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A REFINEMENT OF HADAMARD'S INEQUALITY 

FOR ISOTONIC LINEAR FUNCTIONALS 

SEVER SILVESTRU DRAGOMIR 

A refinement of Hadamard's inequality for isotonic linear functionals and 
some applications to norm and discrete inequalities are given. 

1. Introduction 

Let f : I~ Ill--+ JR be a convex function. The following double inequality 

f(x + y)::; 1 {Y f(t)dt < f(x) + f(y) 
2 Y - Xix 2 

(1.1) 

where x, y E I, x < y, is known in literature as Hadamard's inequality (see 
[6], [9] or (5)). For some recent results in connection with this famous integral 
inequality we refer to [2-5] and [9-11] where further applications are given. 

In this paper we will give an analogous of this fact for isotonic linear func 
tionals ( compare with (8)). Some natural applications are also pointed out. 

As in [l], let E be a nonempty set and let L be a linear class of real valued 
functions g : E --+ IR having the properties: 

Ll: f,g EL imply (af + bg) EL for all a,b E JR; 

L2: 1 E L, that is, if f(t) = 1 (t EE) then f EL. 

We also consider isotonic linear functionals A : L --+ Ill. That is, we suppose: 

Al: A(af + bg) = aA(f) + bA(g) for all f,g EL and a, b E IR; 

A2: f E L, f(t) > 0 on E implies A(f) > 0. 
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We note that common examples of such isotonic linear functionals A are given 
by A(g) := f E g dµ or A(g) = E Pk9k where µ is a positive measure on E in 

kEE 
the first case and E is a subset of natural number IN in the second case with 

Pk > 0 for k E E. 
We also will use Jensen's inequality (see e.g. [1]): 

Theorem 1.1. Let L satisfy properties LI, L2 on a nonempty set E and 

suppose</> is a convex function on an interval I~ JR. If A is any isotonic linear 
functional with A( 1) = 1, then for all g E L so that </>(g) E L, we have A(g) E I 
and 

</>( A(g)) ~ A( </>(g) ). 

2. The Main Result 

We will start with the following simple lemma. 

Lemma 2.1. Let X be a real linear space and C be its convex subset. If 
f: C -T lR is convex on C, then for all x, y in C the mapping 9x,y : [O, l] -T Ill 
given by 

9x,y(t) := 1/2[f(tx + (1 - t)y) + J((l - t)x + ty)] 
is also convex on [O, 1]. In addition, we have the inequality: 

f(x ~ y) < 9x,y(t) < f(x) + f(y) 

for all x, y in C and t E [O, l]. 

(2.1) 

Proof. Suppose x,y EC and let t1,t2 E [0,1] and a,(3 > 0 with a+/3 = 1. 
Then 

9x,y( at1 + f3t2) 
1 = 2 (f [( at1 + f3t2 )x + (1 - od1 - f3t2 )y] + f [(l - at1 - f3t2 )x + ( at1 + f3t2 )y]) 
1 = 2 (f [a(tix + (1 - ti)Y) + (3(t2x + (1 - t2)Y] 

+f [a((l---:- ti)x + tiy) + /1((1- t2)x + t2y)]) 
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1 ~ 2 (o:f [tix + (1 - t1)Y] + f)f [t2x + (1 - t2)Y]. 
+af [(1 - ti)x + tiy] + f)f [(1 - t2)x + t2y)]) 

= agx,y(t1) + f39x,y(t2) 
which shows that 9x,y is convex on [0,1]. 

By the convexity off we can state: 

9x,y(t) 2'. f rn(tx + (1 - t)y + (1 - t)x + ty)] = f ( x: y) 
and also 

9x,y(t) ~ ~ [tf(x) + (1 - t)f(y) + (1- t)f(x) + tf(y)] = f(x) + f(y) 
for all tin [0,1], which completes the proof. 

Remark 2.2. By the inequality (2.1) we can state: 

f(x)+f(y) (x+y) sup 9x,y( t) = 2 and inf 9x,y(t) = f 
tE[0,1) tE[0,1] 2 

for all x, yin C. 
Now, we can give our main result. 

Theorem 2.3. Let f: C ~ X ~ lR be a convex function on convex set C, 
L and A satisfy conditions Ll, L2 and Al, A2 and h : E ~ IR, 0 ~ h(t) < 1 

(t EE), h EL is so that f(hx + (1- h)y), f((l - h)x + hy) belong to L for x,y 
fixed in C. If A(l) = 1, then we have the inequality: 

f ( x : y) < ~ [f(A(h)x + (I - A(h))y) + f((I - A(h ))x + A(h )y)] 
] ~ 2 (A [f(hx + (I - h)y)] + A [f((I - h)x + hy)]) 

< f(x)+f(y) 
- 2 (2.2) 

Proof. Let consider the mapping 9x,y : (0, 1] ~ IR given above. Then 

by the above lemma we know that 9x,y is convex on (0,1]. Applying Jessen's 
inequality for the mapping 9x,y we get 

9x,y(A(h)) < A(gx,y(h)). 
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But 
1 Yx,y(A(h)) =2 [f(A(h)x + (1 - A(h))y) + f((l - A(h))x + A(h)y)] 

and 
1 A(gx,y(h)) =2 (A [f(hx + (1- h)y] + A [f((l - h)x + hy)]) 

and the second inequality in (2.2) is proved. 
To prove the first inequality in (2.2) we observe that, by (2.1), we can write 

(
X + y) f 

2 
::; Yx,y(A(h)) 

which is ecxactly the desired statement. 
Finally, we observe that, by the convexity off, we get 

~ [f(hx + (1- h)y) + f((l - h)x + hy)] <. f(x) + f(y) on E. 

Applying to this inequality the functional A and since A(l) = 1, we obtain 
the last part of (2.2). 

Remark 2.4. If we chose: A = J;, E = [O, 1], h(t) = t, C = [x, y] C IR 
and since a simple calculation shows that 

11 11 1 1y f(tx + (1 - t)y)dt = J((l - t)x + ty)dt = f(t)dt 
0 0 Y - X x 

we recapture, by (2.2) the inequality (1.1) of Hadamard. 

3. Applications 

1. Let h : [O, 1] --+ (0, 1] be a Riemann integrable function on [0,1] and p > l. 
Then for all x, y vectors in normed space (X; II· II) we have the inequality: 

X; y II' < ~ [11(1- [ h(t)dt)x + ([ h(t)dt)y!IP 
+11([ h(t)dt)x + (1 - [ h(t)dt)yll•] (3.1) 

< ~ [[ llh(t)x + (1 - h(t))ylJ'dt + [ 11(1 - h(t))x + h(t)yll'dt] 
< lixjjP + IIYIIP 

2 
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If we chose h( t) = t, we obtain 

x + Y Ii' ::; J.' 1/tx + (I - t)yl/' dt < I/xi/' + I/YI/' (3.2) 

for all x,y in X. 

The inequality (3.1) follows by Theorem 2.3 for the functional A= f01• 
2. Let f : C ~ X -T JR be a convex function on convex set C of a linear 

space X, ti E [O, 1], i = 1, ... , n. Then we have the inequality: 

If we put ti = sin2 
Qi, Qi E Ill, i = 1, ... , n, then we obtain 

l([ln ln ] < - f ( - L sin2 Qi)x + (- L cos2 Qi)y 
2 n n. 

i=l i=l 

f 1 n 1 n ]) + f l ( n ; cos2 Qi)x + ( n ; sin 2 Qi )y 
n 

< ~ L (f ((sin2 Qi)x + (cos2 Qi)y] + f [(cos2 Qi)x + (sin2 Qi)Y]) 2n. i=l 
< f(x)+f(y) 

2 

n 
The inequaltity (3.3) follows by (2.2) for A = 1/n E, h( i) = ti E [O, 1]. 

i=l 
By the use of the inequality (3.3), we can obtain a refinement of the arith- 

metic mean-geometric mean inequality 

x + Y > ,vxy where x,y > 0. 



106 SEVER SILVESTRU DRAGOMIR 

Indeed, chosing f(x) := -lnx, x > 0, we obtain 

The equality holds in the previous inequalities simultaneously iff x = y. 

References 

[l] P.R. Beesack and J.E. Pecaric, "On Jessen'~ inequality for convex functions", J. Math. 
Anal. Appl., 110 (1985), 536-552. 

[2) S. S. Dragomir, J. E. Pecaric and J. Sandor, "A note on the Jensen-Hadamard inequali 
ties", Anal. Nu.m. 1'heor. Approx., 19 (1990), 29-34. 

[3) S. S. Dragornir, "Some refinements of Hadamard's inequalities", G. M. Metod. (Bucha 
rest), 11 (1990), 189-191. 

[4) S. S. Dragornir, "Two refinements of Hadamard's inequalities", Coll. of Sci. Pap. of the 
Fae. Science, I<ragu.jevac, 11 (1990), 23-26. 

[5] S. S. Dragomir, "A mapping in connection to Hadamard's inequalities", Anz. Osterr. 
Akad. Wiss. Math.-natu.r. I<lasse, 128 (1991), 17-20. 

[6] J. Hadamard, "Etude sur les proprietes des fonctions entieres et en particulier d'unc 
fonction consideree par Riemann", J. Math. Pure Appl. 58 (1893), 171-215. 

[7) J. L. W. V. Jensen, "Surles fonctions convexes et les inegalites entres les valeurs rnoyenes", 
Acta Math. 30 (1906), 175-193. 

[8] A. Lupa.'1, "A generalization of Hadamard's inequalities for convex functions", Univ. 
Beograd Pu.bl. Elektr. Fak. Ser. Mat. Fiz., No. 544-No. 576 (1976), 115-121. 

[9) D. S. Mitrinovic and I. B. Lackovic, "Hermite and convexity", Aequ.at. Math., 28 (1985), 
225-232. 

[10) J. Sandor, "Some integral inequalities", El. Math. 43 (1988), 177-180. 
[11) J. Sandor, "An application of the Jensen-Hadamard inequality", Nieu.w Arch. Wiskunde 

(to appear). 

Department of Mathematics, University of Timi§oara, B-dul V. Parvan 4, R-1900 Timi§oara, 
Romania. 


