STRONG F_A -SUMMABILITY

MURSALEEN AND Q. A. KHAN

Abstract. Let $A = (a_{nk})$ be an infinite matrix and $x = (x_k)$ an infinite sequence of complex numbers. A sequence x is said to be F_A -summable to a number ℓ [Acta Math. 80 (1948), 167-190] if and only if x is bounded and

$$\sum_{k=0}^{\infty} a_{nk} x_{k+p} \to \ell$$

as $n \to \infty$, uniformly for $p \ge 0$.

The object of this paper is to define strong F_A -summability which is a generalization of strong almost convergence due to I. J. Maddox [Math. Proc. Camb. Phil. Soc., 83 (1978), 61-64]. We also characterize the matrices which transform strong almost convergent sequences to strong F_A -summable sequences.

1. Introduction

Let ℓ_{∞} , c and c_0 be the Banach spaces of bounded, convergent and null sequences $x = (x_k)_0^{\infty}$ respectively, with $||x|| = \sup_{k\geq 0} |x_k|$. Let D be the shift operator on the set of all real or complex sequences, i.e., $Dx = (x_k)_1^{\infty}$, $D^2x = (x_k)_2^{\infty}$ and so on. It may be recalled that [1], the Banach limit L is a nonnegative linear functional on ℓ_{∞} such that L is invariant under the shift operator i.e. L(Dx) = L(x) for all $x \in \ell_{\infty}$ and that L(e) = 1 where $e = (1, 1, 1, \cdots)$. A sequence $x \in \ell_{\infty}$ is called almost convergent [2] if all of its Banach limits coincide.

Received February 18, 1992; revised September 17, 1992.

Let f denote the set of all almost convergent sequences, i.e.

$$f = \left\{ x \in \ell_{\infty} : \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} x_{k+p} \text{ exist uniformly in } p \right\}.$$

Lorentz [2] further defined a sequence x to be F_A -summable to a number ℓ if and only if $x \in \ell_{\infty}$ and

$$\sum_{k=0}^{\infty} a_{nk} x_{k+p} \to \ell, \text{ as } n \to \infty, \text{ uniformly in } p \ge 0.$$

If $a_{nk} = \frac{1}{n}$ for k < n, and = 0 for $k \ge n$. Then F_A -summability is same as almost convergence of x. Furthermore, if we take p = 0, the above definition reduces to that of A-summability.

We use the notation $x_k \to \ell(F_A)$ to denote x to be F_A -summable to ℓ , and (F_A) to denote the set of all F_A -summable sequences.

The summability methods of real or complex sequences by infinite matrices are of three types: Ordinary, strong and absolute. It is therefore naturally expected here that the concept of F_A -summability must give rise to other two types, i.e., strong F_A -summability and absolute F_A -summability. In this paper we introduce strong F_A -summability and its related sublinear functional. We also characterize the matrices which transform the elements of [f] to $[F_A]$. We further extend the space $[F_A]$ and study certain properties.

2. Strong F_A -Summability

In this section, we define strong analogue to F_A -summability in the following manner.

Definition 2.1. A sequence $x \in \ell_{\infty}$ is said to be strong F_A -summable to a number ℓ , i.e. $x_k \to \ell[F_A]$ if and only if

$$\sum_{k=0}^{\infty} a_{nk} |x_{k+p} - \ell| \to 0, \text{ as } n \to \infty, \text{ uniformly in } p \ge 0.$$

By $[F_A]$ and $[F_A]_0$ we mean the spaces of sequences which are stronly F_A -summable, and strongly F_A -summable to zero respectively.

It is easy to see that

$$\sum_k a_{nk}(x_k-\ell)| \leq \sum_k a_{nk}|x_k-\ell|.$$

Hence $[F_A] \subset F_A$, and strongly F_A -summability is equivalent to F_A -summability if $a_{nk} = M$ (a constant) $< \infty$ for each k, and for fixed n.

Remark. If $A = (a_{nk})$ with

$$a_{nk} = \begin{cases} \frac{1}{n}, & k < n, \\ 0, & k \ge n, \end{cases}$$

then $[F_A] = [f]$, the space of strongly almost convergent sequences [4].

We define the following sublinear functionals

$$S(x) = \limsup_{n} \sup_{p} \sum_{k} a_{nk} x_{k+p}$$
$$\mathcal{L}(x) = \limsup_{n} \sup_{p} \sum_{k} a_{nk} |x_{k+p}|$$

Theorem 2.1. (i) $(F_A) = \{x \in \ell_\infty : S(x) = -S(-x)\},$ (ii) $[F_A] = \{x \in \ell_\infty : \mathcal{L}(x - \ell e) = 0 \text{ for some } \ell\}.$

Proof. (i) Let $x \in \ell_{\infty}$ and S(x) = -S(-x), i.e.,

$$\limsup_{n} \sup_{n} \sup_{k} \sum_{k} a_{nk} x_{k+p} = \liminf_{n} \inf \sum_{k} a_{nk} x_{k+p}$$

which holds if and only if

$$\sum_{k} a_{nk} x_{k+p}$$

tends to a limit as $n \to \infty$. Hence $x \in (F_A)$.

(ii) It is easy to see that $x \in [F_A]$ if and only if $x \in \ell_{\infty}$ and

$$\mathcal{L}(x-\ell e) = -\mathcal{L}(\ell e - x).$$

But $\mathcal{L}(x) = \mathcal{L}(-x)$. Therefore

$$\mathcal{L}(x-\ell e) = 0.$$

3. Matrix Transformation

The following theorem characterizes the matrices $B \in ([f], [F_A])$ i.e. $Bx \in [F_A]$ whenever $x \in [f]$ for an infinite matrix $B = (b_{nk})$, where $Bx = (\sum_k b_{nk} x_k)_n$ exists.

Theorem 3.1. Let $A = (a_{nk})$ be an infinite matrix such that

- (i) $||A|| < \infty$, and
- (ii) $\sum_{k=0}^{\infty} a_{nk}$ converges for each n.

Then $B = (b_{nk}) \in ([f], [F_A])$ if and only if

(iii) $||B|| < \infty$,

(iv) For each $k = 0, 1, 2, \cdots$, there exists b_k such that

$$(b_{nk} - b_k) \in [F_A]_0$$

(v) For each set E which is uniformly of zero density (see [4]).

$$(\sum_{k\in E}b_{nk}-b_k)\in [F_A]_0,$$

and

(vi) $\sum_{k=0}^{\infty} |b_k| < \infty$.

Proof. Necessity. Let $B \in ([f], [F_A])$. Condition (iii) follows by $([f], [F_A]) \subset (c, \ell_{\infty})$. Necessity of (iv) is obvious. To prove the necessity of (vi), we note that

$$|b_k| \le \sup_n |b_{nk}|.$$

Thus, for each $i = 0, 1, 2, \cdots$.

$$\sum_{k=0}^{i} |b_k| \le \sup_{n} \sum_{k=0}^{i} |b_{nk}| \le ||B||.$$

To prove (v), let $E = \{j(0), j(1), \dots\}$ be an infinite set which is uniformly of zero density. Define the matrix $C = (c_{nk})$ by

$$c_{nk} = b_{n,j(k)}.$$

 $C \in (\ell_{\infty}, [F_A])$, therefore, uniformly in p

$$\lim_{m} \sum_{n} a_{mn} |\sum_{k} c_{n+p,k} x_{k} - \sum_{k} b_{k} x_{k}|$$
$$= \lim_{m} \sum_{n} a_{mn} \left| \sum_{j(k) \in E} (b_{n+p,j(k)} - b_{k}) x_{k} \right|$$
$$= 0, \text{ by (i), (iii) and (iv).}$$

Hence (v) follows for $x \in [f]$.

Sufficiency. Let $x_k \to \ell[f]$. Then for each m

$$\sum_{n} a_{mn} \sum_{k} b_{n+p,k} x_k$$
$$= \ell \sum_{n} a_{mn} \sum_{k} b_{n+p,k} + \sum_{k} (x_k - \ell) \sum_{n} a_{mn} a_{n+p,k}.$$

Let

$$(\sum_k a_{mn} \ b_{n+p,k}) - b_k = \beta(m,n,p).$$

Then, by (i), (ii) and (v)

$$\sum_{n} |\beta(m, n, p)| \leq 2 ||B|| ||A||$$

for all m. Therefore, by (iv) and (v)

$$\lim_{m}\sum_{n}(x_{k}-\ell) \beta(m,n,p) = 0.$$

Hence $Bx = (\sum_k b_{nk} x_k)_n$ is bounded and

$$\lim_{m}\sum_{n}a_{mn}|\sum_{k}b_{n+p,k}(x_{k}-\ell)|=0, \text{ uniformly in } p,$$

which follows

$$\sum_{k} b_{nk} x_{k} \to \ell(b - \sum_{k} b_{k}) + \sum_{k} b_{k} x_{k}(F_{A})$$

for $x_k \to \ell[F_A]$.

This completes the proof of the theorem.

4. Extension of $[F_A]$

Let $q = (q_k)$ be a sequence of positive real numbers. Write

$$T_{n,p}(x) = \sum_{k} a_{nk} |x_{k+p}|^{q_k}$$

if the series converges for each n and p.

We extend the space $[F_A]$ to

 $[F_A,q] = \{x: T_{n,p}(x-\ell e) \to 0, \text{ as } n \to \infty, \text{ uniformly in } p\}.$

Theorem 4.1. Suppose that $||A|| < \infty$, $0 < q_k \leq r_k$ and $\frac{r_k}{q_k}$ is bounded. Then

$$[F_A, r] \subset [F_A, q]$$

Proof. Define

$$u_{k,p} = \begin{cases} y_{k,p}, & y_{k,p} \ge 1, \\ 0, & y_{k,p} < 1, \end{cases}$$
$$v_{k,p} = \begin{cases} 0, & y_{k,p} \ge 1, \\ y_{k,p}, & y_{k,p} < 1, \end{cases}$$

where

and

$$y_{k,p} = |x_{k+p} - \ell|^{r_k}.$$

Therefore

$$y_{k,p} = u_{k,p} + v_{k,p},$$

and

$$y_{k,p}^{\lambda_k} = u_{k,p}^{\lambda_k} + v_{k,p}^{\lambda_k}$$

where

$$\lambda_k = \frac{q_k}{r_k}.$$

Now, it follows that

$$u_{k,p}^{\lambda_k} \le u_{k,p} \le y_{k,p},$$

and

$$v_{k,p}^{\lambda_k} \leq v_{k,p}^{\lambda}$$
 for $0 < \lambda \leq \lambda_k \leq 1$.

We have the inequality (see Maddox [3] p. 351).

$$\sum_{k} a_{nk} y_{k,p}^{\lambda_{k}} \leq \sum_{k} a_{nk} y_{k,p} + (\sum_{k} a_{nk} v_{k,p})^{\lambda} ||A||^{(1-\lambda)}$$

Hence $x \in [F_A, q]$ if $x \in [F_A, r]$.

This completes the proof of the theorem.

Acknowledgement

The Authors are grateful to Prof. Z. U. Ahmad, Chairman, Department of Mathematics, A. M. U., Aligarh, for his constant encouragement, and to the referee for his useful comments.

References

- [1] S. Banach, "Theorie des Operations Lineaires" (Warszawa 1932).
- [2] G. G. Lorentz, "A contribution to the theory of divergent sequences", Acta Math., 80 (1948), 167-190.
- [3] I. J. Maddox, "Space of strongly summable sequences", Quart. J. Math. (Oxford), 18 (1967), 345-355.
- [4] I. J. Maddox, "A new type of convergence," Math. Proc. Camb. Phil. Soc., 83 (1978), 61-64.

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India.