MUITIPLIERS FOR THE $\varphi-|\mathbb{C}, \alpha|_{k} S U M M A B I L I T Y$ OF INFINITE SERIES

W. T. SULAIMAN

Abstract

In this note we improve and generalize a theorem proved in 1988 by Bor concerning $\varphi-|C, 1|_{k}$ summability factors of infinite series. This theorem includes several known results.

1. Introduction

Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers $a_{n k}(n, k=1,2, \cdots)$ and let $\left(\varphi_{n}\right)$ be a sequence of complex numbers. Let $\sum a_{n}$ be a given infinite series with sequence of partial sums $\left(s_{n}\right)$. We denote by $A_{n}(s)$ the A-transform of the sequence $s=\left(s_{r}\right)$,

$$
\begin{equation*}
A_{n}(s)=\sum_{r=1}^{\infty} a_{n r} s_{r} \tag{1.1}
\end{equation*}
$$

We said that the series $\sum a_{n}$ is summable $|A|$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|A_{n}(s)-A_{n-1}(s)\right|<\infty \tag{1.2}
\end{equation*}
$$

and it is said to be summable $\varphi-|A|_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\varphi_{n}\left[A_{n}(s)-A_{n-1}(s)\right]\right|^{k}<\infty \tag{1.3}
\end{equation*}
$$

Received April 15, 1992.

When $\varphi_{n}=n^{1-1 / k}\left(\right.$ resp. $\left.\varphi_{n}=n^{\delta+1-1 / k}, \delta \geq 0\right)$, then $\varphi-|A|_{k}$ summability is the same as $|A|_{k}$ (resp. $|A, \delta|_{k}$) summability. We said that the series $\sum a_{n}$ is bounded $[R, \log n, 1]_{k}, k \geq 1$, if

$$
\begin{equation*}
\sum_{v=1}^{n} v^{-1}\left|s_{v}\right|^{k}=0(\log n) \text { as } n \rightarrow \infty \tag{1.4}
\end{equation*}
$$

A sequence $\left(\lambda_{n}\right)$ is convex if $\triangle^{2} \lambda_{n} \geq 0$, where $\triangle \lambda_{n}=\lambda_{n}-\lambda_{n+1}, n=1,2, \cdots$.
The following results are know:
Theorem A. (Mishra [4], see also Mazhar [3])
Let $\left(\lambda_{n}\right)$ be a convex sequence such that $\sum n^{-1} \lambda_{n}<\infty$. If $\sum a_{n}$ is bounded $[R, \log n, 1]_{k}$, then $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.

Theorem B. (Balci [1])
Let $\left(\lambda_{n}\right)$ be a convex sequence such that $\sum n^{-1} \lambda_{n}<\infty$. If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and

$$
\begin{equation*}
\sum_{v=1}^{n} v^{-k}\left|\varphi_{v} s_{v}\right|^{k}=0(\log n), \quad n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, 1|_{k}, k \geq 1$.
Theorem C. (Mishra \& Srivastava [5])
Let $\left(\chi_{n}\right)$ be a positive non-decreasing sequence and there be sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ such that

$$
\begin{align*}
& \left|\triangle \lambda_{n}\right| \leq \beta_{n} \tag{1.6}\\
& \beta_{n} \rightarrow 0 \text { as } n \rightarrow \infty \tag{1.7}\\
& \sum_{n=1}^{\infty} n\left|\triangle \beta_{n}\right| \chi_{n}<\infty \tag{1.8}\\
& \left|\lambda_{n}\right| \chi_{n}=O(1) \tag{1.9}
\end{align*}
$$

If

$$
\begin{equation*}
\sum_{v=1}^{n} v^{-1}\left|s_{v}\right|^{k}=O\left(\chi_{n}\right) \tag{1.10}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $|C, 1|_{k}, k \geq 1$.
Theorem \mathbb{D}. (Bor [2])
Let $\left(\chi_{n}\right)$ be a positive non-decreasing sequence and the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ are such that the conditions (1.6) - (1.9) of Theorem C are satisfied. If there exists an $\in>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and

$$
\begin{equation*}
\sum_{v=1}^{n} v^{-k}\left|\varphi_{v} s_{v}\right|^{k}=O\left(\chi_{n}\right), \quad n \rightarrow \infty \tag{1.11}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, 1|_{k}, k \geq 1$.
Theorem A could be obtained from Theorem B by taking $\varphi_{n}=n^{1-1 / k}$ and $\epsilon=1$. Theorem C generalizes Theorem A with conditions weaker as well. Theorems A, B and C are all special cases of Theorem D.

2. Main Result

We prove the following
Theorem \mathbb{E}. Let $\left(\chi_{n}\right)$ be a positive non-decreasing sequence and the sequences $\left(\beta_{n}\right)$ and $\left(\lambda_{n}\right)$ are such that the conditions (1.6) - (1.9) of Theorem C are satisfied. If there exists an $\in>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and

$$
\begin{equation*}
\sum_{v=1}^{n} v^{-k \alpha}\left|\varphi_{v} t_{v}^{\prime}\right|^{k}=O\left(\chi_{n}\right), \quad n \rightarrow \infty \tag{2.1}
\end{equation*}
$$

where t_{n}^{\prime} is the $(C, 1)$-mean of the sequence $\left(n a_{n}\right)$, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha|_{k}, k \geq 1,1-1 / k<\alpha \leq 1$.

3. Lemmas

Lemma 1. [5] If the conditions (1.6) - (1.9) are satisfied, then

$$
\begin{equation*}
n \beta_{n} \chi_{n}=O(1) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \beta_{n} \chi_{n}<\infty \tag{3.2}
\end{equation*}
$$

Lemma 2. If $\sigma>\delta>0$, then

$$
\begin{equation*}
\sum_{n=v+1}^{m} \frac{(n-v)^{\delta-1}}{n^{\sigma}}=O\left(v^{\delta-\sigma}\right), \quad \text { as } m \rightarrow \infty \tag{3.3}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\sum_{n=v+1}^{m} \frac{(n-v)^{\delta-1}}{n^{\sigma}} & =O(1) \int_{v+1}^{m} x^{-\sigma}(x-v)^{\delta-1} d x \\
& =O\left(v^{\delta-\sigma}\right) \int_{v / m}^{v /(v+1)} u^{\sigma-\delta-1}(1-u)^{\delta-1} d u \\
& =O\left(v^{\delta-\sigma}\right)
\end{aligned}
$$

as

$$
\begin{aligned}
& \int_{v / m}^{v /(v+1)} u^{\sigma-\delta-1}(1-u)^{\delta-1} d u \\
\leq & \int_{v / m}^{1} u^{\sigma-\delta-1}(1-u)^{\delta-1} d u \rightarrow \beta(\sigma-\delta, \delta) \text { as } m \rightarrow \infty
\end{aligned}
$$

4. Proof of Theorem E

Let T_{n}^{α} be the n-th (C, α)-mean, $0<\alpha \leq 1$, of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then in order to prove the Theorem, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{k}}\left|\varphi_{n} T_{n}^{\alpha}\right|^{k}<\infty \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_{v} \lambda_{v} \\
A_{n}^{\alpha} & =\binom{n+\alpha}{n}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)}
\end{aligned}
$$

Abel's transformation gives

$$
\begin{aligned}
T_{n}^{\alpha} & =\frac{1}{A_{n}^{\alpha}}\left[\sum_{v=1}^{n-1}\left\{(v+1) \triangle_{v} A_{n-v}^{\alpha-1} \lambda_{v} t_{v}^{\prime}+(v+1) A_{n-v-1}^{\alpha-1} \Delta \lambda_{v} t_{v}^{\prime}\right\}+(n+1) \lambda_{n} t_{n}\right] \\
& =T_{n, 1}^{\alpha}+T_{n, 2}^{\alpha}+T_{n, 3}^{\alpha}, \text { say. }
\end{aligned}
$$

To complete the proof, it is sufficient, by Minkowski's inequality to show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, j}^{\alpha}\right|^{k}<\infty, \quad j=1,2,3
$$

Applying Hölder's inequality,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 1}^{\alpha}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n^{k}\left(A_{n}^{\alpha}\right)^{k}} \sum_{v=1}^{n-1}(v+1)^{k}\left|\lambda_{v}\right|^{k}\left|t_{v}^{\prime}\right|^{k}\left|\triangle A_{n-v}^{\alpha-1}\right|\left\{\sum_{v=1}^{n-1}\left|\triangle A_{n-v}^{\alpha-1}\right|\right\}^{k-1} \\
& \quad\left(\text { when } \alpha=1, T_{n, 2}^{\alpha}=0 \text { as } \triangle A_{n-v}^{\alpha-1}=0\right) \\
= & O(1) \sum_{v=1}^{m} v^{k}\left|\lambda_{v}\right|^{k}\left|t_{v}^{\prime}\right|^{k} \sum_{n=v+1}^{m+1} \frac{\left|\varphi_{n}\right|^{k}\left|\triangle A_{n-v}^{\alpha-1}\right|}{n^{k}\left(A_{n}^{\alpha}\right)^{k}}, \quad 0<\alpha<1 \\
& \quad\left(\text { as } \sum_{v=1}^{n-1}\left|\triangle A_{n-v}^{\alpha-1}\right|=O(1) \sum_{v=1}^{n-1}(n-v)^{\alpha-2}=O(1)\right) \\
= & O(1) \sum_{v=1}^{m} v^{k}\left|\lambda_{v}\right|^{k}\left|t_{v}^{\prime}\right|^{k} \sum_{n=v+1}^{m+1} \frac{\left|\varphi_{n}\right|^{k}(n-v)^{\alpha-2}}{n^{k+k \alpha}} \\
= & O(1) \sum_{v=1}^{m} v^{-k \alpha}\left|\varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left|t_{v}^{\prime}\right|^{k} \sum_{n=v+1}^{m+1}(n-v)^{\alpha-2} \\
= & O(1) \sum_{v=1}^{m} v^{-k \alpha}\left|\lambda_{v}\right|^{k}\left|\varphi_{v} t_{v}^{\prime}\right|^{k} \\
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|_{v}^{-k \alpha}\left|\varphi_{v} t_{v}^{\prime}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1}\left|\triangle \lambda_{v}\right| \chi_{v}+O(1)\left|\lambda_{m}\right| \chi_{m}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} \beta_{v} \chi_{v}+O(1)\left|\lambda_{m}\right| \chi_{m} \\
& =O(1),
\end{aligned}
$$

in view of (1.6), (1.9), (2.1), (3.2), and the boundedness of λ_{n} (see [2]).

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 2}^{\alpha}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \frac{\left|\varphi_{n}\right|^{k}}{n\left(A_{n}^{\alpha}\right)^{k}} \sum_{v=1}^{n-1}(v+1)\left|\Delta \lambda_{v}\right|\left|t_{v}^{\prime}\right|^{k}\left(A_{n-v-1}^{\alpha-1}\right)^{k}\left\{\frac{1}{n} \sum_{v=1}^{n-1}(v+1)\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right|\left|t_{v}^{\prime}\right|^{k} \sum_{n=v+1}^{m+1} \frac{\left|\varphi_{n}\right|^{k}\left(A_{n-v-1}^{\alpha-1}\right)^{k}}{n\left(A_{n}^{\alpha}\right)^{k}} \\
= & O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right|\left|t_{v}^{\prime}\right|^{k} \sum_{n=v+1}^{m+1} \frac{n^{\epsilon-k}\left|\varphi_{n}\right|^{k}(n-v)^{k \alpha-k}}{n^{1+\epsilon+k \alpha-k}} \\
= & O(1) \sum_{v=1}^{m} v^{1+\epsilon-k}\left|\varphi_{v}\right|^{k}\left|\Delta \lambda_{v}\right|\left|t_{v}^{\prime}\right|^{k} \sum_{n=v+1}^{m+1} \frac{(n-v)^{k \alpha-k}}{n^{1+\epsilon+k \alpha-k}} \\
= & O(1) \sum_{v=1}^{m} v^{1-k}\left|\Delta \lambda_{v}\right|\left|\varphi_{v} t_{v}^{\prime}\right|^{k} \\
= & O(1) \sum_{v=1}^{m} v \beta_{v} v^{-k \alpha}\left|\varphi_{v} t_{v}^{\prime}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} \triangle\left(v \beta_{v}\right) \chi_{v}+O(1) m \beta_{m} \chi_{m} \\
= & O(1) \sum_{v=1}^{m} \beta_{v} \chi_{v}+\sum_{v=1}^{m}(v+1) \Delta \beta_{v} \chi_{v}+O(1) m \beta_{m} \chi_{m} \\
= & O(1)
\end{aligned}
$$

in view of (1.8), (2.1), (3.1), (3.2) and (3.3).

$$
\sum_{n=1}^{m} \frac{1}{n^{k}}\left|\varphi_{n} T_{n, 3}^{\alpha}\right|^{k}=O(1) \sum_{n=1}^{m} \frac{\left|\varphi_{n}\right|^{k}}{\left(A_{n}^{\alpha}\right)^{k}}\left|\lambda_{n}\right|^{k}\left|t_{n}^{\prime}\right|^{k}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m} n^{-k \alpha}\left|\lambda_{n}\right|^{k}\left|\varphi_{n} t_{n}^{\prime}\right|^{k} \\
& =O(1), \text { as in the case of } T_{n, 1}^{\alpha} .
\end{aligned}
$$

This completes the proof of the Theorem.

5. Applications

a) If we are taking $\left(\lambda_{n}\right)$ as a convex sequence such that $\sum n^{-1} \lambda_{n}<\infty$, $\chi_{n}=\log n, \epsilon=1, \varphi_{n}=n^{1-1 / k}$ and $\alpha=1$ in Theorem \mathbb{E}, we obtain an improvement to Theorem A.
b) If we are taking $\left(\lambda_{n}\right)$ as a convex sequence such that $\sum n^{-1} \lambda_{n}<\infty, \chi_{n}=$ $\log n$ and $\alpha=1$ in Theorem E , we obtain an improvement to Theorem \mathbb{B}.
c) If we are taking $\epsilon=1, \varphi_{n}=n^{1-1 / k}$ and $\alpha=1$ in Theorem E, we obtain an improvement to Theorem C.
d) If we are taking $\alpha=1$ in Theorem E, we obtain an improvement to Theorem D.

References

[1] M. Balci, "Absolute φ-summability factors," Comm. Fac. Sci. Univ. Ankara, Ser. A1, 29 (1980), 63-68.
[2] H. Bor, "On the absolute φ-summability factors of infinite series," Portugaliae Math., 45 (1988), 131-137.
[3] S. M. Mazhar, "On $|C, 1|_{k}$ summability factors of infinite series," Acta Sci. Math. Szeged, 27 (1966), 67-70.
[4] B. P. Mishra, "On absolute Cesàro summability factors of infinite series," Rend. Circl. Mat. Palermo, 14 (1965), 189-193.
[5] K. N. Mishra, and R. S. I. Srivastava, "On absolute Cesàro summability factors of infinite series," Portugaliae Math., 42 (1983-1984), 53-61.

Department of Mathematics, College of Science, Yarmonk University, Irbid, Jordan.

