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ALTERNATION THEOREM FOR C(I,X) AND APPLICATION
TO BEST LOCAL APPROXIMATION

A. AL-ZAMEL AND R. KHALIL

Abstract. Let X be a Banach space with the approximation property,
and C(I, X) the space of continuous functions defined on I = [0, 1] with
values in X. Let u; € C(I,X), 1 = 1,2,---,n and M = span{uy,...,
un}. The object of this paper is to prove that if {uy,...,un} satisfies
certain conditions, then for f € C(I,X) and ¢ € M we have ||f — g| =
inf{||f — h|| : B € M} if and only if f — g has at least n-zeros. An
application to best local approximation in C(I, X) is given.

0. Introduction

Let I = [0,1] and C(I) the space of real valued continous functions. If
{uy,...,u,} forms a T-system in C(I), then the space M = span{uy,...,Un} is
a Chebechev subspace of C(I), [3 p.81]. Hence for each f € C(I) there exists a
unique g € M such that

If =gl = d(f,M) = inf{||f - 2[: h e M}.

The Alternation Theorem, [3, p.75], gives an important simple characterization
of g : ||f — g|| = d(f, M) if and only if f — g has at least n-zeros”.

Chui, Shisha and Smith [4] used the Alternation Theorem to prove the
existence of what they called “best local approximation” in C([I).

The object of this paper is to study the Alternation Theorem and the prob-

lem of best local approximation in vector valued function spaces. It turns out
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that if we assume that the Banach space X has the so-called approximation
property, and the set {u1,...,u,} C C(I,X) satisfies certain conditions, then
one has an Alternation Theorem, which then applied to prove results on best
local approximation in C(I, X).

Throughtout this paper, if X is a Banach space, then X ™ is the dual of X,
and for z € X, and z* € X* we write (z,2*) for 2*(z). The unit ball of X* is
denoted by By(X*). The unit mass measure at @ € I is denoted by 8,. Hence
(f,8a) = f(a). The set of reals is denoted by R.

1. C(I,X) As Scalar Functions

For Banach spaces X and Y, let XE\1/9Y (X G%Y) denote the injective (projec-
tive) tensor product of X with Y [5. Chap 1]. It is well known that C(I, X) is
isometrically 1somorph1c to C(1 )GBX [5; p.9] for any Banach space X. In general
it is not ture that (XGBY)* Y*EBY* In this work, we will choose X such that
(C(I)EBX = GO EBX *. Banach spaces with the so-called approximation
property satisfies such equality, [5 Chap. 1]. Further, L?(u), 1 < p < oo and
C(I) have the approximation property, (2, p. 245].

Every ¢ € I represents the unit mass measure 6;. Hence I C M(I) = C(I)*,
the space of Borel measures on I. Further I is compact in M (I) with the w*-
topology. We also have B;(X*) is compact with the w*-topology, by the Alaoglu
Theorem. Hence I X B;(X*) is a compact space in the product topology.

Now every f € C(I, X) can be considered as a continuous function defined
on By([C(I,X)]*) = Bl(M(I)é\)X*) (Since X is assumed to have the approxi-
mation property) Since I x By(X*) is closed in [C(I, X)]* and I X By(X*) C
Bl(M(I)EBX ), we get T X By(X*) is closed in Bl(M(I)GBX )- Here, the topol-
ogy we refere to is the w*-topology.

Finally, since for f € C(I,X) we have
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sup || f(2)]]

tel ;

=sup sup [{f(t),z")]
tel :L"‘EBl(X')

= sup l(f) 6t &b II)*)I,
§,bz*

Il

we can consider, and we will, f: I X B1(X*) — R.

2. Vector Valued Alternation Theorem

Let f € C(I,X). We set
m(f) = {6:®z":(f,6:D2") = ||f|l, t€Il, z* € B1(X")}.

Then one can easily prove:

Lemma 2.1. m(f) is compact in I X By(X*).
Now, let {uy,...,un} C C(I,X). For (t,a*) € I x B1(X*) we set

Ut z*) = ((ua(t),z* >, -, < un(t), z*)).
Thus 'z/}(t,a:*) € R™ for each (t,z*) € I X B1(X*). Then

Lemma 2.2. Let f € C(I,X). Then the set

E = {{f(t),2")u(t,") : (t,2") € m(f)}
s a compact set in R™.

Proof. consider the function
Y :Ix By(z*) - R"
Y(t,2") = (f(8),2")u(t,z7).

Since f,uy,...,u, are continuous functions, then 1 is continuous. But

E = {$(t,e7): (t,27) € m(f)}.
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But by Lemma 2.1, m(f) is compact. Hence E is compact. n
Now, let M be subspace of C(I,X) generated by uj,...,u,. Hence if g €
M, then g = ) a;u;, a; € R. Since M is finite dimensional, then for each

i=1

f € C(I, X) there exists at least onc g € M such that
If =gl = d(f,M) = inf{||f - h|| : h € M}.

Now we prove the Characterization Theorem [3, p.73] for the space C(I,X )

Theorem 2.3. Let f € C(I,X) and g € M. The following are equivalent:

(1) IIf = gll = d(f, M)
(ii) @ = (0,---,0) is in the convez hull of E = {(r(t,x*)a(t,z*); (t,z*) € m(r)}
in R™, where v(t,z*) = (f(t) — g(¢),2*).

Proof. (ii)— (i). Let r(t,2*) = (f(t) — g(t),z*). If possible assume that
g is not a best approximant to f in M. Hence there exists A € M such that
l* — R|| < ||7|]- Consequently,

lI7(t,2%) = (h(2),2")] < |r(t, 27)| (1)
for all (¢,z*) € m(r). Equation (1) implies that
r(t,z™){h(t),z*) >0 (2)

for all (¢,2*) € m(r).
n
Since h € M, then h = Y7 b;u;, for some b; € R, i = 1,---,n. Hence
i=1

1=

(h(t),2™) = D bi(wi(t),2”) = (b,4(t,27)),
i=1
where b = (by,...,b,) € R™. Hence, Equation (2) implies

r(t,2*)(b,u(t,z*)) >0
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for all (¢,2*) € m(r). But 7(¢t,z*) = ||7|| > 0 for all (¢,z*) € m(r). Hence
(b,a(t,x*)) > 0 for all (¢,2*) € m(r). By Lemma 2.2, the set E = {r(t,:c*)a(t,
z*) : (t,z*) € m(r)} is compact in R™. Hence, [3, p.19], we get

0O = (0,0,---,0) ¢ Convexhull of E.

Conversely. (i)—(ii). Let the vector O = (0,--,0) ¢ convexhull of E =
{r(t,z*)@(t,a:*) : (t,2*) € m(r)}. Hence, [3, p.19], there exists b € R™ such that
(b, r(t,x*)a(t,x*)) > 0 for all (¢,2*) € m(r). By Lemma 2.1, m(r) is compact.

Hence, there exists £ > 0 and (%g,2g) such that

£ = inf{r(t,z*)(b,u(t,z%)) : (¢,2*) € m(r)}

=3 T(to 5 :223)(17, a(t07 3'5))

Now, let
K = {(t,2*) € I x By(X™*) : r(t,2*) < b, u(t,z*) < £/2}.

The set Iy is closed (and hence compact) in I X By(X*). Further K; Nm(r) = ¢.
Since r is continuous, and K; is compact, then |r| attains its maximum on K;
and if

a = max{|r(t,z%)| : (¢t,2¥) € K1},

Il — @
n

l 2_:1 biu |

then a < [|7||. Now choose A > 0 such that 0 < A < . Hence for any

(t,z*) € K, we have

n

[r(t2%) = A D biua(),e%)| < |r(t,2")| + A Zbi(ui(t),l‘*)l

1=1

S at Al Y biudl
1=1

<7l (since A < —U—Tﬂi) (+)

n

| X% biu|
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On the other hand, if (¢,2*) ¢ K, then we can choose \ to satisfy the
addifional condition 0 < A < _%_E_. Since r(t,z*)(b, Q(t,x*)) > £/2 for
I 21 biul|?
all (t,2*) ¢ K1, we get:
|Zb;ui(t, z*)||? - €
&
e Y

|7(¢, %) — AZbjui(t, z*))* < ||7]|> + A

< I7|? (since A <

Equatioﬁs (*) and (**) implies that g is not a best approximant of f in M. This

ends the proof. ' =
For f € C(I,X) and z* € B;(X*) set:

m(f,2%) = {(t,2") : [(f(t),2*)| = |IflI}.

clearly m(f,2*) is a closed subset of m(f). Then Theorem 2.3 is valid in the

following setting.

Theorem 2.4. Let f € C(I,X) and g € M. The following are equivalent:
@) 1If —gll = d(f, M)
(if) O = (0,0,---,0) is in the convez hull of ™) = {r(t,z*)a(t,z*) Ll &
’n?‘(f -9 :1)*)}
We need one more result before we can prove the Alternation Theorem.

Set
N = {2" € By(X*): 1(t,2*) # 0 for all t € I}

For general uy,...,u, in C(1,X), the set N could be empty. This occures

if u1,...,un have a common zero.

Definition 2.5. The set {u,,... ,un} C C(I,X) is said to satisfy the Haar

condition if there exists at least one 2* € N such that

ety = | (e (),
D(th...,tn, )— (un(tl),$*>"‘(un(tn),m*> 76 0

forallt; <ty <...<t, in I. Set N(D)={z* e N: D(t‘l,...,tn,x*) # 0 for
all ¢4 Py & vud Ly ll‘lI}
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A simple example satisfying the Haar condition is:
# = tDa, U, = 1"@a,

where z # 0 is in the Banach space X.

The set I™ X {z*} = {(t1,...,tn,2*) : t; € I} is a convex subset of I"™ x
B1(X™*). Hence the continuouity of D(t1,...,t,,2*) as a real valued function on
I™ x B1(X™) implies (using the Intermediate Value Theorem) that D has the
same sign on I"™ X {z*}. Then, togother with Lemma 1 [p. 74] we get:

Lemma 2.6. Let z* € N(D) and {t¢o,...,t,} be a set of n + 1 dis-
tinct elements in I, and Ag,...,A, be non-zero real numbers. Let E(z*) =
{Aoa(to,x*),...,)\n@(tn,x*)}. The O = (0,--+,0) € convexhull of E(z*) if and
only if A; ;1 <0fori=1,---n.

Now we prove:

Theorem 2.7. (Alternation Theorem). Let {uy,...,u,} C C(I,X) satisfy
the Haar condition. Let f € C(I,X) and g € M. The following are Equivalent:
@) Ilf —gll = d(f, M)

(i1) f — g has at least n-zeros.

Proof. Let r = f —g. By Theorem 2.3, (i) is satisfied if and only if
= (0,---,0) € convexhull of E(z*) = {r(t,x*)@(t,x*) : (t,2*) € m(r)}. Since
E(z*) is compact, then every point in the convexhull of E(z*) is a convex linear

combmatlon of at most n- elements of E(2*). Thus there exists A, ..., Ax € (0,1)

such that E Ay'=1 and 0= L A, 2* )u(t,,:), ). By Caratheodory Theorem
1=0
[3 p.17], we have k < n.

Since the set {uy,...,u,} satisfy the Haar condition, the elements of any
subset {u(tzk, *) : 1 < k < n} is independent in R™. Consequently & > n.
Hence k£ = n.

Lemma 2.6 now implies that \; r(ti,2*) has at least » + 1 alternation. But

Ai > 0. Thus r has at least n-zeros. This ends the proof. w
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3. Best Local approximation

Let {u1,...,un} C C(I,X) and M = span{us,...,u,}. For £ € (0,1) let
Ig = [0,€] and Mg = M|y, the restriction of M to Ir. Then Mg C C(lg, X).
Let f € C(I,X) and fg = f|r,. Since Mg is finite dimensional for all &, it
follows that for each £ there exists Pe(f) € Mg such that

|fe = Pe(DIl = d(fe, Me).

The net (Pe(f)) need not to converge as & — 0+. Following Chui, Shisha
and Smith [4], “if (Pg(f)) converges uniformly on some interval [0,&o] to some
Py(f) € M, then we say that Py(f) is a best local approximation of f.”

The object of this section, is to use the results in section II of this paper to
prove a similar type Theorems of Chui-etal [4, Theorem 2.1] for vector valued
continous functions, with the uniform norm and with the L!-norm.

For f € C(I,X) we say that f is weakly differentiable on I if for each
te(0,1)

lim .
E—0

exists for each z* € X*. We will write f'(t,2*) for such limit. Let Coll, X)

denote the space of n-times weakly differnetiable functions. We let O (¢, 2%)

(f(t+8) — f(t)
£

denote the jt*-derevative associated with ¢ and z*.
Now we assume that the set {uy,...,u,} C Co(I,X). For z* € B;(X™*),

we let :
(Ul(O), $*> =S e 8 (un(O),x*)
An(z") = z s

u*D(0,2*) - - u (0, %)

Now we prove

Theorem 3.1. Let {u1,...,us} C C*(I,X) satisfy the Haar Condition.
Assume that for every f € C*(I, X) the net Pe(f) converges uniformely to fy as
& — 0%. Then the matriz An(z*) is non-singular for every z* # 0 in By (X™).
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Proof. Since Pg(f) € M for each £ > 0, it follows that Py(f) € M.

Further, since

”Pg(f) - f«f” = d(fé'aMf),

then by Theorem 2.7 there exists (¢;(£)),, such that 0 < #;(€) < L)< - <
i lE) < € and

Pe(f)(t:(€)) = f(t:(€)) =0, (fe(ti(E)) = F(2:(£)).

Thus by Rolle’s Theorem, for each z* € in B;(X*) there exists (8i(€))7=1 such
that

Pe(f) 7 (s3(€),2%) = f7(s;(€),2") = 0 (1)
where 0 < 51(€) < +++ < Sn-j41(€) < €. Now fixing z* and taking the limit as
& — 0% in (1) we get
lim Pe(f)’~(s;(€),2*) = fU=1(0,2*), (2)

£—0+
j=1,---,n, and (2) holds for all f € CZ(I,X) and 2* € By(X*).
Now, since Pg(f) € M, we have

n

Pe()®) = D ail€, fui(®).

1=1

Further, that Pg( f)?Po( f) and that M is finite dimensional implies that
a,-(é',f)?a,-(f) say for each ¢ = 1,---,n. Hence from Equation (2) and the
fact that u; € C(I, X) we get

Y a(Nu(0,2%) = fU=1(0,27) (3)
1=1

for all 2* € B1(X*). Since equation (3) is valid for all f € Cl(I,X), it follows
that for z* # 0, A,(z*) is non-singular. This ends the proof. ®

Lemma 3.2. Let An(2*) be non-singular, and || Z a;(&)uill, = 0(E™1)
as & — 0F. Then a;(€) — 0 as £ — 0% for each i = 1,-
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Proof. The proof follows from the facts

() 11 3 a:(€)uillze = 0(E»1) as € — 0 implies that || S0, as(€) (s, 21
— 0(£" 1) as £ - 0

(i) If g(2) = (ui(t),z*), then ¢'(0) = u!(0,2*).

(iii) Lemma 2.1 of [4]. =

We now prove the converse of Theorem 3.1.

Theorem 3.3. Let An(z*) be non-singular for each z* # 0 in By(X™).
Then P.(f) coverges uniformly to some Fo(f). Further, Po(f)?(0,2*) = f%(0,
z*), 5 =1,2,---,n =1 and z* € B;(X*).

n
Proof. Let P.(f) = Y ai(e, f)u;. For every z* € B;(X™*), the element
=1
h =3 fi71(0,2*)u; is an element of M. Since P.(f) is the best approximant
=1

of f. in M., it follows that

|1Pe(f) = fell < Nl = fe

I,

Now, for any g € C(I, X), the map t — ||g(¢)|| is continous on the compact
set I. Hence sup ||g(t)|| = ||g(%o)|| for some to. By the Hahn-Banach Theorem,
t

there exists some z* € B;(X*) such that
sup [lg(Oll = llg(to)ll = (g(t0),=")

Consequently, since k, f € C(I,X), there exists some ¢ € P, and z* € B(X*)

such that

B = Jell = [{A(2) = fe(8),2™)]
= sz““”(ow)(w(t),m*) = (fe(2),2)| (1)

Since A,(z*) has an inverse, we can assume that

=100y o#y o 5. . J1 H 3=3
(uz (0)71’> - 61] - {0 if 175]})
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Thus expanding each {u;,z*) arround the point ¢ = 0, using the Taylor expansion

with remainder we get:

u?~0), 2* ™ (r), z*
e R e e

= (u{?(0),2*) + Ri,
(wM(r),2") .,

where Ri:_"nl—_s’ DL r<sxé

Hence Z:f(2 1)(O e*Yuill}, * Zf(‘ 0,z ) +ZR

i=1
Similarly, we expand (fc(t),z*) around t = 0, using Taylor series with remainder.
Using the fact that u; and f are in C(I,X) for i = 1,---,n, and the fact each

R; has the form
Ri == 6(71)'571,

where 8 is continous and O < 7 < s < ¢, it follows that for ¢ — O7:
1> £ (0,8 ) ui(t),2") — (fe(t),2")| = O(e™) = o(e"™) (2)
=1

It follows from (1) that for ¢ — 07:
|P(f) = fell = o(e"™") (3)

Now, letr bi(e, f) = aie, ) — =V (0,2*). Then

n

| _}:bi(é,f)uell = Zai(&f)w - > D (0, 2% uil

=1
< NP = Ll + 1D FE D (0,2%)ui = fel-
=1

Then using equation (2) and (3) to get for ¢ — O

1> bile, Nwall = o(e™™) (4)
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Hence,
n

: N N p(i-1) *Y, o _
El_l)I(l,’l+ | P-(f) Lf (0,2 )uillre = 0

=1
Thus P.(f) converges uniformly to some Py(f) as € — O*. Further, equation

(4) and Lemma 3.2 implies that lim bi(e, f) = 0. Hence
£—=0

li%h dile, ) = fi;l(o,w*).
Thus
Po(FY(0,5%) = fi(o,2").

This ends the proof of the Theorem.

Closing Remarks. One can consider the problem of best local approxi-
mation for different subspace M. Indeed Let X = €7, 1 < p< o0, and LP(I,¢P)
be the space of p-Bachner integrable functions defined on I with values in £.
Hence for f € L?(I,¢7),

17y = ([ WIPa = | Sinirane,

where f(1) = (fu(2))2%,-

Let {ui,...,un} be continuous functions in LP(I,¢P) such that

uj = (uji)2y,

and {%1i,...,u,;} is a T-system in C(I) for each i = 1,2,3,---. Set M = span
of {ui,...,us}. In [6] Kroo proved that M is a Chebechev subspace in L'(£2),
£} is a finite dimensional Hilbert space. The authors proved in [1] that M is a
Chebechev subspace in L1(¢P), for any 1 < P < 0o, and with no restriction on
the dimension of £7. If we set p = 1 and M; = span{uyq,..., Unj}, then each M;

is a Chebechev subspace in L'(I) by the Jackson’s Theorem [3]. Set

3|
M= {(0):05€ My: [ lo(o)la < oo,
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Then M is a closed subspace of L'(I,€'). Further M is proximinal. For f =
(fa) € L'(I,£*) and ?,n € My such d(fn, My,) = || fr - ?n”l’ we have g = (,]\‘n) €
M and

d(f, M) = ||f - gll.

In this case the problem of best local approximation is that for the coordi-

nate functions f,,, and one can prove

Theorem. Pg(f) converges in L*(I,£') to some Py(f) in M if only if
Pe(fn) converges in L(I) to some Py(fy) in M,.
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