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ALTERNATION THEOREM FOR C(I,X) AND APPLICATION 

TO BEST LOCAL APPROXIMATION 

A. AL-ZAMEL AND R. KHALIL 

Abstract. Let X be a Banach space with the approximation property, 
and C(J, X) the space of continuous functions defined on I= [O, 1) with 
values in X. Let Ui E C(J, X), i = 1, 2, · · ·, n and M = span{ u1, ... , 
Un}. The object of this paper is to prove that if { u1, ... , Un} satisfies 
certain conditions, then for f E C(I, X) and g E M we have !If - gjj = 
inf {II/ - h]I : h E M} if and only if f - g has at least n-zeros. An 
application to best local approximation in C(J, X) is given. 

0. Introduction 

Let I = [O, 1] and C(J) the space of real valued continous functions. If 
{ u1, ... , Un} forms a T-system in C(J), then the space M = span{ v.1, ... , un} is 
a Chebechev subspace of C(J), [3 p.81]. Hence for each f E C(J) there exists a 
unique g E M such that 

II! - gjj = d(f, !YI) = inf{llf - hll : h E M}. 

The Alternation Theorem, [3, p.75], gives an important simple characterization 

of g : II! - gll = d(f, M) if and only if f - g has at least n-zeros". 
Chui, Shisha and Smith [4] used the Alternation Theorem to prove the 

existence of what they called "best local approximation" in C(I). 
The object of this paper is to study the Alternation Theorem and the prob 

lem of best local approximation in vector valued function spaces. It turns out 
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that if we assume that the Banach space X has the so-called approximation 
property, and the set { u1, ... , un} C C(I, X) satisfies certain conditions, then 
one has an Alternation Theorem, which then applied to prove results on best 
local approximation in C(I,X). 

Throughtout this paper, if X is a Banach space, then X* is the dual of X, 
and for x E .X, and x* EX* we write (x,x*) for x*(x). The unit ball of X* is 
denoted by B1(X*). The unit mass measure at a E I is denoted by Da. Hence 
(J, ba) = J( a). The set of reals is denoted by R. 

1. C(I, X) As Scalar Functions 

V /\ 
For Banach spaces X and Y, let .XEBY (XEBY) denote the injective (projec- 

tive) tensor product of X with Y, [5. Chap 1]. It is well known that C(I,X) is 
V . 

isometrically isomorphic to C(I)EB.X, [5; p.9] for any Banach space X. In general 
/\ V . 

it is not ture that (XEBY)* = .,.Y*EBY*. In this work, we will choose X such that 
V /\ 

(C(I)EBX)* = [C(I)]*EBX*. Banach spaces with the so-called approximation 
property satisfies such equality, [5 Chap. 1). Further, LP(µ), l < p < oo and 
C(J) have the approximation property, [2, p. 245]. 

Every t EI represents the unit mass measure Dt, Hence IC M(I) = C(I)*, 
the space of Borel measures on I. Further I is compact in M(I) with the w* 
topology. We also have B1 (X*) is compact with thew* -topology, by the Alaoglu 
Theorem. Hence Ix B1(X*) is a compact space in the product topology. 

Now every J E C(I, X) can be considered as a continuous function defined 
I\ 

on B1([C(I,X)]*) = B1(M(I)EBX*) (Since .,.y is assumed to have the approxi- 
mation property). Since Ix B1(.,.Y*) is closed in [C(I,X)]* and Ix B1(X*) C 

I\ I\ 
B1(M(I)EB.X*), we get Ix B1(X*) is closed in B1(M(I)EBX*). Here, the topol- 
ogy we refere to is the w*-topology. 

Finally, since for f E C(J, X) we have 
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11!11 = sup IIJ(t)II 
tEl 

sup sup l(f(t),x*)I 
tEI x* EB1(X*) 

sup l(f, Dt EB x*)I, 
8, EBx* 

we can consider, and we will, f: IX B1(X*)-. R. 

2. Vector Valued Alternation Theorem 

Let f E C(I, X). We set 

m(f) = { Dt EB x* : (f, Dt EB x*) llfll, t EI, x* E B1(X*)}. 

Then one can easily prove: 

Lemma 2.1. m(f) is compact in Ix B1(X*). 
Now, let { u1, ... , Un) C C(I, X). For (t, x*) E IX B1 (X*) we set 

~(t,x*) = ((1t1(t),x* >,···,< un(t),x*)). 

" Thus u(t,x*) E Rn for each (t,x*) EI x B1(X*). Then 

Lemma 2.2. Let f E C(I, X). Then the set 

E = { (J(t), x*)~(t, x*) : (t, x*) E m(J)} 

is a compact set in Rn. 

Proof. consjder the functjon 

'lj;: Ix B1(x*)-+ Rn 

'lj;(t,x*) = (f(t),x*)~(t,x*). 

Since f, u1, ... , Un are continuous -functions, then 1/; is continuous. But 

E = { 'lj;(t, x*) : ( t, x*) E m(f)}. 
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But by Lemma 2.1, m(f) is compact. Hence E is compact. 
Now, let M be subspace of C(I,X) generated by u1, ••• ,un. Hence if g E n . . 

_M, then g = L aiui, ai E R. Since M is finite dimensional, then for each 
i=l 

J E C(J, X) there exists at least one g E Af such that 

IIJ - 911 = d(f, lvl) = inf{llf - hll : h E M}. 

Now we prove the Characterization Theorem [3, p.73] for the space C(I,X) 

Theorem 2.3. Let J E C(J, .1Y) and g E A1. The following are equivalent: 
(i) II! - YII = d(f, M) 
(ii) 0 = (O,···,O) is in the convex hull of E = {(r(t,x*)~(t,x*);(t,x*) E m(r)} 

in Rn, where r(l,x*) = (f(t) - g(t),x*). 

Proof. (ii)-,. (i). Let r(t, x*) = (J(t) ..:_ g(t), x*). If possible assume that 
g is not a best approximant to f in Nl. Hence there exists h ~ M such that 
llr - hll < llrll. Consequently, 

llr(t,x*)- (h(t),x*)I < lr(t,x*)I (1) 

for all (t, x*) E m(r). Equation (1) implies that 

r(t,x*)(h(t),x*) > 0 (2) 

for all (t,x*) E m(r). 
n 

Since h EM, then h = L b(ui, for some bi E R, i = l, · · ·, n. Hence 
i=l 

n 

(h(t), x*) = L bi(ui(t), x*) = (b, ~(t, x*)), 
i=l 

where b = (b1, ... , bn) E Rn. Hence, Equation (2) implies 

r(t, x*)(b, ~(t, x*)) > 0 
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for all (t,x*) E m(r). But r(t,x*) = llrll > 0 for all (t,x*) E m(r). Hence 
(b, ~(t, x*)) > 0 for all (t, x*) E m( r ). By Lemma 2.2, the set E = { r(t, x*)~( t, 
x*): (t,x*) E m(r)} is compact in Rn. Hence, (3, p.19], we get 

0 = (0, 0, · · ·, 0) (j. Convexhull of E. 

Conversely. (i)-+(ii). Let the vector O = (0, · · ·, 0) ~ convexhull of E = 
{r(t,x*)~(t,x*): (t,x*) E m(r)}. Hence, [3, p.19], there exists b E Rn such that 
(b, r(t,x*)~(t,x*)) > 0 for all (t,x*) E m(r). By Lemma 2.1, m(r) is compact. 
Hence, there exists £ > 0 and (to, Xo) such that 

E = inf{r(t,x*)(b,~(t,x*)): (t,x*) E m(r)} 

= r(to,x~)(b,~(to,x~)). 
Now, let 

1(1 = {(t, x*) E J x B1 (.X*) : r(t, x*) < b, ~(t, x*) < E /2}. 

The set 1(1 is closed (and hence compact) in Ix B1(.X*). Further K1nm(r) = <f 
Since r is continuous, and 1(1 is compact, then lrl attains its maximum on 1(1 
and if 

a= max{lr(t, x*)I : (t, x*) E Ki}, 

then a < llrll, Now choose ,\ > 0 such that O < ,\ < 11:11 - a Hence for any 
11 E biuill 

·i=l 
(t, x*) E J(, we have 

n n 

lr(t,x*)- ,\ Lbi(u1(-t),x*)I ~ lr(t,x*)I + Al Lbi(ui(t),x*)I 
i=l i=l 

n 

< a+ All L biuill 
i=l 

< llrll 
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On the other hand, if ( t, x *) (j. 1( 1, then we can choose ..X to satisfy the 

additional condition O < ..X < n [ Since r(t, x*)(b, ~(t, x*)) > £ /2 for 
II I: biudl2 
i=l 

all ( t, x*) (j. 1(1, we get: 

Equations (*) and (**) implies that g is not a best approximant off in M. This 
ends the proof. 

For f E C(I,X) and x* E B1(.X*) set: 

m(f, x*) = {( t, x*) : l(f( t), x*) I = 11111}. 

clearly m(J, x*) is a closed subset of m(J) .. Then Theorem 2.3 is valid in the 
following setting. 

Theorem 2.4. Let f E C(I,.X) and g EM. The following are equivalent: 
(i) Ill - gll = d(f, 1YI) 
(ii) 0 = (0,0,···,0) is in the convex hull of E(x*) = {r(t,x*)~(t,x*): (t,x*) E 

m(f - g, x*)}. 

We need one more result before we can prove the Alternation Theorem. 
Set 

N = {x* E B1(.X*): ~(t,x*)-/= Q for all t E J}. 

For general u1, ... , Un in C(I, .X), the set N could be empty. This occures 
if u1, ... , Un have a common zero. 

Definition 2.5. The set { u1, ... , un} C C(I, X) is said to satisfy the Haar 
condition if there exists at lea.st one x* E N such that 

D(t1, ... ,tn,x*) = (u1(t1),x*) · · · (1t1(tn),x*) 
(un(t1), x*) · · · (un(tn), x*) i= 0 

for all t1 < t2 < ... < tn in J. Set N(D) = {x* EN: D(t1, ... ,tn,x*)-/= 0 for 
all t1 < t2 < ... · < tn in J}. 
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A simple example satisfying the Haar condition is: 

U1 = t EB X, · · · , Un t'n EB x, 

where x f= 0 is in the Banach space X. 

The set In X {x*} = {(ti, ... , tn, x*) : ti E J} is a convex subset of Jn x 
B1(X*). Hence the continuouity of D(t1, ... , tn, x*) as a real valued function on 
In x B1(X*) implies (using the Intermediate Value Theorem) that D has the 
same sign on In x {x*}. Then, togother with Lemma 1 (p. 74] we get: 

Lemma 2.6. Let x* E. N( D) and { t0, ••• , tn} be a set of n + l dis 
tinct elements in I, and -Xo, ... , An be non-zero real numbers. Let E(x*) = 
{.\o~(to,x*), ... ,An~(tn,x*)}. The O = (O,· .. ,0) E convexhull of E(x*) if and 
only if AiAi-1 < 0 for i = 1, · · · n. 

Now we prove: 

Theorem 2.7. (Alternation Theorem). Let {u1, ... ,un} C C(I,X) satisfy 
the Haar condition. Let f E C (I, .X) and g E Jo.![. The following are Equivalent: 
(i) II! - 911 = d(f' M) 
(ii) f - g has at least n-zeros. 

Proof. Let r = f - g. By Theorem 2.3, (i) is satisfied if and only if 

0 = (O,· .. ,0) E convexhull of E(x*) = {r(t,x*)~(t,x*): (t,x*) E m(r)}. Since 
E(x*) is compact, then every point in the convexhull of E(x*) is a convex linear 
combination of at most n-elements of E(x*). Thus there exists Ao, ... , Ak E (0, 1) 

k k 
such that I: Ai= land O = I: Air(ti,x*)~(ti,x*). By Caratheodory Theorem 

i=O i=O 
[3 p.17], we have k < n. 

Since the set { u1, ... , 'lln} satisfy the Haar condition, the elements of any 

subset {t(tip x*) : 1 ~ k ~ n} is independent in Rn. Consequently k > n. 
Hence k = n. 

Lemma 2.6 now implies that /\i r( ti, x*) has at least n + l alternation. But 
Ai > 0. Thus r has at least n-zeros. This ends the proof. 
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3. Best Local approximation 

Let {u1, ... ,un} C C(J,}() and M = span{u1, ... ,un}. For£ E (0,1) let 
I£ = [O, £) and Mc = Milt:, the restriction of NI to I£. Then Mc C C(IE, X). 
Let J E C(I, .X) and J £ = JI Ic Since li1£ is finite dimensional for all £, it 
follows that for each £ there exists PE(J) E ME such that 

II!£ - P&(!)II 

The net (P&(!)) need not to converge as £ -i- o+. Following Chui, Shisha. 

and Smith (4), "if (Pc(!)) converges uniformly on some interval [O, £0) to some 
Po(!) EM, then we say that Po(!) is a best local approximation off." 

The object of this section, is to use the results in section II of this paper to 
prove a similar type Theorems of Chui-etal [4, Theorem 2.1) for vector valued 
continous functions, with the uniform norm and with the L1-norm. 

For f E C(I, X) we say that f is weakly differentiable on I if for each 
tE(0,1) 

lim(J(t + EJ- J(t) ,x*) 
£-;.Q 

exists for each x* E X*. We will write J'(t, x*) for such limit. Let C'{:,(I, X) 

denote the space of n-times weakly differnetiable functions. We let jU)(t, x*) 
denote the /h-derevative associated with t and x*. 

Now we assume that the set {u1, ... ,un} C c:(I,X). For x* E B~(X*), 
we let 

(u1(0),x*)···,(un(O),x*) 

(n-l)(O *) (n-l)(O *) Ul , X ···Un ,X 

Now we prove 

Theorem 3.1. Let {u1, ... , un} C ci(I,.X) satisfy .the Haar Condition. 
Assume that for every f E C;(I, .X) the net PE(J) converges uniformely to Jo as 

· E-+ o+. Then the matrix An(x*) is non-singular for every x* f= 0 in B1(X*). 
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Proof. Since PE(!) E Jvl for each £ > 0, it follows that· P0(f) E M. 
Further, since 

then by Theorem 2. 7 there exists ( ti ( [) )f=1, such that O < t1 ( £) < t2 ( £) < · · · < 
tn(l') < [ and 

Thus by Rolle's Theorem, for each x* E in .B1(X*) there exists (sj(£))J'=1 such 
that 

(1) 

where O < S1(£) < · · · < Sn-j+1(£) < £. Now fixing x* and taking the limit as 
. £--* o+ in (1) we get 

(2) 

j = 1, · · ·, n, and (2) holds for all f E C'{;;(J, X) and x* E B1(X*). 
Now, since PE(f) EM, we have 

n 

P&(f)( t) = Lai( [, f)ui( t). 
i=l 

Further, that P&(f)--'>Po(f) and that M is finite dimensional implies that 
£ 

ai(£, J)--'>ai(f) say for each i == l, · · ·, n. Hence from Equation (2) and the E 
fact that Ui E C~(I, X) we get 

n L ai(f)u~j-I) (0, x*) = f(j-l) (0, x*) 
i=l 

(3) 

for all x* E B1(.X*). Since equation (3) is valid for all f E C-:);(I, X), it follows 
that for x* f= 0, An(x*) is non-singular. This ends the proof. 

n 
Lemma 3.2. Let An(x*) be non-singular, and II L ai(£)udl1c = 0(£n-l) 

i=l 
as£--* o+. Then ai(l')-+ 0 as£-+ o+ for each i = l, · · ·, n. 
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Proof. The proof follows from the facts 
n 

(i) 11 L ai(E)udlrc = O(En-l) as£--* 0 implies that II L7=l ai(£)(ui,x*)IIIt: 
i=l 

= 0(£n-l) as£--* 0 

(ii) If g(t) = (ui(t), x*), then g'(O) = u~(O, x*). 
(iii) Lemma 2.1 of [4). 

We now prove the converse of Theorem 3.1. 

Theorem 3.3. Let An(x*) be non-singular for each x* f O in B1(X*). 
Then Pe:(!) coverges uniformly to some P0(f). Further, Po(J)i(o, x*)· = Ji(o, 
x*), j = 1, 2, · · ·, n - l and x* E B1(..X*). 

n 
Proof. Let Pe:(!) = L ai( c, f)ui. For every z* E B1 (X*), the element 

i=l n 

h = L Ji-:(O,x*)ui is an element of ]\if. Since Pe:(!) is the best approximant 
i=l 

of fe: in Me:, it follows that 

Now, for any g E C(I,X), the map t--+ llg(t)II is continous on the compact 
set I. Hence sup llg(t)II = llg(to)II for some to. By the Hahn-Banach Theorem, 

t 
there exists some x* E B1(X*) such that 

sup llg(t)II = llg(to)II = (g(to),x*) 
t 

Consequently, since h, f E C(J, .X), there exists some t E Pe: and x* E B(X*) 
such that 

jjh - fe:IJ = l(h(t) - fc(t), x*)I 
n 

= IL li-l) (0, x )( ui( t), x*) - (fe:( t), x*)I 
i=l 

(1) 

Since An(x*) has an inverse, we can assume that 

{ 
1 if i = j) (u~i-I)(O),x*) = Oij = O if if j J' 
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Thus expanding each (ui, x*) arround the point t = 0, using the Taylor expansion 
with remainder we get: 

= (ui(O),x*) + ... + (uf-1(0),x*) 8n-l + (u~n)(r),x*) n 
(n - 1)! n' s 

= (u~i\o), x*) + Ri, . 

R
. _ (u~n\r),x*) n 
i - s n! ' 0 < r < s < £. where 

Hence 
n I: J<i-1>co,x*)(ui(t),x*) 
i=l 

Similarly, we expand (fe(t), x*) around t = 0, using Taylor series with remainder. 
Using the fact that Ui and f are in C'{!:,(I, .X) for i = 1, · · ·, n, and the fact each 
Ri has the form 

where() is continous and O < r < s < t:, it follows that for£-+ o+: 
n 

I I:/-1(0,x*)(ui(t),x*) - (fe(t),x*)I = O(tn) = o(tn-l) (2) 
i=l 

It follows from (1) that for £ ~ o+: 

(3) 

Now, let bi(t,J) = ai(t,J)- J(i-l)(o,x*). Then 
n n n 

II Lbi(t,J)udl = II Lai(t,J)ui - I:J<i-I)(o,x*)uill 
i=l i=l i=l 

n 

:S IIPe(f) - fell+ II Lj<i-l)(o,x*)ui - fell· 
i=l 

Then using equation (2) and (3) to get for c -+ o+: 
n 

IILbi(t:,j)'llill = o(£n-l) 
i=l 

(4) 
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Hence, 

Thus Pe(!) converges uniformly to some Po (f) as c -), o+. Further, equation 
('1) and Lemma 3.2 implies that Jim /Ji(c,J) = 0. Hence 

t::-+O+ 

Thus 

This ends the proof of the Theorem. 

Closing Remarks. One can consider the problem of best local approxi 
mation for different subspace ]\![. Indeed Let .X = f_P, l < p < oo, and LP(J, fP) 
be the space of p-Bachner integrable functions defined on I with values in fP. 
Hence for f E LP(J, f.P), 

II/lip = c[ llf(t)llp dt)'fp c[ f ltn(t)lp dt)1IP, 
O n=1 

where J(t) = (fn(t))~1- 

Let {ui,···,un} be continuous functions in LP(J,fP) such that 

and { U1i, ... , uni} is a T-system in C(I) for ea.ch i = 1, 2, 3, · · ·. Set M = span 
of {ui, ... , un}- In [6] Kroo proved that ]\!J is a Chebechev subspace in £1(£!), 
l; is a finite dimensional Hilbert spa.cc. The authors proved in [1] that M is a 

Chebechcv subspace in L1(fP), for a.ny 1 ~ p ~ oo, and with no restriction on 
the dimension off P. If we set p = l and 111j = span { u11, ... , Unj}, then each Mj 
is a Chebechev subspace in L1(J) by the Jackson's Theorem [3]. Set 

M = {(gi): 9i EM;: [ !!g(t)lldt < oo}. 
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Then Mis a closed subspace of L1(J,f.1). Further Mis proximinal. For f = 
A A A 

(fn) E L1(J,£1) and fn E Mn such d(fn, Jl.,fn) = llfn - f nll1, we have g = (f n) E 
Mand 

<l(f, 1.1) = 11! - 911. 

In this case the problem of best local approximation is that for the coordi 
nate functions f n, and one can prove 

Theorem. Pc(!) converges in L1 ( I, £1) to some P0(f) in M if only if 
Pc(fn) converges in L1(I) to some Po(fn) in Mn. 
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