AN EXTREMAL PROBLEM FOR ALGEBRAIC POLYNOMIAL

IGOR Ž. MILOVANOVIĆ AND MILAN A. KOVAČEVIĆ

Abstract

Some extremal properties for nonnegative polynomials of degree $\leq n$ on the interval $(-1,1)$ are proved.

Let G_{n} be the set of all real algebraic polynomials $P_{n}(x)$ of degree $\leq n$, positive on the interval $(-1,1)$. A subset of the set G_{n} for which $P_{n}^{(i-1)}(-1)=$ $\mathbb{P}_{n}^{(i-1)}(1)=0, i=1, \cdots, m$, will be denoted by $G_{n}^{(m)}\left(m \leq\left[\frac{n}{2}\right]\right)$. Let $w(x ; \alpha, \beta)$ $=(1-x)^{\alpha}(1+x)^{\beta}, \alpha, \beta>-1, q=\max (\alpha, \beta)$ and $\bar{q}=\min (\alpha, \beta)$.

Let the polynomial $P_{n}(x)$ belongs to the set G_{n}. Then, for $r=1,2, \cdots$, the polynomial $P_{n}(x)^{r}$ also belongs to the set G_{n} and it can be written in the form. (see [1])

$$
\begin{equation*}
P_{n}(x)^{r}=\sum_{k=0}^{r n} C_{k}(1-x)^{k}(1+x)^{r n-k}, \quad C_{k} \geq 0(k=0,1, \cdots, r n) \tag{1}
\end{equation*}
$$

Let

$$
\|P\|=\max _{|x| \leq 1}|P(x)| \quad \text { and } \quad\|P\|_{r}=\left[\int_{-1}^{+1} w(x ; \alpha, \beta) P_{n}(x)^{r} d x\right]^{1 / r}
$$

For polynomials $P_{n} \in G_{n}$ we establish the following result:

Received April 15, 1992.
1980 Mathematics Subject Classification. Primary 26D05, 26D10.
Keywords: Extremal properties for polynomials, inequalities.

Theorem 1. Let the polynomial $P_{n}(x)$ belongs to the set G_{n} and $q=$ $\max (\alpha, \beta) \geq-\frac{1}{2}$ and $\bar{q}=\min (\alpha, \beta)$. Then

$$
\begin{equation*}
\|P\| \leq\left[\frac{\Gamma(r n+\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(q+1) \Gamma(\bar{q}+r n+1)}\right]^{\frac{1}{r}}\|P\|_{r} \tag{2}
\end{equation*}
$$

The extremal polynomial has the form

$$
P_{n}(x)= \begin{cases}d(1-x)^{n}, & q=\beta \\ d(1+x)^{n}, & q=\alpha\end{cases}
$$

where d is an arbitrary constant.
Proof. Let

$$
\begin{array}{r}
m_{k}=\max _{|x| \leq 1}\left\{(1-x)^{k}(1+x)^{r n-k}\right\}=\frac{2^{r n} k^{k}(r n-k)^{r n-k}}{(r n)^{r n}} \\
\left(m_{0}=m_{r n}=2^{r n}\right) \tag{3}
\end{array}
$$

for $1 \leq k \leq r n-1$ and

$$
\begin{align*}
h_{k}(\alpha, \beta) & =\int_{-1}^{+1} w(x ; \alpha, \beta)(1-x)^{k}(1+x)^{r n-k} d x \\
& =\frac{2^{r n+\alpha+\beta+1} \Gamma(k+\alpha+1) \Gamma(r n-k+\beta+1)}{\Gamma(r n+\alpha+\beta+2)} \tag{4}
\end{align*}
$$

for $k=0,1, \cdots, r n$. According to (1) we obtain that

$$
\begin{equation*}
P_{n}(x)^{r} \leq \sum_{k=0}^{r n} c_{k} m_{k}=\sum_{k=0}^{r n} c_{k} h_{k}(\alpha, \beta) \frac{m_{k}}{h_{k}(\alpha, \beta)} \tag{5}
\end{equation*}
$$

If we assume

$$
\begin{equation*}
a_{k}^{(\alpha, \beta)}=\frac{m_{k}}{h_{k}(\alpha, \beta)} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{n}^{(0)}(\alpha, \beta)=\max _{0 \leq k \leq r n}\left\{a_{k}^{(\alpha, \beta)}\right\} \tag{7}
\end{equation*}
$$

than according to (5) the following inequality

$$
\begin{equation*}
P_{n}(x) \leq\left[A_{n}^{(0)}(\alpha, \beta)\right]^{\frac{1}{r}}\|P\|_{r} \tag{8}
\end{equation*}
$$

is obtained. To prove the inequality (2) it is necessary to determine the value $A_{n}^{(0)}(\alpha, \beta)$. First, let us prove that

$$
\begin{equation*}
A_{n}^{(0)}(\alpha, \alpha)=\frac{\Gamma(r n+2 \alpha+2)}{2^{2 \alpha+1} \Gamma(\alpha+1) \Gamma(r n+\alpha+1)} \tag{9}
\end{equation*}
$$

for $\alpha \geq-\frac{1}{2}$.
Let

$$
\begin{align*}
& b_{k}(\alpha, \alpha)=\frac{a_{k+1}^{(\alpha, \alpha)}}{a_{k}^{(\alpha, \alpha)}}=\frac{(k+1)(r n-k+\alpha)\left[1+\frac{1}{k}\right]^{k}}{(r n-k)(k+\alpha+1)\left[1+\frac{1}{r n-k-1}\right]^{r n-k-1}} \tag{10}\\
& b_{0}(\alpha, \alpha)=\frac{(r n+\alpha)}{(r n)(\alpha+1)\left[1+\frac{1}{r n-1}\right]^{r n-1}}
\end{align*}
$$

for $k=1, \cdots, r n-1$. Then $b_{k}(\alpha, \alpha)$ could be written in the form

$$
\begin{equation*}
b_{k}(\alpha, \alpha)=\frac{f(k)}{f(r n-k-1)}, \quad k=0,1, \cdots, r n-1 \tag{11}
\end{equation*}
$$

where

$$
f(x)= \begin{cases}\frac{x+1}{x+\alpha+1}\left[1+\frac{1}{x}\right]^{x}, & x>0 \\ \frac{1}{1+\alpha}, & x=0\end{cases}
$$

As $g(x)=\frac{f^{\prime}(x)}{f(x)}=\log \left[1+\frac{1}{x}\right]-\frac{1}{x+\alpha+1}$ and $g^{\prime}(x)=-\frac{x(2 \alpha+1)+(\alpha+1)^{2}}{x(x+1)(x+\alpha+1)^{2}}$, we conclude that $g^{\prime}(x)<0$ for $\alpha \geq-\frac{1}{2}$ and $x>0$. Hence, the function $g(x)$ is decreasing and $g(x)>\lim _{x \rightarrow+\infty} g(x)=0$, which proves $f^{\prime}(x)>0(x>0)$, i.e.
the function $f(x)$ is increasing for $x>0$. Now, on the basis of (11) and the continuity of $f(x)$ at $x=0$, we have

$$
\begin{equation*}
b_{k}(\alpha, \alpha)<1, \text { for } k=0,1, \cdots\left[\frac{r n-1}{2}\right] \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{k}(\alpha, \alpha)>1, \text { for } k=\left[\frac{r n+1}{2}\right], \cdots, r n-1 \tag{13}
\end{equation*}
$$

and further on the basis of (10)

$$
a_{0}^{(\alpha, \alpha)}>a_{1}^{(\alpha, \alpha)}>\ldots>a_{[j]}^{(\alpha, \alpha)}<a_{[j+1]}^{(\alpha, \alpha)}<\ldots<a_{r n}^{(\alpha, \alpha)}
$$

where $j=\frac{r n+1}{2}$. As $a_{0}=a_{r n}$, from this inequality we obtain

$$
A_{n}^{(0)}(\alpha, \alpha)=\max \left\{a_{k}^{(\alpha, \alpha)}\right\}=a_{0}^{(\alpha, \alpha)}=\frac{\Gamma(r n+2 \alpha+2)}{2^{2 \alpha+1} \Gamma(r n+\alpha+1) \Gamma(\alpha+1)}
$$

which is to be proved.
Let us suppose that $q=\max \{\alpha, \beta\}=\alpha \geq-\frac{1}{2}$ and

$$
b_{k}(\alpha, \beta)=\frac{a_{k+1}^{(\alpha, \beta)}}{a_{k}^{(a, \beta)}}=\frac{(k+1)(r n-k+\alpha)\left[1+\frac{1}{k}\right]^{k}}{(r n-k)(k+1+\alpha)\left[1+\frac{1}{r n-k-1}\right]^{r n-k-1}}
$$

where $a_{k}^{(\alpha, \beta)}$ is defined by (6). For such defined $b_{k}(\alpha, \beta)$ the inequality

$$
b_{k}(\alpha, \beta) \leq b_{k}(\alpha, \alpha)
$$

is valid. According to this inequality and inequality (12) we obtain

$$
\begin{equation*}
a_{0}^{(\alpha, \beta)} \geq a_{1}^{(\alpha, \beta)} \geq \ldots \geq a_{[j]}^{(\alpha, \beta)} \tag{14}
\end{equation*}
$$

where is $j=\frac{r n}{2}$. On the other hand, under condition $q=\alpha \geq-\frac{1}{2}$, for $k=$ $0,1, \cdots,\left[\frac{r n}{2}\right]$, the inequality

$$
\begin{equation*}
\frac{a_{k}^{(\alpha, \beta)}}{a_{r n-k}^{(\alpha, \beta)}}=\frac{\Gamma(r n-k+1+\alpha) \Gamma(k+1+\beta)}{\Gamma(k+1+\alpha) \Gamma(r n-k+1+\beta)}=\frac{(r n-k+\alpha) \cdots(k+1+\alpha)}{(r n-k+\beta) \cdots(k+1+\beta)} \geq 1 \tag{15}
\end{equation*}
$$

hold. On the basis of the (14) and (15) we obtain

$$
A_{n}^{(0)}(\alpha, \beta)=a_{0}^{(\alpha, \beta)} \quad\left(q=\alpha \geq-\frac{1}{2}\right)
$$

Similarly under assummption $q=\beta \geq-\frac{1}{2}$, we have

$$
A_{n}^{(0)}(\alpha, \beta)=a_{r n}^{(\alpha, \beta)}
$$

which completes the proof of the Theorem 1.
Remark. For $\alpha=\beta=0$ and $r=1$ according to inequality (8) the inequality proved in papers [2] and [3] (see also [4]) is obtain. Besides, a special case of the inequality (2), namely for $r=2$, is a result closely related to the inequaltiy proved in [5]. Similarly as in Theorem 1, the following result can be proved.

Theorem 2. Let a polynomial $P_{n}(x)$ belongs to the set $G_{n}^{(m)}, m=1, \cdots$, $\left[\frac{n}{2}\right], q=\max \{\alpha, \beta\} \geq-\frac{1}{2}, \bar{q}=\min \{\alpha, \beta\}$ and r is natural number. Then the inequality

$$
\begin{equation*}
\|P\| \leq\left[A_{n}^{(m)}(\alpha, \beta)\right]^{\frac{1}{r}}\|P\|_{r} \tag{16}
\end{equation*}
$$

holds, where

$$
A_{n}^{(m)}(\alpha, \beta)=\frac{\left(\frac{m}{n-m}\right)^{r m}\left(\frac{n-m}{n}\right)^{r n} \Gamma(r n+\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(r m+1+q) \Gamma(r n-r m+1+\bar{q})}
$$

The equality in (16) holds for

$$
P_{n}(x)= \begin{cases}d(1-x)^{m}(1+x)^{n-m}, & q=\alpha \\ d(1-x)^{n-m}(1+x)^{m}, & q=\beta\end{cases}
$$

where d is an arbitrary constant.

References

[1] G. Polya, G. Szegö, "Aufga b en und Lehrsätze aus der analysis," Berlin-GottingenHeidelberg, New York, 1964.
[2] I. Dimovski, V. Čakalov, "Integral inequalities for real polynomials," Annuaire Univ. Sofia Facta Math., 59 (1964/65), 151-158.
[3] B. Sendov, "An integral inequality for algebraic polynomials with only real zeros," Annuaire Univ. Sofia Facta Math., 53 (1958/59), 19-32.
[4] D. S. Mitrincović, P. M. Vasić, "Analytic inequalities," Berlirb-Heidelberg, New York, 1970.
[5] A. Lupas, "An inequality for polynomials," Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz., N^{0} 461-497 (1974), 241-243.

Faculty of Electronic Engineering, Beogradska 14, P. O. Box 73, 18000 Nis, Yugoslavia.

