. Let F be a field with a norm N defined on it. Let A be an 
algebra over F and II · II be a seminorm (norm) on A associated with N. If T 
and .J are the topologies defined by N and II · II on F and A respectiviely, then 
it is well known that ( F, T) is a proper Hausdorff topological field and one can 
check as routine matter that (A, J) is a proper (Hausdorff) topological algebra 
over the topolgical field ( F, T) . 

Definition 5. Let (A, J) be a topological algebra over a topological field 
(F, T). A subset B of F is said to be bounded if given any neighbourhood U 
of O in F there exists a neighbourhood V of O in F such that VB ~ U. Here 

VB = { a/3 : a E V, /3 E B}. 

A subset X of A is said to be bounded if given any neighbourhood Y of 
B in A there exists a neighbourhood U of O in F such that U X ~ Y. Here 

U X = { ax : a E U, x E X}. For the proof of the main theorem we need the 

following lemmas. 

Lemma 1. i) Let ( F, T) be a proper topological filed. Then the field F 
cannot be bounded unless the topology T defined on F is discrete or antidiscrete. 

ii) Let (A,J) be a topological algebra over a proper topological field (F,T). 
Then the algebra A cannot be bounded unless the topology J defined on A is 
antidiscrete. 

Proof. i) Let F be bounded. Suppose T is not discrete. Therefore every 
· neighbourhood of zero must contain a nonzero element of F. Let U be a given 
neighbourhood of zero. Since Fis bounded, there exists a neighbourhood V of 0 
in F such that VF~ U. Because V contains a nonzero element say a, we have 

1 = aa-1 EV F ~ U. 
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This shows that 1 belongs to every neighbourhood of zero. In particular I belongs . 
to the above neighbourhood V of zero and hence F s;;;; U. Therefore F = U and 
Fis the only neighbourhood of zero and hence Tis antidiscrete. 

The proof for ii) similar. 

Lemma 2. Let (A, ..J) be a topological algebra over a topological field (F, T). 

(i) If A and B are bounded subsets of F then A+ B, -A and a A for every 
a E F are also bounded. In particular a + A for every a E F is also bounded. 

(ii) If X and Y are bounded subsets of A then X + Y and aX for every 
a E F are also bounded. In particular x + X for every x E A is also bounded. 

Proof. Straightforward. 

Lemma 3. Let N be a norm on a field F and II · II be a seminorm on an 
algebra A over F associated with N. 

i) A subset A s;;;; F is bounded if and only if there existr, a real number r > 0 
such that N( a) ::; r for all a E A. 

ii) A subset X s;;;; A is bounded if and only if there exists a real number s > 0 
such that llxll < s for all x E X. 

Proof. Straightforward. 

Lemma 4. Let G be an additive abelian group and v be a real function on 
G taking values as either zero or integral powers of d, for some d, 1 < d < 2, and 
v(g + h) < dMax{v(g),v(h)} for all g,h E G. Then given any decomposition of 
g in G as g = .<J1 + 92 + · · · + 9n, there exists a second decomposition of g in G as 

so that 

v(h1) + · · · + v(hm) < v(g1) + · · · + v(gn) 

and v(g) < dv(hm). 
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Proof. First we prove that there is a decomposition of g in G as g 

h1 + h2 + · · · + hm which satisfies the following 

v(hi) + v(h2) + · · · + v(hm) < v(g1) + · · · + v(gn) (1) 

and v(hi +hi)> v(hi) + v(h1) for all 1 ~ i, j < m, j f-. j (2) 

If the given decomposition g = g1 + · · · + 9n does not satisfy (2) then there exist 
9i and g;, 1 < i, j < n, if-. j such that 

Then we do not increase the sum on left of ( 1) if we replace v(gi) + v(g i) by 
v(gi +Yi). We combine Yi and Yi into a single term in the given decomposition 

of g and get a new decomposition of gas g = 91 + · · · + 9i-1 + 9i+l + · · · + 9i-1 + 
Yi+l + · · · + 9n + (gi + Yi). This decreases the number of terms in the given 
decomposition by one. If the new decomposition does not satisfy (2) we repeat 
the above prc:>cess which again reduces the number of terms by one. Continuing 

m 

in this way, after a finite number of steps we get a decomposition g = E hi of 
j=l 

g satisfying (1) and (2) or a single term. Moreover we may assume that 

If v(hi) = v(hi+i) for some i = 1, 2, ... , m - 1, then 
v( hi + hi+1) < d Max{ v( hi), v( hi+t)} 

= d v(hi) 
< v(hi) + v(hi+1) 

a contradiction to (2). 
Therefore v(hi) < v(hi+l) for all i = 1, 2, ... , m - 1. Since v takes values as 

integral powers of d, we get 

dv(hi) < v(hi+i) for i = 1, 2, ... , m - 1. 
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Now we show by induction on t, that 

v(h1 + h2 +···+ht)::; d v(ht) fort= l, 2, ... , m. 

When t = l, the result clearly holds. 
Suppose it holds for all t, 1 < t ::; k - 1 ::; m - 1. Then 

v(h1 + h2 + · · · + hk) <dMax{v(h1 + · · · + hk-d,v(hk)} 
<dMax{d v(hk-d, v(hk)} 

=d v(hk) 

and hence by induction it is true for all t. 
Taking t = m, we get 

that is v(g) < dv(hm), 

This completes the proof of the lemma. 
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3. Characterization of seminorm topology on an algebra 

In this section we give necessary and sufficient conditions for a proper topo 
logical algebra (A, .J) over a proper topological field (F, T) to have the topology 
T on F defined by a norm N and the topology .:J on A defined by a seminorm 

(norm in case J is Hausdorff) II · II associated with N. For this we use the 
techniques of Seth Warner (3). 

Theorem 1. Let ( F, T) be a proper topological field and (A, .J) be a proper 
topological algebra over ( }~ T). Then T is defined be a norm N on F and J is 
defined by a serninorm (norm in case .J is Hausdorff) II· II on A associated with 
N if and only if 

(i) ( F, T) has a nonempty open bounded set. 
(ii) ( F, T) has a nonzero. topological nilpotent element. 
(iii) (A, .J) has a nonempty open bounded set. 
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Proof. Let T be defined by some norm N on F and :I by some seminorm 

II · II on A associated with N. Take 

B = {aEF:N(a)<l}, X={xEA:llxll<l}. 

Clearly B is nonempty and X is nonempty (because O E B and 8 E X) and 
are open. By lemma 3, B is bounded in F and X is bounded in A. Also there 
exists a nonzero element a E F satisfying O < N( a) < 1. This 'a' is a topological 
nilpotent element in F. By Remark 5, for a given c: > 0 there exists a nonzero 
element x in A satisfying O < llxll < £, therefore topology :I is proper. Also 

note that if II · II is a norm then :I is Hausdorff. 
We now prove the converse. Let B be an open nonempty bounded subset of 

F. If O (j. B, we choose some element b E B and replace B by B' = B - b. The 
set B' is again open and using lemma 2, B' is bounded which contains O = b - b. 
Replace B' by B" = B' n ( -B'). Then B" is a symmetric, open bounded set 
containing 0. Therefore we can assume without loss of generality that B is a 
symmetric, open, bounded set containing 0. We now prove that the collection 
{bB} as b varies over nonzero elements of F forms a neighbourhood base of 0. 

Since (F, T) is a topological field, for each b -:/ 0, bB is a neighbourhood of 0. Let 
P be any neighbourhood of 0. Since B is bounded there exists a neighbourhood 
D of O such that DB ~ P. As T is proper there exists a nonzero element b in 
D. Therefore bB ~ P. 

By continuity of multiplication in F there exists a nonzero element b in F 
such that bB. bB ~ B. Put B1 = b2 B, then B1 is again a symmetric, bounded 

neighbourhood of 0. In addition 

(1) 

and the collection { bBi} where b varies over nonzero elements of F forms a 
neighbourhood base of zero. Using continuity of multiplication and addition, we 
can find a neighbourhood C of O satisfying C C B1 and 



SEMINORMABILITY OF TOPOLOGICAL ALGEBRA 83 

Let 'a' be a topological nilpotent element of F. There exists a positive integer k 
such th~t ak E C. Replacing a by ak we can assume that a E C and hence 

(2) 

We now prove the following: 

(3) 

is a strictly ascending sequence. 

00 

(4) 
n=I 

00 

{O}. (5) 

The collection {an Bi}, n = 0, 1, 2, ... forms a neighbourhood base of O in F.(6) 
First we prove ( 4). If a E F, then because ana --t O in F and Bi is 

a neighbourhood of 0, there exists a positive integer n such that ana E Bi. 
Therefore o E a-n Bi and hence 

Next we prove (3). First we observe that a E B1 and B1 · Bi ~ Bi, therefore 
aB1 ~ B1. From this it follows that an+I Bi ~ an B1 for each integer n. Suppose 
there exists an integer m such that am+i Bi = am B1. Because a E B1, therefore 
am. a E am Bi = am+I B1 and hence am+I E am+I Bi which implies 1 E B1. 

Now 

therefore a-1 E B1 which implies that a-n E B1 for every positive integer n. 
00 

Therefore F = U a-n B1 ~ B1, a contradiction, because Bi is bounded but 
n=l 

C 
by lemma 1, F cannot be bounded. Therefore an+I B1 f:.an Bi for every integer 
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00 

n. Now we prove that n an B1 = (0). Suppose there exists a nonzero element 
n=l 

00 00 

a E n an B1. Since F = LJ a-n B1, there exists a positive integer m such that 
n=l n=l 

amo-1 E B1. Also a E am+I B1 that is, aa-m-I E B1, Since B1 · B1 ~ B1, 
( ama-1 )( aa-m-I) = a-1 E B1 which gives a contradiction as in the proof of 

(3). To prove (6), let P be a given neighbourhood of O in F. There exists a 
neighbourhood Q of O such that QB1 ~ P (because B1 is bounded). Because 
an ~ 0 there exists an integer n > 0 such that an E Q and hence an B1 C P. 
This shows that the collection {an B 1}, n = 0, l, 2, . . . forms a neighbourhood 
base of O in F. 

Let U be a given nonempty open bounded set in A. As before, we can 
assume without loss of generality that U is a symmetric, open, bounded subset 
of A containing B. 

Now we claim that the collection { an U} n = 0, l, 2, ... forms a neighbour 
hood base at B. By continuity of scalar multiplication, anU is a neighbourhood 
of 8 for each n > 0. Let V be any neighbourhood of B. Then by boundedness 
of U there exists a neighbourhood P of O in F such that PU ~ V. As 'a' is 
a topological nilpotent element of F, an E P for some n and hence anU C V. 
Therefore the collection {anU}, n = 0, l, 2, ... forms a neighbourhood base of 8 
in A. Next, using continuity of multiplication and scalar multiplication in A we 
can find non negative integers r and s such that 

Put t = r + s. Then 

Put U1 = a2ru and B2 = atB1. 

Then U1U1 = a2ru · a2rU ~ a2rU = U1, 

B2U1 = atB1a2rU ~ a2rU = U1, 

B2B2 = atB1 · atB1 = a2tB1 · B1 ~ a2tB1 ~ atB1 = B2, 
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and 
aB2 + aB2 + aB2 = at+1 B1 + at+I B1 + at+l B1 

= at(aB1 + aB1 + aB1) 

C atB 
- 1 

This B2 will satisfy (3)-(6) if we replace B1 by B2. From this it follows that 
there exists a pair (B, U) and a topological nilpotent element 'a' in F, where B 
is a symmetric bounded neighbourhood of O in F and U is a symmetric, bounded 
neighbourhood of() in A satisfying the following: 
I) BB~ B 
2) aB + aB + aB ~ B. 
3) · · · a2 B C aB C B C a-1 B C · · · is a strictly ascending sequence. 

(X) 

4) F = LJ a-n B. 
n=l 

(X) 

5) n anB = (0). 
n=l 

6) { an B}, n = 0, I, 2, ... form a neighbourhood base of O in F. 

7) BU ~ U and U U ~ U. 

8) aU+aU+aU~U. 
9) · · · a2 U C aU C U C a-1 U C a-2 U · · · is a strictly ascending sequence. 

(X) 

IO) A= LJ a-nu. 
n=l 

00 

11) n anU = {O}, if :J is Hausdorff. 
n=l 

12) {anU}, n = 0, l, 2, ... form a neighbourhood base of() in A. 
To get a norm N that generates the given topology T on P, we first define 

a function f on F as follows: 

(Note that from properties (3)-(5) of B above, such an n must exist and is 
unique). 
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This f takes values either O or integral powers of 2 and satisfies the following 
(i) f (a) = 0 if and only if a = 0 
(ii) f(a-{3) < 2Max{f(a),f(f3)} for all a,{3 E F 
(iii) J(af3) ~ f(o:)f(f3) for all o:,{3 E F 

p 

N(a) = inf E f(ai), where the infimum is taken over all finite sums of a as 
i=l 

a = 0:1 + 0:2 + ... + O'.p in F. One can check that N is a norm on F. To prove that 
this N induces the given topology Ton F we first prove that f f(a) < N(a) < 
f(a) for all a E F. The inequality N(a) < f(a) follows from the definition 

of N. To prove f J(a) ~ N(a) for all a E F, let a= o:1 + o:2 + ... + ap be a 
decomposition of a as a finite sum in F. By lemma 4 there exists a decomposition 
of a. 

a = f31 + f32 + ... + {3g as a finite sum in F such that f (f31) + ... + f({3g) < 
f(ai) + ... + f(ap) and J(a) ~ 2f({3g). 

g p 
Therefore f(a) < 2 E /({31) < 2 I: f(ai) Hence f(a) < 2N(a) that is 

j=l i=l 

f J(o:) ~ N(a). :from this inequality it follows that 

Therefore N induces the given topology T on F. 

Our next aim is to define a seminorm II · II on A associated with N which 
induces the given topology .J on A. For this, first we define a function g on A 
as follows: 

g(x) = { :-n 
00 

ifxE n anU 
n=l 

if there exists an integer n such that 
XE anu but X <f_ an+1u 

00 

(Note that if :1 is Hausdorff, then n an U = ( 0) and therefore g( x) = 0 if and 
n=l 

only if x = 0). This g takes values either O or integral powers of 2 and satisfies 
the following 

i) g( B) = 0, there exists at least one x in A such that g( x) :j; 0 and if .J is 
Hausdorff, then g( x) = 0 iff x = {). 
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ii) g(x + y) < 2Max{g(x),g(y)}, 

iii) g(ax) < J(a)g(x), 
iv) g(xy) < g(x)g(y), 
for all x, y E A and a E F'. 
We now define a function II · II on A as IIXII 

p 
inf E g(xi), where the infimum 

i=l 
is taken over all finite sums of x as x = x1 + x2 + · · · + xP. 

One can check, that II · II is a seminorm (norm if .J is Hausdorff) on A 
associated with N. As in the case of N, II· II satisfies !g(x)::; llxll < g(x) for all 
x E A. From this inequality it follows that 

Therefore II · II defines the given topology .:J on A. This completes the proof of 
the theorem. 

As an application of Theorem 1 we have the following theorem. 

Theorem 2. Let (A, .:7) be a topological algebra over a topological field 
( F, T). Let the topology T on P be defined by a norm N and the topology .J on 
A be defined by a seminorm II· II, regarding A as a vector space over F associated 
with N ( that is II· II is a real valued function on A satifying (1)-(3) of definition 
2). Then there exists a norm N' on F and a seminorm II · II' on A associated 
with N' such that T is defined by N' and J is defined by II · II'. 

Proof. Take B = {a E F: N(a) < 1}, X = {x EA : llxll < 1} One 
can check that B and X are nonempty, open bouonded subsets of F and A 
respectively. Also by assumption on N there exists a nonzero element a E F 
satisfying O < N(a) < l. This 'a' is a topological nilpotent element in F. Using 
converse of Theorem 1, the existence of desired N' and II · II' follows. 

Finally we given an example of a topological algebra whose topology is not 
defined by a seminorm. 

Example 3. Let F be a field with an absolute value N defined on it. 
Let A = F[X] be the algebra of polynomials with coefficients from F. Let 
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A = {t: : £ =< £0,£1, ... > is a sequence of positive real numbers}. For each 
£ E A, we take UE: = {f(X) = I: aiXi E A : N(ai) < Ei for all i}. There 

i>O 
exists a unique ring topology .J ~n A for which the collection { Ue : £ E A} 
froms a neighbourhood base of zero. Because Ue n F = {ao E .F: N(ao) < £0}. 
Therefore UE: n F is clearly a neighbourhood of zero in F with respect to the 
topology defined by N. Hence if T is the relative topology of .J on F then T is 
defined by the absolute value N. Hence 

i) (F, T) has a nonempty open bounded set. 
ii) ( F, T) has a nonzero topological nilpotent element. We now claim that 

(A, .J) does not have a nonempty open bounded set. For this it is sufficient 
to prove that given any UE:, £ E A there exists aU0, o E A such that for all 
nonzero a in F, aUt: ~ Us. Let£ =< £0,£1, ... >E A be given. Choose an 
element a E F, satisfying O < N(a) <I.Take o =< 00,61, ... >, where bi= 
EiN(a)i. Suppose a is a nonzero element of F. There exist positive integers 
m and km satisfying N(a) > :V(a)m-l and N(atm <cm< N(at"'-1• 

Now clearly akm xm E UE: but aakm xm (/ Us because 

N(aakm) = N(a)N(alm 

> N(a)m-1 N(atm 
= N(a)km-t+m 
> N(a)mcm 

Therefore aUE: ~ U0. 

Now the topology Ton Fis defined by absolute value N, but by Theorem 1 

the topology .J on A is not defined by any seminorm associated with N or with 
any other norm N' on F which defines the topology Ton F. 
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