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ON THE EXISTENCE OF PERIODIC SOLUTIONS FOR 

A CLASS OF NONLINEAR DIFFERENTIAL SYSTEMS* 

LIHONG HUANG AND JIANSHE YU 

Abstract. In this paper three theorems on the existence of nontrivial 
periodic solutions of the system 

dx/dt = e(y) 
dy/dt = - e(y)f(x) - g(x) 

are proved, which not only generalize some known results on the existence 
of periodic solutions of Lienard's system (i.e. the special form for e(y) = 
y), but also relax or eliminate some traditional assumptions. 

1. Introduction 

Consider the nonlinear autonomous differential system 

dx/dt = e(y) 
dy/dt = - e(y)f(x) - g(x) (1.1) 

where e(y), f(x) and g(x) are continuous real functions defined on R, and are 
subject to the conditions which ensure that the initial value problems of (1.1) 
shall have a unique solution for every initial condition. 

Received February 18, 1992; revised September 10, 1992. 

AMS Subject Classification: 34C05 

* This work was supported by National Natural Science Foundation of China 
Key words: nonlinear differential system; periodic solution; existence. 

173 



174 LIHONG HUANG AND JIANSHE YU 

The system ( 1.1) is a generalization of the following Lienard system 

dx/dt = y 
dy/dt = - yf(x)- g(x) (1.2) 

For the system (1.2), the question of the existence of periodic solutions has been 
widely investigated by many authors, and many good results have been obtained 

(see e.g. [1] (2] for an extensive bibliography and also [3]-[5]). It is worthwhile to 
generalize these results to more general nonlinear system. We shall be concerned 
here with sufficient conditions for (1.1) to possess non-trivial periodic solutions. 

In this paper we use some new techniques to deal with the existence of non 
trivial periodic solutions of (1.1) and obtain some new results (see Theorems 1-3 
in Section 2). If applying these new results to the system (1.2), from Remarks 
in Section 2, one will find that our results generalize some known results in this 
direction, and, in certain important aspects our conditions are less restrictive. 

For example, in our results, f ( x) is allowed to change its sign infinitely many 
times, in particular, our theorem 1 and theorem 3 give conditions under which the 
system (1.1) has at least a non-trivial periodic solution without the traditional 

assumptions that G( ±oo) = +oo and f ( x) is positive ( or nonnegative) when Ix I 
is large. As is well known these assumptions play important roles in the proof of 

many known results on the existence of periodic solutions of (1.2). In Section 2, 
we also give several simple examples to illustrate cases in which the new criteria· 
can be applied whereas criteria obtained in [1 J-(7] fail. 

For ease of exposition, throughtout the paper, we will use the following 
notations 

F(x) = { f(s)ds G(x) = J.x g(s)ds 
and we make here the following assumptions 

(Hl) ye(y) > 0 for ally f O; xg(x) > 0 for all x f 0. 
(II2) For O <!xi~ 1, f(x) ~ 0 and¢. 0. 
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2. Results and Remarks 

Theorem 1. Assume (Hl) and (H2) are satisfied. Moreover, assume the 
following conditions (H3)-(H6) also hold 

(H3) lirn F(x) > -oo, lim F(x) < +oo. (where lim and lim represent 
x-+oo x--oo 

limsup and liminf respectively.) · 

(H4) lim (F(x) + G(x)) = +oo; lim (-F(x) + G(x)) = +oo. 
x-+oo x--oo 

(H5) lim le(y)I > 0. 
g~±oo 

(II6) There exist a> 0 and q(x) E C1 ((-oo,-a],R+) (or q(x) E C1([a, 
+oo ), R-)) such that 

e(q(x))[J(x) + q'(x)] + g(x) > 0 (< 0) 

for all x < -a(x > a). 
Then there is at least one non-trivial periodic solution for the system ( 1.1). 

Theorem 2. Let (Hl) and (H2) hold, and the following conditions (H7)- 
(II9) be satisfied 

(H7) e(y) is monotone increasing, and e( ±oo) = ±oo. 
(H8) There exist a > 0 and b > 0 such that f( x) ~ 0 for all x rj ( -a, b ). 
(H9) F(b) > F(-a); G(±oo) = +oo. 
Then there exists at least one non-trivial periodic solution of the system 

(1.1). 

Theorem 3. If the conditions (Hl)-(H4) and (H7) are satisfied, and the 
following condition (HlO) holds 

(HlO) There exists a > 0 such that F( a) > F( -a), and for all x > a, 
g(-x) = -g(x) and f(x) + f(-x) > 0. 

Then the system (1.1) has at least one non-trivial periodic solution. 

Remark 1. Theorems 1-3 are still valid if we consider the system 

dx/dt = e(y - F(x)) 
dy/dt = -g(x) 

(2.1) 
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which is equivalent to the system (1.1). In fact the nonlinear transformation 

T(x,y) = (x,y+F(x)) 

carries system (2.1) into system (1.1) preserving the x-coordinates. 

Remark 2. (H2) is only used to guarantee that the stationary point (0,0) 
is local repulsive, therefore, the assumption (H2) may be replaced by; any set 
of assumptions which guarantee that the origin is repulsive. By the way, using 
theorem 1-3 and the change of coordinates x* = x, y* = -y, and t* = -t, one 
may consider the case "For O < lxl ~ 1, f( x) > 0 and ¢. O." which implies the 
origin is a local sink. 

Remark 3. Obviously, if F(±oo) = ±oo, then (H3) holds naturally, and 
(H4) also holds when xg( x) > 0 for all x f= 0. 

If G(±oo) = +oo, then (H4) holds when (H3) is satisfied. 
It is easy to see that (H8) implies (H3). 

If the condition ( e) of Theorem in [3] "there exist h > hand b > 0 such that 
f(x)+ jg(x)I > b > 0 if !xi> h." is satisfied, then (H4) holds when the condition 
"xg( x) > 0 for all x f= O" holds. 

Remark 4. If lim f(x) > 0 (or lim f(x) > 0) and lim {lg(x)I 
/f(x)} < sup {e(y)} (~;;. lim {jg(x)l//(;)}00< sup {-e(y)}),~he-n

00

(H6) is 
yER+ x-.+oo yER- 

satisficd if xg( x) > 0 for all x f= 0. In fact, the above hypothesis implies that 

there exist a> 0 and l( > 0 such that f(x) > 0 and e(J() > jg(x)l/f(x) (resp. 
-e(-1() > lg(x)I/ f(x)) for all x ~ -a (resp. x > a). Hence, let q(x) = J( (resp. 
= -!(), then (H6) follows. 

Remark 5. For the system (1.2), (H5) holds naturally. Therefore, Theorem 
1 of (5] is a special case of our Theorem 2 for e(y) = y, and, by the above 
Remarks, one can find that our Theorem 1 generalize the result of [3] and relax 
some conditions imposed in [3]. 

In order to compare our results with those obtained in [1]-[7], let us now see 
several simple examples 
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Example 1. The system 

dx/dt = ·y2n+l 
dy I dt = - y2n+1c x3 + 2x2 - X - 2)ex - x5 (ex+ e-x) (2.2) 

has at least a non-trivial periodic solution for any nonnegative integer n. 

Proof. For (2.2), we have e(y) = y2n+1, f ( x) = ( x3 + 2x2 - x - 2)ex 
and g(x) = x5(ex + e-x). Obviously, (Hl), (H2) and (H7) are satisfied, and 
g(-x) = -g(x) for every x ER. 

By some simple calculuses, we have 

F(x) =(x3-x2+x-3)ex+3 

G(x) = (x5+20x3+l20x)(ex-e-x) + (-5x4-60x2-120)(ex+e-x)+240 
Thus, it is easy to see that F( +oo Y = +oo and F(-oo) = 3 and G(±oo) = +oo. 
Therefore, (II3) and (H4) hold. 

Again since 

F(x) - F(-x) = (x3 + x)(ex + e-x) + (e-x - ex)(x2 + 3) 

f(x) + J(-x) = (x2 
- l)(x + 2)ex + (x2 - 1)(2 - x)e-x 

consequently 

lim (F(x)- F(-x)) == +oo and lim (f(x) + f(-x)) = +oo x-+oo x-+oo 

this implies that there exists a > 0 such that F( a) > F( -a) and f( x )+ f( -x) > 0 
for all x > a, and hence (II10) holds. It therefore follows from Theorem 3 that 
the assertion of Example 1 is true. 

Remark 6. For the system (2.2), it should be noted that f ( x) < 0 for 
;r < -2 and f ( x) > 0 for x > .1, therefore, the result of [3] cannot be invoked 
to produce a periodic solution of (2.2) for the special case n == 0. Again since 
G(±oo) = +oo and F(-oo) = 3, consequently, Theorem 3 and Corollaries 1 and. 
2 of [4] are also invalid for n = 0. 
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Notice also that the proof of Example 1 remains valid if y2n+l is replaced 
by any function e(y) which satisfies (Ill) and (H7). 

Example 2. The following systems 

dx/clt = arctgy 
dy/dt = - (arctgy)(x2 sin2 x - 2x - 2) - 2x/(1 + x2)2 (2.3) 

and 

dx/dt = y 
dy/dt = - y(x2 sin2 x - 2x - 2) - 2x/(l + x2)2 (2.4) 

have non-trivial periodic solution. 

Proof. For (2.3) and (2.4), it is easy to show that (Hl) and (H2) are 
satisfied, and 

F(x) 13 12, 1 1. 2 
-x - -x sm2x - -xcos2x + -s1n2x - x - 2x 
6 4 4 8 

This implies F(±oo) = ±oo, from Remark 3 it follows that (H3) and (H4) hold. 

On the other hand, for (2.3) and (2.4), we have respectively lim le(y)I = 
:p-oo lim larctgy/ = 1r /2 and Jim /e(y )I = lim /yl = +oo, consequently, (H5) also 

Y-oo y-oo y-oo holds. 

Again since, for (2.3) and (2.4), we have lim f(x) = +oo, and lim {jg(x )I 
x--oo x--oo 

/ f(x)} = 0 < sup {e(y)}, therefore, it follows from Remark 4 that (H6) is 
yER+ 

satisfied. Thus, according to Theroem 1, the proof of Example 2 is ~ompleted. 

Remark 7. For the system (2.4), it is easy to see that f(x) is oscillatory 
on the interval (0,+oo), and, lim f(x) = +oo, lim f(x) = -oo, so the result 

x-+oo x--++~ 
of Villari [3J will fail. Again since g(x) = 2x/(1 + x )2-+ 0 (as x-+ oo) and 
G(x) = x2 /(1 + x2) -+ 1 (as x-+ oo ), therefore, Theorems of A. B. Dragilev and 
A. F. Filippov (see [lJ Theorems 5.1 and 5.3), Theorem 3 of Villari [5] and the 

. results of Huang [6) and Ding [7] cannot be applied. 
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We also would like to point out that, according to Remark 4, y on the 

right-hand side of (2.4) can be replaced by any function e(y) satisfying (H5) and 
(Hl). 

3. Proofs of Theorems 

We first prove a lemma. 

Lemma .1. If (HI) and (H2) are satisfied, then origin is a unique singular 
point of (1.1), an·d is local repulsive. 

Proof. According to (HI), it is easy to see that the origin is the only 
singular point of (1.1), and for O < C0 ~ 1, the curve 

V(x,y) = G(x) + LY e(s)ds = Co 

is a closed curve surrounding the origin. Thus, it is obvious, based on dV/ dtl(1.i) 
= -e2(y)f(x) and (H2), that the origin is local repulsive, and the lemma is 
proved. 

By Lemma 1, if one can prove that there exists a bounded positive semi 
trajectory for {1.1) under the conditions of Theorem 1 or 2 or 3, then the 
Poincare-Bendixson theorem can be invoked to produce a non-trivial soltion 
of (1.1). 

(I). Proof of Theorem 1 

vVe :first consider the case q(x) E C1 ((-oo,-a],R+) in (H6). 

Let xo < -a, Yo > q(xo), and Tl be a positive semi-trajectory of (1.1) 
passing through point A( x0, Yo) at time to, and let its parametric equation be 

x = x(t), y = y(t) t > t0 

Since ye(y) > 0 for all y -:/ 0, it follows, when t increases, that the point 
(x(t),y(t)) moves along Tl from the left (resp. right) to the right (resp. left) 
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in the y > 0 (resp. y < 0) half-plane. Now we prove that T1 must intersect the 
positive x-axis. 

Suppose that 1'} doesn't intersect the positive x-axis for all t > t0, then we 
have y(t) > 0 for every t > to, and when t--* +oo, T1 must belong to one of the 
following three possible cases 

(i). lim x(t) < +oo, lim y( t) = +oo .. 
t-:::±_ 00 t-+ + 00 

(ii). lim x(t) = +oo, lim y(t) = +oo. 
t-:::.±_ 00 t-:::.±_ 00 

(iii). lim x(t) = +oo, lim y(t) < +oo. 
t-+oo t-+oo 

Integrating dx / ell = e(y) along T1 from t0 tot, we obtain 

x(t) = x(to)+ re(y(t))dt lt0 
Thus, it follows from (H5) that Jim x(t) = +oo when lim y(t) = +oo, this 

t-+oo t-+= 
means that the case (i) is impossible. 

If the case (ii) or (iii) holds, then there exists t1 > to such that x(t1) = 0 
and x(t) > 0 for all t > t1. Thus, g(x)/e(y) > 0 for all t 2: t1, it follows that 

y(t) = y(ti) - { f(s)ds - [ ?(_8)" ds 
~ y(ti) - F(x(t)) (as t > ti) 

Using (H3) and the above inequality, it is not difficult to show lim y(t) < +oo, 
t-+oo 

consequently, the case (ii) is also impossible. 

Assume the case (iii) holds, then there exists P > 0 such that O < y(t) < P 
for all t 2: to. 

{ 
max e(y), 

Let Q > max O < y < p 
1 
} , then, for all t > t,, we have 

y(t) = y(ti) - J.x f(s)ds - J.x ?(_8)" ds 
1 ~ y(t1)-F(x)- QG(x) (3.1) 

Again according to (II3), there exists k > 0 such that F(x) > -k for all x > 0. 
· On the other hand, (H4) implies that there exists x* > 0 such that F(x)+G(x) 2: 
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Qy(t1) + (Q - l)k for all x 2'.: x*, i.e., G(x) > Qy(t1) + (Q - l)k - F(x) for all· 
x > x*. Substituting this into (3.1 ), we obtain 

Q-1 
y(t) < - n (F(x)+k)<O (asx~x*) 

This contradicts the fact that y(t) > 0 for all t > t0, the contradition illustrates 
that the case (iii) is also impossible. Therefore, TJ must intersect the positive 
x-axis at some point B. 

By using a exactly similar fashion, we can prove that when t increases 
continously, TI must also intersect the negative x-axis at some point C(xc, 0). 

If xe > -a, by (Hl) and the uniqueness of solutions for the initial value 
problem associated with system (1.1), it is easy to see that T} is bounded. (see 
Fig. 1). 

y 

A 

y=q(x) 

Figure 1 

If xc < -a, using (HG), on the curve y = q( x ), we have 
-e(y)f_(_x)_-_g_(x_·) _ dq(x) < 0 (as x < -a) 

e(y) dx - - 

Consequently, Tj cannot cross the curve y = q( x) as x < -a. Arguing as in the 
case xe > -a we can know that TI is also bounded. 
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For the case q(x) E C1([a,+oo),R-) in (H6),we choose xo > a Yo< q(xo), 
by the same argument that was used to analyze T_.:t, we can prove that the 

positive semi-trajectory which starting at point (xo,Yo) must be bounded. 
The Poincare-Bendixson theorem now implies that system (1.1) has at least 

one non-trivial periodic solution. 

(II). Proof of Theorem 2 
Let 

M = max{lg(x)l 1-a<x=:;b} 

N = max {I/ ( x) I I - a < x < b} 
Using (H7) and (II9), we may choose W > 0 such that 

2M(b+ a) F(-a) - F(b) + . , /TTY~ , , TT~"' < 0 

Again let 

I',. = W + [N + min{e(W~!e(-W)!}] (b+ a) 

V(x,y) = G(x) + 1" e(s)ds 
C* > max{V(-a, 6.), V(-a, -6.), V(b, 6.), V(b, -6.)} 

By (I-Il) and (H7) and (I-I9), it is clear that V(x,y) == C* is a closed curve 
surrounding the origin, and from our choice of C*, it follows that V(x, y) = C* 
contains the region {(x,y)j - a::; x < b,IYI < 6.} in its interior. Thus, the 
curve V(x, y) = C* must intersect the lines x = -a and x = b in the y > 0 
and y < 0 half-plane. Let their intersection points be A(-a, YA), B(b, YB), 
C(b, Ye) and D(-a, Yv) (see Fig.2), where yA, YB > 6., Ye, Yv < -6.. Again 
let 1',t : y = y( x) be a positive semi-trajectory of (1.1) starting at A at time to. 
Using a proof similar to that used for Theorem 1, we can prove that Tj cannot 
always stay in the region {(x,y)I - a::; x < b,y > W} fo.r all t > t0. Following 
this, we will show that T_t must intersect the line x = b at a point B * (b, yB. ), 
and yB* > W. 



EXISTENCE OF PERIODIC SOLUTIONS 183 
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Figure 2 

Otherwise, there exists d E ( -a, b) such that y( d) = W and y( x) > W for 
all x E ( -a, d). Again since 

dy =-f(x)-g(x) 
dx e(y) 

Integrating (3.2) along T_.t on [-a, d], we obtain 

(3.2) 

J_d J_d g(x) 
- f( x )dx - ( ( "dx 

-a -a e y X 

> - N(d + a) - _;~" (d+ a)> - [N + e(!)] (b+ a) 
Therefore 

This contradicts YA > !::.. Hence· T] must intersect the line x = b at some point 

B * (b,ye.,,) and Ye• > W. 
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Next we further prove yB. < Yn· Notice that V(x,y) = C* is a integral 
curve of the system 

dx/dt = e(y) dy/dt = -g(x) 
so along this curve we have 

b 
Yn - YA = -1 g(x) dx > M(b + a) 

-a e(y(x)) - -e(W) (3.3) 

On the other hand, integrating (3.2) along Tl from A to B*, we obtain 

YB* - YA < F(-a) - F(b) + M(~~~,a) < _ M(b + a) (3.4) 

From (3.3) and (3.4) it follows easily yB. < YB. 
By an analogous argument, one can prove that the positive semi-trajectory 

TJ starting at C must intersect the line x = -a at a poirit D*(-a, Yv•) in the 
y < 0 half-plane, and Yv < Yv• :::; -W. 

From (H8) it follows, along the curve V(x, y) = C.,., that dV/dtl{l.l) = 
-e2(y)f(x) < 0 for all x rj (-a,b). Again since ye(y) > 0 for every y =J 0, 
consequently, it is easy to see that Tj and TJ cannot cross the closed curve ----- -- .-.. ,...---.._ -- ,.---.._ 
AB* UB* BU BC UC D* UD* DU DA (see Fig. 2) into its exterior. This implies 
that Tj and TJ are bounded, and the proof is completed. 

(III). Proof of Theorm 3 
Let 

_ M* = max{Jg( x )11 lxl :::; a} N* = max{lf( x )lj lxl < a} 
According to (H7) and (HlO), we may choose W* > 0 such that 

2aM* 
F(-a) - F(a) + min{ e(W*), Je(-W*)I} < O 

;; 

Again let 

t::,. • = w• + 2a [ N• + min { e(W;;e( - W• )I}] 
In order to prove Theorem 3, we first show two lemmas. 
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Lemma 2. Let Yo > 6*, y+ : x = x(t), y = y(t) be a any positive semi 
trajectory starting at_ the point ( -a, y0) ( or ( a, -y0)) at time to. Then, under 
the conditions of Theorem 3, there exists t1 > t0 such that r+ intersects the line 
x = a (resp. x = -a) at time t1, and y(t) > W* (resp. y(t) < -W*) for all 
t E [t0,ti), further, we also have y(t1) < y(to) = Yo (resp. y(t1) > y(to) = -yo). 

Proof. We only consider the case that r+ starts at the point (-a, Yo), 
• 

since, in exactly the same way we can treat the case that r+ starts at the point 
(a, -Yo), 

By a similar argument that was used in (II) to prove that T_.t intersects the 
line x = b and y 8.. ~ W, we can prove that the two first assertions of Lemma 2 

are true. Now we only prove y( t1) < y( to) = Yo. 
Integrating (3.2) along r+ from -a to a, we obtain 

la la g(x) 
- f ( x) dx - ( ( __ dx 

-a -a e y X 
2aM* < -(F(a)- F(-a))+ , , < 0 

y(t1) - Yo 

This implies y(t1) < y(to) = YO· 

Lemma 3. Let h > a, the trajectory y = y(x) of (1.1) intersect both the 
lines x =hand x = -h, and let y(x) > 0 (or< 0) for x E [-h,h]. Then under 
the conditions of Theorem 3, when y( - a) > y( a), we have y( -h) > y( h), and 
the function z(h) = y(h)- y(-h) is monotone nonincreasing on h E (a,+oo). 

Proof. We only prove the case where y(x) > 0 for_all x E [-h,h], for the 
case y( x) < 0, it can be treated in the same way. 

Integrating (3.2) along the trajectory y = y( x) on [-h, h], we have 
z(h) = y(h)-y(-h) = -lh f(x)dx-lh (\x) __ dx 

-h -he y X 
A simple calculation yields 

d [ g( h) g( -h) l 
dh z(h) = - (f(h) + f(-h)) - e(y(h)) + e(y(-h)) 

< g(h)[e(y(h)) - e(y(-h))] 
e(y(h))e(y(-h)) 
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Now let 

{ 

g(h)[e(y(h)) - e(y(-h))] 
S(h) = 

0 
z(h)e(y(h))e(y.(-h)) 

Then the above inequality means that 

when z(h) f 0 

when z(h) = 0 

z'(h) ~ S(h)z(h) (3.5) 

where ' == d/ dh. 

Using (Hl) and (I-I7), it is ~ot diffcult to show S(h) > 0 for h > a, and 
hence z'(h) < 0 as z(h) = 0. Again since S(h) is continuous at h of z(h) f= 0, 
thus, it follows from (3.5) that 

Therefore 

z(h) < z(a)exp [[ S(r)dr] = (y(a)-y(-a))exp [[ S(r)dr] < 0 

Again using (3.5), we obtain z'(h) ~ 0. 
Thus, by what we have just proved, for any h satisfying the conditions of 

Lemma 3 we have z'(h) ~ 0. Hence z(h) is monotone nonincreasing on h, it 
follows that z(h) = y(h) - y(-h) < z(a) < 0 for h > a, i.e. y(h) < y(-h), and 
the lemma is proved. 

Now let us complete the proof of Theorem 3. 

Let A1 ( -a, yA1) be a point on the straight line x = -a, with yA1 
> 6. *, and 

T,t be a positive semi-trajectory of (1.1) passing through A1. From Lemma 2 it 
follows that r;t must intersect the line x = a at some point A2 in the half-plane 
y > 0. Again using a proof similar to that used for Theorem 1, we can prove that 

T_.,t must be clockwise and intersect the positive x-axis at some point A3, and 
also intersect the line x = a at some point A4( a, yA4) in the half-plane y < 0. 

Choose point B1(a, y81) on the line x =a such that y81 
<-max{'6.*, IYA

4 
I} . 

. Let T'J1 and Tji1 be respectively the positive semi-trajectory and the negative 
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semi-trajectory of (1.1) passing through B1. By Lemma 2 we know that T"J
1 
must 

intersect the negative y-axis at a point B2, also intersect the line x = -a in the 
half-plane y < 0. Let this intersection point be B3(-a, y83 ), then y83 >. y81• 
Again arguing as in (I) we may prove that TJ must be clockwise and intersect 

1 . 

the negative x-axis at a point B4, and also intersect the line x = -a agam 1n 
the half-plane y > 0. Let this intersection point be B5( -a, y85 ). 

If y85 ~ yA
1
, by the conditions, it is easy to see that T"J

1 
cannot cross 

the closed curve B1B2B3B4Bs UBsA1 U A1A2A3A4 UA4B1 (see Fig. 3) into its 
exterior. Thus, T-Jj

1 
must be bounded. 

y 

/ 

Figure 3 

Now we assume y85 > yA1• By the same argument that was used to analyze 
T_:t it follows that, when -t increases continously, T-Jj

1 
will intersect the positive 

y-axis for the first time at some point BG, and intersect the line x = a at some 
point B1( a, y81) in the half-plane y > 0, also intersect the positive x-axis at a 
point B8• According to Lemma 2 we also have W* < y81 < Y85• 
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We now construct a symmetrical closed curve B2B3B1BsB5UB5B5 Bt B; B2 

with respect to the y-axis (see Fig. 3), where B2B3B4B5B6 is a segment of Tj
1
• --- By Lemma 3, it is easy to see that the segment B1Bs of TJ

1 
will be on the ----- left-hand side of the segmental arc B5 Bt, and the part of Tii1 which belongs to 

the region {(x,y)jx > a,y < O} must be on the right-hand side of the segmental ------ arc n;B; {see Fig. 3). Therefore_, by (HI), it is clear that TJ
1 
is bounded. 

This completes the proof of Theorem 3. 
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