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STRONG F,-SUMMABILITY

MURSALEEN AND Q. A. KHAN

Abstract. Let A = (a,;) be an infinite matrix and z = () an infinite
sequence of complex numbers. A sequence z is said to be F4-summable
to a number £ [Acta Math. 80 (1948), 167-190] if and only if z is bounded

and
[oa]

E AnkTE4p — L

k=0

as n — oo, uniformly for p > 0.

The object of this paper is to define strong F4-summability which is
a generalization of strong almost convergence due to I. J. Maddox [Math.
Proc. Camb. Phil. Soc., 83 (1978), 61-64]. We also characterize the
matrices which transform strong almost convergent sequences to strong
F,-summable sequences.

1. Introduction

Let £, ¢ and ¢ be the Banach spaces of bounded, convergent and null
sequences z = (zx)§° respectively, with ||z|| = supy¢ |2x|- Let D be the shift
operator on the set of all real or complex sequences, i.e., Dz = (z){°, D%z =
(zx)$° and so on. It may be recalled that [1], the Banach limit L is a non-
negative linear functional on £, such that L is invariant under the shift operator
i.e. L(Dz) = L(z) for all z € £, and that L(e) = 1 where e = (1,1,1,---). A

sequence z € £, is called almost convergent [2] if all of its Banach limits coincide.
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Let f denote the set of all almost convergent sequences, i.e.

n—oco N

n—1
1 . ; .
I = {a: Eloo: lim — E Tk+p exist uniformly in p} ‘
k=0

Lorentz [2] further defined a sequence z to be F4-summable to a number £
if and only if z € £, and

(e ] %
E Qnk Tkip — £, as n — oo, uniformly in p > 0.
k=0

If 4 = L for kK < n, and = 0 for £ > n. Then F4-summability is same as
almost cox?vergence of z. Furthermore, if we take p = 0, the above definition
reduces to that of A-summability.

We use the notation zx — £(F4) to denote z to be F4-summable to £, and
(F4) to denote the set of all F4-summable sequences.

The summability methods of real or complex sequences by infinite matrices
are of three types: Ordinary, strong and absolute. It is therefore naturally
expected here that the concept of F4-summability must give rise to other two
types, i.e., strong F4-summability and absolute F4-summability. In this paper
we introduce strong F4-summability and its related sublinear functional. We
also characterize the matrices which transform the elements of [f] to [F,]. We

further extend the space [F4] and study certain properties.

2. Strong F4-Summability

In this section, we define strong analogue to F4-summability in the following

manner.
Definition 2.1. A sequence z € {, is said to be strong F4-summable to a

number £, i.e. z; — £[F4] if and only if

Zank[:ckﬂ, —£| — 0, as n — oo, uniformly in p > 0.
k=0
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By [F4] and [Fa], we mean the spaces of sequences which are stronly F4-
summable, and strongly F4-summable to zero respectively.

It is easy to see that

13 ank(zi = O £ Y anrlee — L.
k

k

Hence [F4] C Fa, and strongly F4-summability is equivalent to F4-summability

if ank = M (a constant) < oo for each k, and for fixed n.

Remark. If A = (anx) with

1
—, k<mn,
Qnk = n

0, k2>mn,

then [F4] = [f], the space of strongly almost convergent sequences [4].

We define the following sublinear functionals
S(z) = limsupsup E Gk Bkt
n P k

L(z) = limsup supZankIzk+p|
n P k

Theorem 2.1. (i) (Fa) = {z € s : S(z) = —5(-2)},
(ii) [Fa] = {z € £ : L(z — Le) = 0 for some {}.

Proof. (i) Let z € £ and S(z) = —5(-=z), i.e,

lim sup sup E apk Lryp = liminfinf E Unk Thtp
n
k

n n k

which holds if and only if

Z Ank Tk4p
k

tends to a limit as n — co. Hence z € (Fa).

(ii) It is easy to see that z € [F4] if and only if z € £ and

L(z —Le) = —L(le —z).
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But £(z) = L(-z). Therefore

L(z — Le) = 0.

3. Matrix Transformation

The following theorem characterizes the matrices B € ([f],[F4]) i.e. Bz €
[Fa] whenever z € [f] for an infinite matrix B = (b,.x), where Bz = (30 bak wi )

exists.

Theorem 3.1. Let A = (ani) be an infinite matriz such that
(i) 14| < o0, and |
(i1) Y peo @nk converges for each n.
Then B = (bnk) € ([f],[Fa)) if and only if
(iif) || B]| < oo,
(iv) For each k = 0,1,2,---, there ezists by such that

(bnk — bk) € [Falo

(v) For each set E which is uniformly of zero density (see [4]).
(D bak — bi) € [Falo,
keE

and
(vi) Dopeo 10kl < 00.

Proof. Necessity. Let B € ([f],[Fa]). Condition (iii) follows by ([f],[Fa))
C (¢,400). Necessity of (iv) is obvious. To prove the necessity of (vi), we note
that

Ibkl < sup Ibnkl-
n
Thus, for each : = 0,1,2,---.

1 1 '
D16kl < sup 3 [bai] < ||BYI.
k=0 " k=0
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To prove (v), let E = {5(0),5(1),---.} be an infinite set which is uniformly
of zero density. Define the matrix C = (cnk) by

Cnk = by j(k)-

C € (Lo, [Fa]), therefore, uniformly in p

lir};nzamnl E Cntpk Th — Zbk Tk
n k k

= lingnzamn Y (batp,itky — i)k
n i(k)EE
= 0, by (i), (iii) and (iv).
Hence (v) follows for z € [f].

Sufficiency. Let zp — £[f]. Then for each m

Z Umn Z bn+p,k T
n k
=L Z Amn an-}-p,k s Z(zk - l) Zam'n Gn+tp,k-
n k k n

Let
(Zamn bn+P,k) - bk = :B(man)p)-
k

Then, by (i), (ii) and (v)

> 1B(m,n,p)| < 2|1B]| ||4]

n

for all m. Therefore, by (iv) and (v)
li,f,n Z(mk —{) B(m,n,p) = 0.
Hence Bz = (), bnk Zk)n is bounded and

liganamnI Z bptpk (zx — £)] = 0, uniformly in p,
n k
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which follows

D bakzk— £(b— > bi)+ Y bk zk(Fa)
k k k

for z; — {[F4].
This completes the proof of the theorem.

4. Extension of [Fy]

Let ¢ = (gx) be a sequence of positive real numbers. Write
Thnp(z) = zanklxk+p|qk
k

if the series converges for each n and p.
We extend the space [F4] to

[Fa,q] = {z:Thy(z —Le) — 0, as n — oo, uniformly in p}.

Theorem 4.1. Suppose that ||A]| < oo, 0 < g < 7 and Tk is bounded.
9k
Then
[Fa,7] C [Fa,q]

Proof. Define
Ye,py Yk,p & 1,
Ukp =

0, Yk,p < 1,
and

O’ Yk,p Z 1,

Yeip =

ykyp’ yk,p < 1’

where:
Yep = |zk+p = ],

Therefore

ykap = ukrp + vk:P’



STRONG F4-SUMMABILITY 159

and
Ay Ak Ak
Yep = Yk,p 1 Yk,p
where
k
=2
Tk

Now, it follows that

Ak
uk,p S uk,p S ykaP’

and
vifp # v,?,p for0< A< A\ <1.

We have the inequality (see Maddox [3] p. 351).
Y nk 125 <D ank Ykp + (O ank vip) AV
k k k

Hence z € [Fa,q] if z € [Fy4,r].
This completes the proof of the theorem.
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