TAMKANG JOURNAL OF MATHEMATICS Volume 24, Number 2, Summer 1993

TOTALLY UMBILICAL SEMI-INVARIANT SUBMANIFOLDS AND CR-SUBMANIFOLDS OF A SASAKIAN MANIFOLD

S. M. KHURSEED HAIDER, V. A. KHAN AND S. I. HUSAIN

Abstract. In the present paper, a classification theorem for totally umbilical semi-invariant submanifold is established. CR-submanifolds of a Sasakian space form are studied in detail, and finally a theorem for a CRsubmanifold of a Sasakian manifold to be a proper contact CR-product is proved.

1. Introduction

The notion of semi-invariant submanifold of a Sasakian manifold, which is a natural generalization of both invariant submanifolds [10] and anti-invariant submanifolds [9] in a Sasakian manifold was introduced and studied in detail by A. Bejancu and N. Papaghuic [4]. On the other hand, M. Kobayashi [12] initiated the study of CR-submanifolds of a Sasakian manifold and established that there exist no proper contact CR-product in a Sasakian space form $\overline{M}(c)$ with C < -3. In view of this, it was interesting to ascertain the existence of a proper contact CR-product in a Sasakian space form $\overline{M}(C)$ when C > -3. The purpose of the present paper is to classify semi-invariant submanifolds of a Sasakian manifold and to investigate the situation under which the CR-submanifold becomes a proper contact CR-product.

Received February 18, 1992.

AMS Subject classification (1991) 53C40.

2. Preliminaries

Let \overline{M} be a (2m+1)-dimensional almost contact metric manifold with structure tensors (ϕ, ξ, n, g) where ϕ is a tensor field of type $(1, 1), \xi$ is a vector field, n is a 1-form and g is the Riemannian metric on \overline{M} . These tensors satisfy [6]

$$\phi^2 x = -X + n(X)\xi, \ \phi\xi = 0, \ n(\xi) = 1, \ n(\phi X) = 0$$
 (2.1)

and

$$g(\phi X, \phi Y) = g(X, Y) - n(X)n(Y), \ n(X) = g(X, \xi)$$

for any vector fields X, Y tangent to \overline{M} . We denote by $\overline{\bigtriangledown}$ the covariant derivative with respect to the metric g on \overline{M} . It is known that \overline{M} is a Sasakian manifold if and only if

$$(\overline{\nabla}_X \phi)Y = g(X, Y)\xi - n(Y)X, \ \overline{\nabla}_X \xi = -\phi X.$$
(2.2)

Let M be an m-dimensional Riemannian manifold with induced metric g isometrically immersed in \overline{M} . M is called a CR-submanifold of \overline{M} if M is tangent to ξ and there exists a differentiable distribution $D: x \to D_x \subset T_x M$ such that $\phi D_x = D_x$ and $\phi D_x^{\perp} \subset T_x^{\perp} M$, where D^{\perp} denotes the orthogonal complementary distribution of D and $T_x M$, $T_x^{\perp} M$ denote the tangent space and the normal space of M respectively. We call the pair (D, D^{\perp}) ξ -horizontal (resp. ξ -vertical) if $\xi \in D$ (resp. $\xi \in D^{\perp}$)[12]. M is said to be proper if neither D = 0 nor $D^{\perp} = 0$. For a vector field X tangent to M and N normal to M, we put

$$\phi X = PX + FX, \text{ and } \phi N = BN + CN, \qquad (2.3)$$

where PX (resp. FX) denotes the tangential (resp. normal) component of ϕX , and BN (resp. CN) denotes the tangential (resp. normal) component of ϕN . It follows that the normal bundle $T^{\perp}M$ splits as $T^{\perp}M = \phi D^{\perp} \oplus u$, where u is the orthogonal complement of ϕD^{\perp} and is invariant subbundle of $T^{\perp}M$ under ϕ . Let ∇ be the Riemannian connection on M, then the Gauss and Weingarten formulas are given respectively by

$$\nabla_X Y = \nabla_X Y + h(X, Y), \qquad (2.4)$$

$$\nabla_X N = -A_N X + \nabla_X^{\perp} N \tag{2.5}$$

for each vector fields X, Y tangent to M and N normal to M, h and A are both the second fundamental forms related by

$$g(A_N X, Y) = g(h(X, Y), N),$$
 (2.6)

and ∇^{\perp} denotes the connection in the normal bundle $T^{\perp}M$ of M. We call the normal connection ∇^{\perp} of M to be (D-u)-flat if $R^{\perp}(X,Y) = 0$ for $X, Y \in D$ and $N \in u$. M is called (D-u) totally geodesic if $A_N X = 0$ for each $X \in D$ and $N \in u$.

The equation of Codazzi and Ricci are given respectively by

$$\overline{R}(X,Y,Z,N) = g(\bigtriangledown_X^{\perp}h(Y,Z) - h(\bigtriangledown_X Y,Z) - h(Y,\bigtriangledown_X Z),N) - g(\bigtriangledown_Y^{\perp}h(X,Z) - h(\bigtriangledown_Y X,Z) - h(X,\bigtriangledown_Y Z),N). (2.7) \overline{R}(X,Y,N,N_1) = R^{\perp}(X,Y,N,N_1) - g([A_N,A_{N_1}]X,Y)$$
(2.8)

for each X, Y and Z tangent to M and N, N_1 normal to M. \overline{R} , R and R^{\perp} denote the curvature tensors associated with $\overline{\bigtriangledown}, \bigtriangledown$ and \bigtriangledown^{\perp} respectively. In case of Sasakian manifold, the following equations are well known [9].

$$\overline{R}(X,Y)\phi Z = \phi \overline{R}(X,Y)Z + g(\phi X,Z)Y - g(Y,Z)\phi X$$

$$+ g(X,Z)\phi Y - g(\phi Y,Z)X. \qquad (2.9)$$

$$\overline{R}(X,Y)Z = -\phi \overline{R}(X,Y)\phi Z + g(Y,Z)X - g(X,Z)Y$$

$$- g(\phi Y,Z)\phi X + g(\phi X,Z)\phi Y. \qquad (2.10)$$

If \overline{M} is a Sasakian space form of constant ϕ -holomorphic sectional curvature C, then \overline{R} is given by [6]

$$\overline{R}(X,Y)Z = \frac{1}{4}(C+3)[g(Y,Z)X - g(X,Z)Y] + \frac{1}{4}(C-1)\{n(X)n(Z)Y - n(Y)n(Z)X + g(X,Z)n(Y)\xi - g(Y,Z)n(X)\xi + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y + 2g(X,\phi Y)\phi Z\}.$$
(2.11)

for each X, Y and Z tangent to \overline{M} .

The 2-form Ω on \overline{M} is defined by $\Omega(X,Y) = g(X,\phi Y)$ is skew-symmetric [4], that is,

$$g(X,\phi Y) = -g(\phi X, Y), \qquad (2.12)$$

and the covarient derivative of ϕ is defined by

$$\overline{\nabla}_X \phi Y = (\overline{\nabla}_X \phi) Y + \phi(\overline{\nabla}_X Y)$$
(2.13)

for each X, Y tangent to \overline{M} .

Now, let M be an m-dimensional Riemannian manifold isometrically immersed in \overline{M} . We assume that the structure vector field ξ on \overline{M} is tangent to M and denote by $\{\xi\}$ the distribution spanned by ξ . Also we denote by TM and $T^{\perp}M$ the tangent bundle to M and respectively the normal bundle to M.

The submanifold M of the Sasakian manifold \overline{M} is called semi-invariant if it is endowed with the pair of distributions (D, D^{\perp}) satisfying the following conditions:

- (i) $T(M) = D \oplus D^{\perp} \oplus \{\xi\}$, and $D, D^{\perp}, \{\xi\}$ are mutually orthogonal,
- (ii) the distribution D is invariant by ϕ , i.e., $\phi D_x = D_x$ for each $x \in M$,
- (iii) the distribution D^{\perp} is anti-invariant by ϕ , i.e. $\phi D_x^{\perp} \subset T_x^{\perp} M$ for each $x \in M[4]$.

The semi-invariant submanifold M is called anti-invariant submanifold (resp. invariant submanifold) if D = 0 (resp. $D^{\perp} = 0$). The projection morphisms of TM to D and D^{\perp} are denoted respectively by P and Q. Using this notation we have

$$X = PX + QX + n(X)\xi \tag{2.14}$$

for each X tangent to M.

The equation of Codazzi for totally umbilical semi-invariant submanifold M is given by

$$\overline{R}(X, Y, Z, N) = g(Y, Z)g(\nabla_X^{\perp} H, N) - g(X, Z)g(\nabla_Y^{\perp} H, N),$$
(2.15)

where X, Y, Z are vector fields on M and $N \in T^{\perp}M$, H being the mean curvature vector.

For totally umbilical semi-invariant submanifold M, the equations (2.4) and (2.5) take the form

$$\nabla_X Y = \nabla_X Y + g(X, Y)H \tag{2.16}$$

$$\nabla_X N = -g(H, N)X + \nabla_X^{\perp} N \tag{2.17}$$

A semi-invariant submanifold M of \overline{M} is said to be semi-invariant product if the distribution $D \oplus \{\xi\}$ is involutive and locally M is a Riemannian product $M_1 \times M_2$ where M_1 (resp. M_2) is a leaf of $D \oplus \{\xi\}$ (resp. D^{\perp}) [3].

3. Totally Umbilical Semi-Invariant Submanifolds

An $m(\geq 2)$ -dimensional submanifold of an arbitrary Riemannian manifold M is called an extrensic sphere if it is totally umbilical and has nonzero parallel mean curvature vector [8]. In the present section we shall prove a classification theorem for totally umbilical semi-invariant submanifold of a Sasakian manifold. In fact we prove the following:

Theorem 3.1. Let M, $(m \ge 5)$ be a complete connected and simply connected totally umbilical semi-invariant submanifold of a Sasakian manifold M. Then

- (1) M is a semi-invariant product, or
- (2) M is anti-invariant submanifold, or
- (3) M is isometric to an ordinary sphere, or
- (4) M is homothetic to a Sasakian manifold, or
- (5) M is a C-totally real submanifold and the f-structure C is not parallel in the normal bundle.

The cases (4) and (5) occur only when m is odd.

Proof. We take Z, $W \in D^{\perp}$ and using (2.4), (2.5), (2.17) and (2.2) in

(2.13) we have

$$-g(H,\phi W)Z + \nabla_Z^{\perp}\phi W = g(Z,W)\xi + \phi(\nabla_Z W) + \phi h(Z,W).$$
(3.1)

Taking inner product with Z and using the fact that M is totally umbilical we obtain

$$g(H,\phi W) ||Z||^2 = g(Z,W) g(H,\phi Z).$$
(3.2)

Interchanging Z and W in (3.2) we get

$$g(H,\phi Z) \|W\|^2 = g(Z,W) g(H,\phi W).$$
(3.3)

(3.1) together with (3.2) gives

$$g(H,\phi W) = \frac{g(Z,W)^2}{\|Z\|^2 \|W\|^2} g(H,\phi W).$$
(3.4)

The possible solutions of (3.4) are:

(a) H = 0, or (b) $H^{\perp}\phi W$, or (c) Z || W.

Suppose condition (a) holds, i.e., H = 0 shows that M is totally geodesic, which ensures the first part of the theorem.

Next, suppose $H \neq 0$ and $H \in u$. Then with the help of (2.13), (2.2) and (2.1) we get $\overline{\nabla}_X \phi H = \phi \overline{\nabla}_X H$ for each $X \in D$ which further implies that

$$\nabla_X^{\perp} \phi H = -g(H, H)\phi X + \phi \nabla_X^{\perp} H.$$
(3.5)

by the use of (2.17). Since M is semi-invariant, therefore by (2.1) it follows that $\nabla_X^{\perp}\phi H$ and $\nabla_X^{\perp}H$ belongs to u. Thus $\phi X = 0$, guarantees the second part of the theorem.

Finally, suppose $H \neq 0$, $H \notin u$ and Z || W, i.e., dim $D^{\perp} = 1$. Since dim $M \geq 5$, we can choose vectors $X, Y \in D$ satisfying $g(X,Y) = g(X,\phi Y) = 0$. For each N in $T^{\perp}M$, the equations (2.9) and (2.15) implies that $\overline{R}(\phi X, Y, \phi Y, N) = g(Y,Y)g(\phi \bigtriangledown_{\phi X}^{\perp}H, N)$ and $\overline{R}(\phi X, Y, \phi Y, N) = 0$ respectively, which further implies that $\bigtriangledown_{X}^{\perp}H = 0$. Next, we take $Z \in D^{\perp}$, $N \in u$ and $N_{1} \in \phi D^{\perp}$. Then a direct consequence of (2.10) and (2.15) are $\overline{R}(Z, Y, Y, N) = 0$ and R(Z, Y, Y, N) = 0

 $g(Y,Y) \ g(\bigtriangledown_{Z}^{\perp}H,N)$ respectively. Hence combining both, we obtain $\bigtriangledown_{Z}^{\perp}H \in \phi D^{\perp}$. On the same lines, one can immediately have $\overline{R}(Z,Y,Y,N_1) = 0$ and $\overline{R}(Z,Y,Y,N_1) = g(Y,Y) \ g(\bigtriangledown_{Z}^{\perp}H,N_1)$, which implies that $\bigtriangledown_{Z}^{\perp}H \in u$. Thus we have proved for $Z \in D^{\perp}$, $\bigtriangledown_{Z}^{\perp}H \in \phi D^{\perp} \cap u = \{0\}$, i.e., $\bigtriangledown_{Z}^{\perp}H = 0$. Again, using (2.10) and (2.15) we have $\overline{R}(\xi,Y,Y,N) = 0$ and $\overline{R}(\xi,Y,Y,N) = g(Y,Y) \ g(\bigtriangledown_{\xi}^{\perp}H,N)$ for each $N \in T^{\perp}M$ respectively follows that $\bigtriangledown_{\xi}^{\perp}H = 0$. Hence $\bigtriangledown_{x}^{\perp}H = 0$ for all vector fields X tangent to M, i.e., M is an extrinsic sphere. Thus parts (3), (4) and (5) follow from [13]. This theorem thus gives a complete classification of totally umbilical semi-invariant submanifold of a Sasakian manifold.

4. CR-Submanifolds of a Sasakian Space Form

In this section we shall study in detail about the mixed totally geodesic CR-submanifold of a Sasakian space form with parallel horizontal distribution. We recall that the ϕ -holomorphic bisectional curvature of \overline{M} is given by [11]

$$\overline{H}(X,Y) = \overline{R}(X,\phi X,\phi Y,Y)$$

We have,

Lemma 4.1. Let M be a mixed totally geodesic CR-submanifold of a Sasakian manifold \overline{M} with parallel horizontal distribution. Then for each $X \in D$ and $Z \in D^{\perp}$,

$$H(X,Z) = 0$$

Proof. Taking into accoount the mixed totally geodesicness of M in (2.7) to get

$$\overline{R}(X,\phi X,Z,\phi Z) = -g(h(\nabla_X \phi X,Z),\phi Z) - g(h(\phi X,\nabla_X Z),\phi Z) + g(h(\nabla_{\phi X} X,Z),\phi Z) + g(h(X,\nabla_{\phi X} Z),\phi Z).$$
(4.1)

Since D is parallel, $h(\nabla_X \phi X, Z) = 0 = h(\nabla_{\phi X} X, Z)$. Using this and (2.6), equation (4.1) yields

$$R(X,\phi X, Z,\phi Z) = -g(A_{\phi Z}\phi X, \nabla_X Z) + g(A_{\phi Z}X, \nabla_{\phi X}Z), \text{ or}$$

$$\overline{R}(X,\phi X, Z,\phi Z) = g(\nabla_X A_{\phi Z}\phi X, Z) - g(\nabla_{\phi X}A_{\phi Z}X, Z).$$
(4.2)

Using the mixed totally geodesicness of M and the parallelness of D in (4.2), the assertion follows.

We now state the main result of this section.

Theorem 4.1. Let M be a Sasakian space form $\overline{M}(C)$ of constant ϕ -holomorphic sectional curvature C. In order that it may admit a mixed totally geodesic CR-submanifold M with parallel horizontal distribution D, it is necessary that C = 1.

Proof. From lemma (4.1), it follows that $\overline{H}(X,Z) = 0$ for each $X \in D$ and $Z \in D^{\perp}$. Using the curvature equation (2.11) of the Sasakian space form together $\overline{H}(X,Z) = 0$ and (2.12) we obtain

$$0 = -\frac{(C-1)}{2} g(\phi X, \phi X) g(\phi Z, \phi Z).$$

i.e., $(C-1)\|\phi X\|^2 \|\phi Z\|^2 = 0$, which gives that C = 1. This completes the proof of the theorem.

The following theorem which we shall prove in Sasakian setting is well known in case of Kaehler manifold.

Theorem 4.2. Let M be a mixed foliate, and (D, D^{\perp}) be ξ -horizontal CR-submanifold of a Sasakian space form $\overline{M}(C)$. If the normal connection is (D-u)-flat, then $C \leq 1$. The equality holds good if and only if M is (D-u)-totally geodesic.

Proof. Since the normal connection is (D-u)-flat therefore $R^{\perp}(X,Y)N = 0$ for each $X, Y \in D$ and $N \in u$. Using this in Ricci equation (2.8) we obtain

$$R(X, Y, N, \phi N) = -g(A_{\phi N}X, A_nY) + g(A_{\phi N}Y, A_nX), \text{ or}$$

$$\overline{R}(X, Y, N, \phi N) = -2g(A_nX, A_N\phi Y) \text{ by [12]}.$$
(4.3)

Next, by the use of (2.11) it is easy to obtain

 $\overline{R}(X,Y,N,\phi N) = \frac{1}{2}(C-1) g(X,\phi Y) g(\phi N,\phi N).$ From (2.1) it follows that

$$\overline{R}(X,Y,N,\phi N) = \frac{1}{2}(C-1) g(X,\phi Y) g(N,N).$$

$$(4.4)$$

Taking N as a unit vector field of the normal subbundle u, and substracting (4.3) from (4.4) to get

$$(C-1) g(X,\phi Y) + 4g(A_N X, A_N \phi Y) = 0.$$
(4.5)

We put $X = \phi Y$ and since g is a positive definite metric, therefore from (4.5) follows that $C - 1 \leq 0$ or $C \leq 1$. Moreover, if M is (D - u) totally geodesic, then $A_N X = 0$ for each $N \in u$ and $X \in D$ implies that C - 1 = 0 or C = 1, which completes the proof of the theorem.

5. Proper Contact CR-Product

A CR-submanifold M of a Sasakian manifold \overline{M} is called a contact CRproduct if it is locally a Riemannian product of a Sasakian (invariant) submanifold M^{\top} and a totally real (anti-invarient) submanifold M^{\perp} of M. First we prove some basic lemmas which we use subsequently.

Lemma 5.1. Let M be a CR-submanifold of a Sasakian manifold \overline{M} . Then M is D-totally geodesic if and only if $A_N X \in D$ for each $X \in D$ and $N \in TM$.

Lemma 5.2. Let M be a CR-submanifold of a Sasakian manifold \overline{M} and (D, D^{\perp}) be ξ -horizontal. Then the leaf M^{\top} of D is totally geodesic in M if and only if

$$g(A_{FZ}Y,X) = n(X)n(A_{FZ}Y)$$
(5.1)

for each X, Y in D and Z in D^{\perp} .

Proof. We take X, Y in D and Z in D^{\perp} . Then

$$g(Z, \nabla_Y \phi X) = -g(\nabla_Y Z, \phi X).$$
(5.2)

We recall that for each X, Y in D and Z in D^{\perp} , we have [11]

$$g(\nabla_Y Z, X) = g(PA_{FZ}Y, X) + n(\nabla_Y Z)n(X) - n(Z)g(Y, PX).$$
(5.3)

By the use of (2.1), (2.2) we obtain

$$n(\nabla_Y Z) = g(\nabla_Y Z, \xi) = g(Z, \phi Y) = 0.$$
(5.4)

Using (5.3), (5.4) in (5.2) with (D, D^{\perp}) is ξ -horizontal we get

$$g(Z, \nabla_Y \phi X) = -g(PA_{FZ}Y, \phi X). \tag{5.5}$$

Taking into account (2.3), (5.5) becomes

 $g(Z, \bigtriangledown_Y \phi X) = -g(\phi A_{FZ}Y, \phi X)$. By (2.1) it follows that

 $g(Z, \bigtriangledown_Y \phi X) = -g(A_{FZ}Y, X) + n(A_{FZ}Y) n(X)$, from which our assertion follows immediately.

Finally we arrive at:

Theorem 5.1. Let M be a D-totally geodesic, but not totally geodesic CRsubmanifold of a Sasakian manifold \overline{M} and (D, D^{\perp}) be ξ -horizontal. Then M is a proper contact CR-product submanifold if the leaf of D^{\perp} is totally geodesic in M. If in addition, \overline{M} is a Sasakian space form $\overline{M}(C)$, then C > -3.

Proof. Since M is D-totally geodesic, therefore by lemma (5.1) $A_{FZ}Y \in D^{\perp}$. A direct consequence of this is

$$n(A_{FZ}Y) = 0 \tag{5.6}$$

for each Y in D and Z in D^{\perp} . Moreover,

$$g(A_{FZ}Y,X) = 0 \tag{5.7}$$

for each X in D.

Hence (5.6), (5.7) and lemma (5.2) assures that the leaf M^{\top} of D is totally geodesic in M, and by the hypothesis, the leaf M^{\perp} of D^{\perp} is also totally geodesic

in *M*. Thus *M* is a contact *CR*-product submaifold. Furthermore, using (2.1), (2.3), (2.12) and the fact that $||h(\xi, Z)||^2 > 0$ for each $0 \neq Z \in D^{\perp}$, we get

$$g(h(\xi, Z), \phi Bh(\xi, Z)) + g(h(\xi, Z), \phi Ch(\xi, Z)) < 0$$
(5.8)

Next by (2.4) and (2.2) it follows that $Ch(\xi, Z) = 0$. Finally using (2.6) together with $Ch(\xi, Z) = 0$, (5.8) becomes $g(A_{\phi Bh(\xi, Z)\xi}, Z) < 0$ which shows that

$$A_{\phi Bh(\xi,Z)^{\xi}} \neq 0. \tag{5.9}$$

On the contrary, suppose that $D^{\perp} = 0$. Then by (5.9), $A_N \xi \notin D^{\perp}$ for some $N \in T^{\perp}M$ which contradicts the fact that M is D-totally geodesic (See lemma 5.1). Thus D^{\perp} cannot be zero, that is, M is a proper contact CR-product. The last part of the theorem follows from theorem (3.5) by M. Kobayashi [11].

References

- A. Bejancu, "CR-submanifolds of a Kaehler manifold I", Proc. Amer. Math. Soc. 69 (1978), 135-142.
- [2] A. Bejancu, "CR-submanifolds of a Kaehler manifold II", Trans. Amer. Math. Soc. 250 (1979), 333-345.
- [3] A. Bejancu, "Umbilical semi-invarient submanifolds of a Sasakian manifold", Tensor (N.S), Vol. 37 (1982), 203-213.
- [4] A. Bejancu and N. Papaghiuc, "Semi-invarient submanifolds of a Sasakian manifold", Analele Stiint. ale Univ. "Al. I. Cuza" din Iasi, Seria Noua, Sectinnea Ia Mathematica, 1 (1981), 163-170.
- [5] A. Bejancu and N. Papaghiuc, "Semi-invariant submanifolds of a Sasakian Space form", Collog. Math., Vol. XLVIII (1984) (2), 229-240.
- [6] D. E. Blair, "Contact manifold in Riemannian geometry", lecture notes in Math., Springer-Verlag, Berlin-Heidelberg-New York, (1976).
- [7] G. D. Ludden, M. Okumura and K. Yano, "Anti invariant submanifolds of almost contact metric manifolds", Math. Ann. 225 (1977), 253-261.
- [8] K. Nomizu and K. Yano, "On Circles and spheres in Riemannian geometry", Math. Ann., 210 (1974), 163-170.
- [9] K. Yano and M. Kon, "Structures on Manifolds", Series in pure Mathematics, Vol. (3) (1984).
- [10] M. Kon, "Invariant submanifolds in Sasakian manifolds", Math. Ann. 219 (1976), 277-290.
- [11] M. Kobayashi, "Contact CR-products of Sasakian manifolds", Tensor (N.S) 36 (1982), 281-288.
- [12] M. Kobayashi, "CR-Submanifolds of a Sasakian manifold", Tensor (N.S) 35 (1981), 297-307.

S. M. KHURSEED HAIDER, V. A. KHAN AND S. I. SHUSAIN

[13] S. Yamaguchi, H. Nemoto and N. Kawabata, "Extrinsic spheres in a Sasakian manifold", Tensor (N.S) Vol. 40 (1983), 184-188.

Department of Mathematics, Aligarh Muslim University, Aligarh-202 002. India.