TOTALLY UMBILICAL SEMI-INVARIANT SUBMANIFOLDS AND CR-SUBMANIFOLDS OF A SASAKIAN MANIFOLD

S. M. KHURSEED HAIDER, V. A. KHAN AND S. I. HUSAIN

Abstract

In the present paper, a classification theorem for totally umbilical semi-invariant submanifold is established. $C R$-submanifolds of a Sasakian space form are studied in detail, and finally a theorem for a $C R$ submanifold of a Sasakian manifold to be a proper contact $C R$-product is proved.

1. Introduction

The notion of semi-invariant submanifold of a Sasakian manifold, which is a natural generalization of both invariant submanifolds [10] and anti-invariant submanifolds [9] in a Sasakian manifold was introduced and studied in detail by A. Bejancu and N. Papaghuic [4]. On the other hand, M. Kobayashi [12] initiated the study of $C R$-submanifolds of a Sasakian manifold and established that there exist no proper contact $C R$-product in a Sasakian space form $\bar{M}(c)$ with $C<-3$. In view of this, it was interesting to ascertain the existence of a proper contact $C R$-product in a Sasakian space form $\bar{M}(C)$ when $C>-3$. The purpose of the present paper is to classify semi-invariant submanifolds of a Sasakian manifold and to investigate the situation under which the $C R$-submanifold becomes a proper contact $C R$-product.

Received February 18, 1992.
AMS Subject classification (1991) 53C40.

2. Preliminaries

Let \bar{M} be a $(2 m+1)$-dimensional almost contact metric manifold with structure tensors (ϕ, ξ, n, g) where ϕ is a tensor field of type $(1,1), \xi$ is a vector field, n is a 1 -form and g is the Riemannian metric on \bar{M}. These tensors satisfy [6]

$$
\begin{equation*}
\phi^{2} x=-X+n(X) \xi, \phi \xi=0, n(\xi)=1, n(\phi X)=0 \tag{2.1}
\end{equation*}
$$

and

$$
g(\phi X, \phi Y)=g(X, Y)-n(X) n(Y), n(X)=g(X, \xi)
$$

for any vector fields X, Y tangent to \bar{M}. We denote by $\bar{\nabla}$ the covarient derivative with respect to the metric g on \bar{M}. It is known that \bar{M} is a Sasakian manifold if and only if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=g(X, Y) \xi-n(Y) X, \bar{\nabla}_{X} \xi=-\phi X \tag{2.2}
\end{equation*}
$$

Let M be an m-dimensional Riemannian manifold with induced metric g isometrically immersed in \bar{M}. M is called a $C R$-submanifold of \bar{M} if M is tangent to ξ and there exists a differentiable distribution $D: x \rightarrow D_{x} \subset T_{x} M$ such that $\phi D_{x}=D_{x}$ and $\phi D_{x}^{\perp} \subset T_{x}^{\perp} M$, where D^{\perp} denotes the orthogonal complementary distribution of D and $T_{x} M, T_{x}^{\perp} M$ denote the tangent space and the normal space of M respectively. We call the pair $\left(D, D^{\perp}\right) \xi$-horizontal (resp. ξ-vertical) if $\xi \in D$ (resp. $\xi \in D^{\perp}$)[12]. M is said to be proper if neither $D=0$ nor $D^{\perp}=0$. For a vector field X tangent to M and N normal to M, we put

$$
\begin{equation*}
\phi X=P X+F X, \text { and } \phi N=B N+C N \tag{2.3}
\end{equation*}
$$

where $P X$ (resp. $F X$) denotes the tangential (resp. normal) component of ϕX, and $B N$ (resp. $C N$) denotes the tangential (resp. normal) component of ϕN. It follows that the normal bundle $T^{\perp} M$ splits as $T^{\perp} M=\phi D^{\perp} \oplus u$, where u is the orthogonal complement of ϕD^{\perp} and is invariant subbundle of $T^{\perp} M$ under ϕ. Let ∇ be the Riemannian connection on M, then the Gauss and Weingarten formulas are given respectively by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.4}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\frac{1}{X}} N \tag{2.5}
\end{align*}
$$

for each vector fields X, Y tangent to M and N normal to M, h and A are both the second fundamental forms related by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{2.6}
\end{equation*}
$$

and ∇^{\perp} denotes the connection in the normal bundle $T^{\perp} M$ of M. We call the normal connection ∇^{\perp} of M to be $(D-u)$-flat if $R^{\perp}(X, Y) N=0$ for $X, Y \in D$ and $N \in u . M$ is called $(D-u)$ totally geodesic if $A_{N} X=0$ for each $X \in D$ and $N \in u$.

The equation of Codazzi and Ricci are given respectively by

$$
\begin{align*}
\bar{R}(X, Y, Z, N)= & g\left(\nabla_{X}^{\perp} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right), N\right) \\
& -g\left(\nabla \frac{1}{Y} h(X, Z)-h\left(\nabla_{Y} X, Z\right)-h\left(X, \nabla_{Y} Z\right), N\right) \tag{2.7}\\
\bar{R}\left(X, Y, N, N_{1}\right)= & R^{\perp}\left(X, Y, N, N_{1}\right)-g\left(\left[A_{N}, A_{N_{1}}\right] X, Y\right) \tag{2.8}
\end{align*}
$$

for each X, Y and Z tangent to M and N, N_{1} normal to $M . \bar{R}, R$ and R^{\perp} denote the curvature tensors associated with $\bar{\nabla}, \nabla$ and ∇^{\perp} respectively. In case of Sasakian manifold, the following equations are well known [9].

$$
\begin{align*}
\bar{R}(X, Y) \phi Z= & \phi \bar{R}(X, Y) Z+g(\phi X, Z) Y-g(Y, Z) \phi X \\
& +g(X, Z) \phi Y-g(\phi Y, Z) X \tag{2.9}\\
\bar{R}(X, Y) Z= & -\phi \bar{R}(X, Y) \phi Z+g(Y, Z) X-g(X, Z) Y \\
& -g(\phi Y, Z) \phi X+g(\phi X, Z) \phi Y \tag{2.10}
\end{align*}
$$

If \bar{M} is a Sasakian space form of constant ϕ-holomorphic sectional curvature C, then \bar{R} is given by [6]

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{1}{4}(C+3)[g(Y, Z) X-g(X, Z) Y] \\
& +\frac{1}{4}(C-1)\{n(X) n(Z) Y-n(Y) n(Z) X \\
& +g(X, Z) n(Y) \xi-g(Y, Z) n(X) \xi+g(\phi Y, Z) \phi X \\
& -g(\phi X, Z) \phi Y+2 g(X, \phi Y) \phi Z\} \tag{2.11}
\end{align*}
$$

for each X, Y and Z tangent to \bar{M}.
The 2-form Ω on \bar{M} is defined by $\Omega(X, Y)=g(X, \phi Y)$ is skew-symmetric [4], that is,

$$
\begin{equation*}
g(X, \phi Y)=-g(\phi X, Y) \tag{2.12}
\end{equation*}
$$

and the covarient derivative of ϕ is defined by

$$
\begin{equation*}
\bar{\nabla}_{X} \phi Y=\left(\bar{\nabla}_{X} \phi\right) Y+\phi\left(\bar{\nabla}_{X} Y\right) \tag{2.13}
\end{equation*}
$$

for each X, Y tangent to \bar{M}.
Now, let M be an m-dimensional Riemannian manifold isometrically immersed in \bar{M}. We assume that the structure vector field ξ on \bar{M} is tangent to M and denote by $\{\xi\}$ the distribution spanned by ξ. Also we denote by $T M$ and $T^{\perp} M$ the tangent bundle to M and respectively the normal bundle to M.

The submanifold M of the Sasakian manifold \bar{M} is called semi-invariant if it is endowed with the pair of distributions $\left(D, D^{\perp}\right)$ satisfying the following conditions:
(i) $T(M)=D \oplus D^{\perp} \oplus\{\xi\}$, and $D, D^{\perp},\{\xi\}$ are mutually orthogonal,
(ii) the distribution D is invariant by ϕ, i.e., $\phi D_{x}=D_{x}$ for each $x \in M$,
(iii) the distribution D^{\perp} is anti-invariant by ϕ, i.e. $\phi D_{x}^{\perp} \subset T_{x}^{\perp} M$ for each $x \in M[4]$.
The semi-invariant submanifold M is called anti-invariant submanifold (resp. invariant submanifold) if $D=0$ (resp. $D^{\perp}=0$). The projection morphisms of $T M$ to D and D^{\perp} are denoted respectively by P and Q. Using this notation we have

$$
\begin{equation*}
X=P X+Q X+n(X) \xi \tag{2.14}
\end{equation*}
$$

for each X tangent to M.
The equation of Codazzi for totally umbilical semi-invariant submanifold M is given by

$$
\begin{align*}
\bar{R}(X, Y, Z, N)= & g(Y, Z) g\left(\nabla \frac{1}{X} H, N\right) \\
& -g(X, Z) g\left(\nabla \frac{1}{Y} H ; N\right) \tag{2.15}
\end{align*}
$$

where X, Y, Z are vector fields on M and $N \in T^{\perp} M, H$ being the mean curvature vector.
For totally umbilical semi-invariant submanifold M, the equations (2.4) and (2.5) take the form

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+g(X, Y) H \tag{2.16}\\
\bar{\nabla}_{X} N & =-g(H, N) X+\nabla \frac{1}{X} N \tag{2.17}
\end{align*}
$$

A semi-invariant submanifold M of \bar{M} is said to be semi-invariant product if the distribution $D \oplus\{\xi\}$ is involutive and locally M is a Riemannian product $M_{1} \times M_{2}$ where $M_{1}\left(\right.$ resp. $\left.M_{2}\right)$ is a leaf of $D \oplus\{\xi\}\left(\right.$ resp. $\left.D^{\perp}\right)[3]$.

3. Totally Umbilical Semi-Invariant Submanifolds

An $m(\geq 2)$-dimensional submanifold of an arbitrary Riemannian manifold M is called an extrensic sphere if it is totally umbilical and has nonzero parallel mean curvature vector [8]. In the present section we shall prove a classification theorem for totally umbilical semi-invariant submanifold of a Sasakian manifold. In fact we prove the following:

Theorem 3.1. Let $M,(m \geq 5)$ be a complete connected and simply connected totally umbilical semi-invariant submanifold of a Sasakian manifold M. Then
(1) M is a semi-invariant product, or
(2) M is anti-invariant submanifold, or
(3) M is isometric to an ordinary sphere, or
(4) M is homothetic to a Sasakian manifold, or
(5) M is a C-totally real submanifold and the f-structure C is not parallel in the normal bundle.
The cases (4) and (5) occur only when m is odd.
Proof. We take $Z, W \in D^{\perp}$ and using (2.4), (2.5), (2.17) and (2.2) in
(2.13) we have

$$
\begin{equation*}
-g(H, \phi W) Z+\nabla^{\frac{1}{Z}} \phi W=g(Z, W) \xi+\phi\left(\nabla_{Z} W\right)+\phi h(Z, W) \tag{3.1}
\end{equation*}
$$

Taking inner product with Z and using the fact that M is totally umbilical we obtain

$$
\begin{equation*}
g(H, \phi W)\|Z\|^{2}=g(Z, W) g(H, \phi Z) \tag{3.2}
\end{equation*}
$$

Interchanging Z and W in (3.2) we get

$$
\begin{equation*}
g(H, \phi Z)\|W\|^{2}=g(Z, W) g(H, \phi W) \tag{3.3}
\end{equation*}
$$

(3.1) together with (3.2) gives

$$
\begin{equation*}
g(H, \phi W)=\frac{g(Z, W)^{2}}{\|Z\|^{2}\|W\|^{2}} g(H, \phi W) \tag{3.4}
\end{equation*}
$$

The possible solutions of (3.4) are:
(a) $H=0$, or (b) $H^{\perp} \phi W$, or (c) $Z \| W$.

Suppose condition (a) holds, i.e., $H=0$ shows that M is totally geodesic, which ensures the first part of the theorem.

Next, suppose $H \neq 0$ and $H \in u$. Then with the help of (2.13), (2.2) and (2.1) we get $\bar{\nabla}_{X} \phi H=\phi \bar{\nabla}_{X} H$ for each $X \in D$ which further implies that

$$
\begin{equation*}
\nabla^{\frac{1}{X}} \phi H=-g(H, H) \phi X+\phi \nabla^{\frac{1}{X}} H \tag{3.5}
\end{equation*}
$$

by the use of (2.17). Since M is semi-invariant, therefore by (2.1) it follows that $\nabla \frac{1}{X} \phi H$ and $\nabla \frac{1}{X} H$ belongs to u. Thus $\phi X=0$, guarantees the second part of the theorem.

Finally, suppose $H \neq 0, H \notin u$ and $Z \| W$, i.e., $\operatorname{dim} D^{\perp}=1$. Since $\operatorname{dim} M \geq$ 5, we can choose vectors $X, Y \in D$ satisfying $g(X, Y)=g(X, \phi Y)=0$. For each N in $T^{\perp} M$, the equations (2.9) and (2.15) implies that $\bar{R}(\phi X, Y, \phi Y, N)=$ $g(Y, Y) g\left(\phi \nabla_{\phi X}^{\perp} H, N\right)$ and $\bar{R}(\phi X, Y, \phi Y, N)=0$ respectively, which further implies that $\nabla \frac{1}{X} H=0$. Next, we take $Z \in D^{\perp}, N \in u$ and $N_{1} \in \phi D^{\perp}$. Then a direct consequence of (2.10) and (2.15) are $\bar{R}(Z, Y, Y, N)=0$ and $R(Z, Y, Y, N)=$
$g(Y, Y) g\left(\nabla \frac{1}{Z} H, N\right)$ respectively. Hence combining both, we obtain $\nabla \frac{1}{Z} H \in$ ϕD^{\perp}. On the same lines, one can immediately have $\bar{R}\left(Z, Y, Y, N_{1}\right)=0$ and $\bar{R}\left(Z, Y, Y, N_{1}\right)=g(Y, Y) g\left(\nabla \frac{1}{Z} H, N_{1}\right)$, which implies that $\nabla \frac{1}{Z} H \in u$. Thus we have proved for $Z \in D^{\perp}, \nabla \frac{1}{Z} H \in \phi D^{\perp} \cap u=\{0\}$, i.e., $\nabla \frac{1}{Z} H=0$. Again, using (2.10) and (2.15) we have $\bar{R}(\xi, Y, Y, N)=0$ and $\bar{R}(\xi, Y, Y, N)=$ $g(Y, Y) g\left(\nabla \frac{1}{\xi} H, N\right)$ for each $N \in T^{\perp} M$ respectively follows that $\nabla \frac{1}{\xi} H=0$. Hence $\nabla \frac{1}{x} H=0$ for all vector fields X tangent to M, i.e., M is an extrinsic sphere. Thus parts (3), (4) and (5) follow from [13]. This theorem thus gives a complete classification of totally umbilical semi-invariant submanifold of a Sasakian manifold.

4. $C R$-Submanifolds of a Sasakian Space Form

In this section we shall study in detail about the mixed totally geodesic $C R$-submanifold of a Sasakian space form with parallel horizontal distribution. We recall that the ϕ-holomorphic bisectional curvature of \bar{M} is given by [11]

$$
\bar{H}(X, Y)=\bar{R}(X, \phi X, \phi Y, Y)
$$

We have,
Lemma 4.1. Let M be a mixed totally geodesic CR-submanifold of a Sasakian manifold \bar{M} with parallel horizontal distribution. Then for each $X \in D$ and $Z \in D^{\perp}$,

$$
\bar{H}(X, Z)=0
$$

Proof. Taking into accoount the mixed totally geodesicness of M in (2.7) to get

$$
\begin{align*}
\bar{R}(X, \phi X, Z, \phi Z)= & -g\left(h\left(\nabla_{X} \phi X, Z\right), \phi Z\right)-g\left(h\left(\phi X, \nabla_{X} Z\right), \phi Z\right) \\
& +g\left(h\left(\nabla_{\phi X} X, Z\right), \phi Z\right)+g\left(h\left(X, \nabla_{\phi X} Z\right), \phi Z\right) . \tag{4.1}
\end{align*}
$$

Since D is parallel, $h\left(\nabla_{X} \phi X, Z\right)=0=h\left(\nabla_{\phi X} X, Z\right)$. Using this and (2.6), equation (4.1) yields

$$
\begin{align*}
& \bar{R}(X, \phi X, Z, \phi Z)=-g\left(A_{\phi Z} \phi X, \nabla x Z\right)+g\left(A_{\phi Z} X, \nabla_{\phi X} Z\right), \text { or } \\
& \bar{R}(X, \phi X, Z, \phi Z)=g\left(\nabla_{X} A_{\phi Z} \phi X, Z\right)-g\left(\nabla_{\phi X} A_{\phi Z} X, Z\right) . \tag{4.2}
\end{align*}
$$

Using the mixed totally geodesicness of M and the parallelness of D in (4.2), the assertion follows.

We now state the main result of this section.
Theorem 4.1. Let M be a Sasakian space form $\bar{M}(C)$ of constant ϕ holomorphic sectional curvature C. In order that it may admit a mixed totally geodesic $C R$-submanifold M with parallel horizontal distribution D, it is necessary that $C=1$.

Proof. From lemma (4.1), it follows that $\bar{H}(X, Z)=0$ for each $X \in D$ and $Z \in D^{\perp}$. Using the curvature equation (2.11) of the Sasakian space form together $\bar{H}(X, Z)=0$ and (2.12) we obtain

$$
0=-\frac{(C-1)}{2} g(\phi X, \phi X) g(\phi Z, \phi Z) .
$$

i.e., $(C-1)\|\phi X\|^{2}\|\phi Z\|^{2}=0$, which gives that $C=1$. This completes the proof of the theorem.

The following theorem which we shall prove in Sasakian setting is well known in case of Kachler manifold.

Theorem 4.2. Let M be a mixed foliate, and $\left(D, D^{\perp}\right)$ be ξ-horizontal $C R$-submanifold of a Sasakian space form $\bar{M}(C)$. If the normal connection is ($D-u$)-flat, then $C \leq 1$. The equality holds good if and only if M is $(D-u)$ totally geodesic.

Proof. Since the normal connection is ($D-u$)-flat therefore $R^{\perp}(X, Y) N=$ 0 for each $X, Y \in D$ and $N \in u$. Using this in Ricci equation (2.8) we obtain

$$
\begin{align*}
& \bar{R}(X, Y, N, \phi N)=-g\left(A_{\phi N} X, A_{n} Y\right)+g\left(A_{\phi N} Y, A_{n} X\right), \text { or } \\
& \bar{R}(X, Y, N, \phi N)=-2 g\left(A_{n} X, A_{N} \phi Y\right) \text { by }[12] . \tag{4.3}
\end{align*}
$$

Next, by the use of (2.11) it is easy to obtain

$$
\begin{gather*}
\bar{R}(X, Y, N, \phi N)=\frac{1}{2}(C-1) g(X, \phi Y) g(\phi N, \phi N) . \text { From (2.1) it follows that } \\
\bar{R}(X, Y, N, \phi N)=\frac{1}{2}(C-1) g(X, \phi Y) g(N, N) \tag{4.4}
\end{gather*}
$$

Taking N as a unit vector field of the normal subbundle u, and substracting (4.3) from (4.4) to get

$$
\begin{equation*}
(C-1) g(X, \phi Y)+4 g\left(A_{N} X, A_{N} \phi Y\right)=0 \tag{4.5}
\end{equation*}
$$

We put $X=\phi Y$ and since g is a positive definite metric, therefore from (4.5) follows that $C-1 \leq 0$ or $C \leq 1$. Moreover, if M is $(D-u)$ totally geodesic, then $A_{N} X=0$ for each $N \in u$ and $X \in D$ implies that $C-1=0$ or $C=1$, which completes the proof of the theorem.

5. Proper Contact $C R$-Product

A $C R$-submanifold M of a Sasakian manifold \bar{M} is called a contact $C R$ product if it is locally a Riemannian product of a Sasakian (invariant) submanifold M^{\top} and a totally real (anti-invarient) submanifold M^{\perp} of M. First we prove some basic lemmas which we use subsequently.

Lemma 5.1. Let M be a $C R$-submanifold of a Sasakian manifold \bar{M}. Then M is D-totally geodesic if and only if $A_{N} X \in D$ for each $X \in D$ and $N \in \stackrel{\perp}{T M}$.

Lemma 5.2. Let M be a $C R$-submanifold of a Sasakian manifold \bar{M} and $\left(D, D^{\perp}\right)$ be ξ-horizontal. Then the leaf M^{\top} of D is totally geodesic in M if and only if

$$
\begin{equation*}
g\left(A_{F Z} Y, X\right)=n(X) n\left(A_{F Z} Y\right) \tag{5.1}
\end{equation*}
$$

for each X, Y in D and Z in D^{\perp}.
Proof. We take X, Y in D and Z in D^{\perp}. Then

$$
\begin{equation*}
g\left(Z, \nabla_{Y} \phi X\right)=-g\left(\nabla_{Y} Z, \phi X\right) \tag{5.2}
\end{equation*}
$$

We recall that for each X, Y in D and Z in D^{\perp}, we have [11]

$$
\begin{equation*}
g\left(\nabla_{Y} Z, X\right)=g\left(P A_{F Z} Y, X\right)+n\left(\nabla_{Y} Z\right) n(X)-n(Z) g(Y, P X) \tag{5.3}
\end{equation*}
$$

By the use of (2.1), (2.2) we obtain

$$
\begin{equation*}
n\left(\nabla_{Y} Z\right)=g\left(\nabla_{Y} Z, \xi\right)=g(Z, \phi Y)=0 \tag{5.4}
\end{equation*}
$$

Using (5.3), (5.4) in (5.2) with $\left(D, D^{\perp}\right)$ is ξ-horizontal we get

$$
\begin{equation*}
g\left(Z, \nabla_{Y} \phi X\right)=-g\left(P A_{F Z} Y, \phi X\right) \tag{5.5}
\end{equation*}
$$

Taking into account (2.3), (5.5) becomes
$g\left(Z, \nabla_{Y} \phi X\right)=-g\left(\phi A_{F Z} Y, \phi X\right)$. By (2.1) it follows that
$g\left(Z, \nabla_{Y} \phi X\right)=-g\left(A_{F Z} Y, X\right)+n\left(A_{F Z} Y\right) n(X)$, from which our assertion follows immediately.

Finally we arrive at:
Theorem 5.1. Let M be a D-totally geodesic, but not totally geodesic $C R$ submanifold of a Sasakian manifold \bar{M} and $\left(D, D^{\perp}\right)$ be ξ-horizontal. Then M is a proper contact $C R$-product submanifold if the leaf of D^{\perp} is totally geodesic in M. If in addition, \bar{M} is a Sasakian space form $\bar{M}(C)$, then $C>-3$.

Proof. Since M is D-totally geodesic, therefore by lemma (5.1) $A_{F Z} Y \in$ D^{\perp}. A direct consequence of this is

$$
\begin{equation*}
n\left(A_{F Z} Y\right)=0 \tag{5.6}
\end{equation*}
$$

for each Y in D and Z in D^{\perp}. Moreover,

$$
\begin{equation*}
g\left(A_{F Z} Y, X\right)=0 \tag{5.7}
\end{equation*}
$$

for each X in D.
Hence (5.6), (5.7) and lemma (5.2) assures that the leaf M^{\top} of D is totally geodesic in M, and by the hypothesis, the leaf M^{\perp} of D^{\perp} is also totally geodesic
in M. Thus M is a contact $C R$-product submaifold. Furthermore, using (2.1), (2.3), (2.12) and the fact that $\|h(\xi, Z)\|^{2}>0$ for each $0 \neq Z \in D^{\perp}$, we get

$$
\begin{equation*}
g(h(\xi, Z), \phi B h(\xi, Z))+g(h(\xi, Z), \phi C h(\xi, Z))<0 \tag{5.8}
\end{equation*}
$$

Next by (2.4) and (2.2) it follows that $C h(\xi, Z)=0$. Finally using (2.6) together with $C h(\xi, Z)=0,(5.8)$ becomes $g\left(A_{\phi B h(\xi, Z) \xi}, Z\right)<0$ which shows that

$$
\begin{equation*}
A_{\phi B h(\xi, Z)^{\xi}} \neq 0 \tag{5.9}
\end{equation*}
$$

On the contrary, suppose that $D^{\perp}=0$. Then by (5.9), $A_{N} \xi \notin D^{\perp}$ for some $N \in T^{\frac{1}{M}}$ which contradicts the fact that M is D-totally geodesic (See lemma 5.1). Thus D^{\perp} cannot be zero, that is, M is a proper contact $C R$-product. The last part of the theorem follows from theorem (3.5) by M. Kobayashi [11].

References

[1] A. Bejancu, "CR-submanifolds of a Kaehler manifold I", Proc. Amer. Math. Soc. 69 (1978), 135-142.
[2] A. Bejancu, "CR-submanifolds of a Kaehler manifold II", Trans. Amer. Math. Soc. 250 (1979), 333-345.
[3] A. Bejancu, "Umbilical semi-invarient submanifolds of a Sasakian manifold", Tensor (N.S), Vol. 37 (1982), 203-213.
[4] A. Bejancu and N. Papaghiuc, "Semi-invarient submanifolds of a Sasakian manifold", Analele Stiint. ale Univ. "Al. I. Cuza" din Iasi, Seria Noua, Sectinnea Ia Mathematica, 1 (1981), 163-170.
[5] A. Bejancu and N. Papaghiuc, "Semi-invariant submanifolds of a Sasakian Space form", Colloq. Math., Vol. XLVIII (1984) (2), 229-240.
[6] D. E. Blair, "Contact manifold in Riemannian geometry", lecture notes in Math., Sprin-ger-Verlag, Berlin-Heidelberg-New York, (1976).
[7] G. D. Ludden, M. Okumura and K. Yano, "Anti invariant submanifolds of almost contact metric manifolds", Math. Ann. 225 (1977), 253-261.
[8] K. Nomizu and K. Yano, "On Circles and spheres in Riemannian geometry", Math. Ann., 210 (1974), 163-170.
[9] K. Yano and M. Kon, "Structures on Manifolds", Series in pure Mathematics, Vol. (3) (1984).
[10] M. Kon, "Invariant submanifolds in Sasakian manifolds", Math. Anr. 219 (1976), 277-290.
[11] M. Kobayashi, "Contact CR-products of Sasakian manifolds", Tensor (N.S) 36 (1982), 281-288.
[12] M. Kobayashi, "CR-Submanifolds of a Sasakian manifold", Tersor (N.S) 35 (1981), 297307.
[13] S. Yamaguchi, H. Nemoto and N. Kawabata, "Extrinsic spheres in a Sasakian manifold", Tensor (N.S) Vol. 40 (1983), 184-188.

Department of Mathematics, Aligarh Muslim University, Aligarh-202 002. India.

