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AN EXTREMAL PROBLEM FOR ALGEBRAIC POLYNOMIAL 

IGOR Z. MILOVANOVIC AND MILAN A. KOVACEVIC 

Abstract. Some extremal properties for nonnegative polynomials of de 
gree ~ n on the interval (-1, 1) are proved. 

Let Gn be the set of all real algebraic polynomials Pn(x) of degree ~ n, 
positive on the interval (-1, 1). A subset of the set Gn for which Pt-1\-1) = 
p~i-1\1) = 0, i = 1, · · ·, m, will be denoted by G~m) ( m < [;] ). Let w( x; a, ,B) 
= (1- x)o-(1 + x)''3, a,,B > -1, q = max(o:,,B) and q = min(a,,B). 

Let the polynomial Pn(x) belongs to the set Gn. Then, for r = 1,2, ···,the 
polynomial Pn(xY also belongs to the set Gn and it can be written in the form 
(see [1]) 

rn L Ck(l - xl(l + xyn-k, ck~ 0 (k = 0, 1, .. ·, rn). 
k=O 

(1) 

Let 

[ 
+l l 1/r 

IIPll=maxjP(x)I and IIPllr= /_ w(x;a,,B)Pn(xrdx 
lxl~l -1 

For polynomials Pn E Gn we establish the following result: 
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Theorem 1. Let the polynomial Pn( x) belongs to the set Gn and q 
max( a, [j) > - ~ and q = min( a, [j). Then 

1. 

[ r( rn + a+ {j + 2) l r IIPllr· IIPII < 2a+,a+1r(q + l)I'(q + rn + 1) (2) 

The extremal polynomial has the form 

. { d(l - X r, q = {j 
Pn(x) = 

d(l + X r, q = a, 
where d is an arbitrary constant. 

Proof. Let 

2rnkk(rn - kyn-k 
(rnyn 

(mo= Tnrn = 2rn) (3) 

for 1 :5: k < rn - l and 

/_
+1 

hk( a, /3) = _
1 

w( x; a, /3)(1 - x )\1 + x yn-k dx 
_ 2rn+a+.B+I f(k +a+ l)f(rn - k + /3 + 1) 

re rn + a + /3 + 2) 
fork= 0, 1, · · ·, rn. According to (1) we obtain that 

(4) 

(5) 

If we assume 

(6) 

and 

A~0) ( a, /3) max {a(a,.B)} 
05k5rn k , (7) 
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than according to (5) the following inequality 

1 

Pn( X) < [ A~O) ( a, ,B)]; IIPllr (8) 

is obtained. To prove the inequality (2) it is necessary to determine the value 
Ah0\ a, ,B). First, let us prove that 

T(rn + 2a + 2) 
A~

0
)(a, a) = 22o+lf(a + l)T(rn +a+ 1) (9) 

1 
for a> - - 2· 

Let 

(10) 

bo( a, a) 

(rn - k)(k +I>+ 1) [1 + rn - lk - i] rn-k-1 
(rn + a) 

( rn) ( a + 1) [1 + 1 ] rn - 
1 

rn-1 

fork= 1,· · · ,rn -1. Then bk(a,a) could be written in the form 

f(k) 
bk(a,a) = f(rn-k-1)' k = 0,1,·· ·,rn - 1, (11) 

where 

f(x) 
x+l [ l]x 

x+a+l l+; ' 
1 

1 + a' 

x>O 

X = 0. 

As g(x) = f'(x) = lo [1 + .!.]- 1 and g'(x) = - x(2a + l) +(a+ 1)2 
f(x) g x x+a+l x(x+l)(x+a+I)2' 

we conclude that g' ( x) < 0 for a 2: -1 and x > 0. Hence, the function g( x) 
is decreasing and g(x) > lim g(x) = 0, which proves f'(x) > 0 (x > 0), i.e. 

x-++oo 
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the function f(x) is increasing for x > 0. Now, on the basis of (11) and the 
continuity of f ( x) at x = 0, we have 

[
rn - 1] bk (a, a) < 1, for k = 0, l, · · · 2- (12) 

and 

bk (a, a) > 1, for k = 

and further on the basis of ( 10) 

[ rn ;1] , ... , rn - l (13) 

(o-,o-) > (o-,o-) > > (a,a) < (a,o-) < < (a,o-) 
a0 a1 . . . a(jJ a[j+l] . . . arn , 

h rn + 1 A f hi · 1 · b · w ere j = 
2 

. s ao = arn, rom t s 1nequa 1ty we o ta1n 

A(o)( · { (o- o-)} (o- o-) I'(rn + 2a + 2) a a - max a ' - a ' - n ' ) - k - 0 - n?..-v-L 1 n/ , _ , -. \ n/ _ , -. \ , 

which is to be proved. 
1 

Let us suppose that q = max{ a, ,B} = a > -2 and 

(k + l)(rn -k+ a) [i+ ff a ( a ,f3) 
k+l 

a(a,{3) 
k 

where a~o-,/3) is defined by (6). For such defined bk( a, ,B) the inequality 

is valid. According to this inequality and inequality (12) we obtain 

a(a,/3) > a(o-,{3) > > a(a,{3) 
0 - 1 - · · · - [j) , (14) 

where is j = r
2
n. On the other hand, under condition q = a > 

O 1 .. · · [ rn] the inequality 
' ' ' 2 ' 

1 -2, for k = 

a(a,{3) 
_Ji 
a(o-,f3) 
rn-k 

I'(rn - k + l + a)f(k + 1 + ,B) 
I'( k + 1 + a )f( rn - k + 1 + ,B) 

( rn - k + a) · · · ( k + l + a) 
( rn - k + ,B) · · · ( k + l + ,B) > 1 

(15) 
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hold. On the basis of the (14) and (15) we obtain 

Similarly under assummption q = {j > -1, we have 

A(0)(a /3) = a(a,.B) n , rn 

which completes the proof of the Theorem 1. 

Remark. For a = /3 = 0 and r = 1 according to inequality (8) the inequal 
ity proved in papers (2] and [3] (see also [4]) is obtain. Besides, a special case of 
the inequality (2), namely for r = 2, is a result closely related to the inequaltiy 
proved in [5]. Similarly as in Theorem 1, the following result can be proved. 

Theorem 2. Let a polynomial Pn(x) belongs to the setG~m), m, = l,···, 
[;], q = max{ a, /3} > - ~, q = min { a, /3} and r is natural number. Then the 
inequality 

l. 

IIPII < [A~)(a,/3)] r l!Pllr (16) 

holds, where 

(n :'.' mrm (n ~ m r r(rn +a +fJ + 2) 
A~m)(a,/3) = 2a+.B+lf(rm + 1 + q)f(rn - rm+ 1 + q) 

The equality in ( 16} holds for 

q=a 

q = {j, 

where d is an arbitrary constant. 
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