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ON THE SOLUTION OF EQUATIONS WITH
NONDIFFERENTIABLE OPERATORS

IOANNIS K. ARGYROS

Abstract. We approximate solutions of equations with nondifferentiable
operators using the Newton-Kantorovich method and the majorant the-
ory. Under some as easy to verify assumptions as the ones given by
Zabrejko and Nguen in [9] we improve their error estimates.

1. Introduction

Let X and Y be Banach spaces, and let U(zg, R) denote the closed ball with
center zg € X and of radius R in X. Suppose that two operators F' and G are
defined on a convex subset D of X containing U(zo, R), with values in Y, where
F' is Fréchet differentiable at every interior point of U(zo, R) and satisfies the

condition

|F'(z + h) — F'(z)|| < A(r, ||h]]), = € U(zo,7),0 <7 < R,0< ||| < R—r, (1)
while G satisfies the condition

IG(z + k) = G(z)|| < B(r, ||hl]), = € U(zo,7),0< 7 < RO ||B]| < R—r. (2)

Here A, B are nonnegative and continuous functions of two variables such that if
one of the variables is fixed then A, B are non-decreasing functions of the other

on the interval [0, R]. Moreover, the following are true:
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(a) the function BA(g(Z, ) is positive, continuous and non-decreasing on [0, R — 7]
with 4(0,0) = 0; (3)
" : . . O0B(R,t) . -
(b) B is linear in the second variable and the function —5r 1 positive,
continuous and non-decreasing on [0, R — 7].
the definition of B implies that
B(r,t) < B(R,t), foral0 < r< Rand 0<t< R —r. (4)

Further, assume that the operator F’(z¢) is invertible. We are concerned with

approximating a solution z* of the equation
F(z)+G(z) = 0 (5)
in U(zg, R) using the approximations
Zn41 = 2Zn — F'(20) " (F(2) + G(2n)), 20 = zo,n = 0,1,2,--- (6)

and
CBppl = Tp— Fl(2,) N (F(2n) + G(2n)), 7=0,1,2,---. (7)

Equation (5) has been studied extensively in the case when G = 0, using the
modified iteration (6) or the Newton-Kantorovich iteration (7), [2], [3], [4],[5]. In
particular, Potra and Ptak have obtained elegant error estimates by means of a
method based on a special variant of Banach’s closed graph theorem [1], [4], [8].
Zincenko in [10] and Zabrejko and Ngyen in [9] studied the case G # 0 under
the hypotheses (1) and (2) provided that A, B are given by

Alr, 1) = k(r)t (8)
and

Bir1) = e(r)i; (9)

where k(7) and €(r) are non-decreasing functions on the interval [0, R]. Further

work on equation (5) can be found in [8].
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In this paper we show that under very similar assumptions our error esti-
mates on the distances ||z* — z,||, ||zn — Zn+1] (||z* — 22|, ||zn — Zp41]|) are
better than the ones given in [9].

We will assume that for a fixed r € [0, R] the functions A and B can be
extended such that ||k|| € [0, 7).

2. Existence Theorems
We will need to define the constants
a = ||F'(z0) 7 (F(z0) + G(zo))ll, b= [IF'(z0)7"| (10)
and the functions

w(r) = /Or k(t)dt, (11)

ol =4l /0 B, (12)
w4(r) =a+b /T A(0,t)dt —r, (13)
0
wr) = [ o, (14)
¢’Y(t) = bB(R’t), _ (15)
x(r) = @(r) +¥(r) (16)
and
X~A(T) = @y(7) + Py(r). (17)

As in [9], the main advantage of our approach consists in the fact that the study

of equation (5) reduces to the study of a simple scalar equation
x(r) = 0 on [0,R] (18)
The following theorem justifies our claim.

Theorem 1. Suppose that the function x,(r) = o(r)+¥,(r) has a unique
zero s in the interval [0, R], and xo(R) < 0. Then equation (5) has a solution



240 IOANNIS K. ARGYROS

z* i U(zo,r). This solution is unique in U(zo,s), and the iterates generated by
(6) are well-defined for all n, belong to U(zy,s), and satisfy the estimates
”Zn+1 = Zn” S gn-{r—l = gn, n = 0, 1,2,' Ly (19)
and
|zn —2*|| £ 5-38., n=0,1,2,---. (20)
Moreover, the sequence defined by
:§'n+1 = d(—S_n), n=01,2,---,5% =0 (21)
where
dy(r) = T+ X4(7) (22)
is monotonically increasing and converges to s.

Proof. Let us define the sequence
bl = )y me=0L R, g5 =% (23)
where
P(z) = I- F'(20)"}(F(2) + G(2)). (24)

Moreover, consider the numerical sequence given by (21).

As in [9, p.675], a simple geometrical argument shows that the sequence
(21) is monotonically increasing and convergent to s.

We shall show the estimate

lZnt1 = za|l < Spt1 — 3n. (25)
For n = 0 the inequality (25) is true since
lz1 = 2]l = [|F'(20) 7 (F(20) + G(20))|| = @ = d(0) = 51 — 5.
Let us assume that (25) holds for n = 0,1,2,---,k — 1. Then
2kt =2kl = | P(2k) = P(2k-1)|
Sllze = 21~ F'(z0) 7' (F(2k) = F(2-1))|[+ || F' (20)~ 1(G(Zxc) G(zk-1))l

<b / 1P ((1=0)zi +122) = F(wo)l| 1z = 2ot Jdt+BIG k)~ Gz - (26)
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Set

b = (1 — t)zk_l + iz — (1 — t)xo — tzg,

then

I8l < (1= Bllzk-1 = zoll + tll2k — ol < (1 = )Sp—1 +28k.  (27)

Using (1), (2), (4), (26), (27) and the induction hypothesis, (26) becomes

Sk

||zk+1 — zk” < b/; A(O,t)dt + bB(Ek_l, ”zk — zk—lll)

Sk—-1

Sk
< b[[ A(0,t)dt + bB(R, Sk — Sk—-1)] = dy(3k) — dy(Sk-1) = Sk41 — 3k,
Sk—1

which shows (25) for n = k.
We have shown that (21) is a Cauchy sequence in a Banach space and as
such it converges to a solution z* € U(zo,s). We will now show that z* is a

unique solution of equation (5) in U(xg,s). Let us define the sequences

Yn+1 = P(yn), n= 0,1,2,' - Yo € U((Eo,R) (28)
and

3;*1'+1 o d,.,(s;';), n=0,1,2,---, 'Sg- = R. (29)
To show uniqueness it suffices to show the estimates

lzn —wnll < st —s7, n=0,1,2,---. (30)

Using the same geometrical argument as in [9, p. 675] we can show that
the sequence (29) is monotonically decreasing and convergent to s. That is, if
for yo we choose the second solution zi € U(xo,) of equation (5), we get by
(30), that ||z} — z*|| < st — s;. That is, 2} = z*. For n = 0, (30) is true since
llyo — 20|]]| £ R — 0 = R. Let us assume that (30) holds for » = 0,1,2,---,k.



242 IOANNIS K. ARGYROS
Using (1) and (2)

lyk+1 = ze+1ll = lp(yx) — P(zx)||
< llgk = 26 = F'(zo) M (F(yr) = F(z))|| + | F'(20) (G (wx) — G(zx))

1
<b [ NP = 02+ ) ~ F(ao)l -k - 2ol + B(R, o — 57)
0
1
< b/ A0, (1 = t)sy +tsf)(sf — s )dt + bB(R, s — s7)
08+
k
2 b/ A(0,8)dt + bB(R, si — s;) = dy(sf) - dy(s);) = 5:+1 — Sky1-
Sk

That completes the proof of the theorem.

We can now prove the main theorem.

Theroem 2. Assume
(i) the hypotheses of Theorem 1 are ture;
(ii) the number R defined in Theorem 1 is such that

1-bA(0,R) >0

and
T(R)< R
where
b/rA(r,t)dt + 0B (ryr)
T(r) = a4+ =2 T 0400, 7) , T €[0,00).
Then

(a) the sequence {p,},n=0,1,2,--- given by

p = P — , n=12,-.. 31)
" !, (P,) =
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is bounded above by R, it is monotonically increasing and converges to some -
s* with s < s* < R. The sequence {g,} given by
| X~(gn)

(Pfy(Qn) i

is monotonically increasing and converges to s. Moreover

n+1 = qn — q0:07 n:0,1a27"'

In+1 = dn < Pnt1 ~ Pa
$=qn < 8" =Py
and
gn <p, foral n=0,1,2,---.
(b) The iterates generated by (7) are well-defined in U(zg,s*) for all n, and

satisfy the estimates
”zn+l = xn” 9 /_3n+1 = Py W= LE, > (32)

and
”xn+1 - Z*“ i s* — 517,’ = 0, 1,27' "ha (33)

Proof. (a) We will first show that the sequence given by (31) is bounded
above by R. This is true for ¥ = 0,1. For k£ = 2 we have
_ b [y A(0,t)dt + bB(R,a)
g = & 1 - bA(0,a)
Let us assume that p,, < R for k = 0,1,2,---,n. We will show that Pr <R
for k = n + 1. The sequence given by (31) is such that

<T(R)< R.

-ﬁn
b/; A(R7t)dt 3 bB(R7ﬁn - ﬁn—l)
e & = Pn—-1
pn+1 S Pn + 1 = bA(O,R)
7 P2 Pn
b[/_ CA(R,t)dt + / A(R,t)dt + --- + / A(R,t)dt]
& Ly o Pn-1 1 Pu—1
ol 1 bA(0, B)
1 b(B(R7ﬁ1 _ﬁO +/_)2'_ ﬁl + +—p—n - ﬁn—l)
1— bA(0, R)

=T(R)< R, forall n=0,1,2,--,
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by hypothesis. Using (31) it can easily be seen that the sequence {p,,} is mono-
tonically increasing. Hence, it converges to some s* with a < s* < R. The same
proof as the proof of Proposition 3 in [9, p.677] shows that the sequence {g,} is
monotonically increasing and converges to s. It can easily be seen using induc-
tion on n that ¢'(¢,) < ¢'(p,,) for all n = 0,1,2,---. Using the definitions of the
sequences {¢,} and {p,} and the above inequality we can now easily deduce the
rest of the results in (a).

(b) As in [9, p.678] for n = 0, (32) is true. Suppose that (32) is ture for
n=0,1,2,---,k — 1. We must show that F'(zy) is invertible. We have

k k
ok = 2oll € Y llzj = zjall € Y (B = Pj1) = Pa (34)
i=1 i=1
(by the induction hypothesis).
By (1) we obtain
IF/(20) 7 (F'(ak) - F'(so))ll < bA(D,7,) < bA(0,s%) = ¢y(s") +1< 1.
By the Banach lemma on invertible operators F'(z) is also invertible and

b b
17" (ze) 7] < — By =g
1-bA(0,p4) @ (Pr)

(35)
Wskng (7} wo gt
leksn ol =" (ex) " (Flan) + Gl
=(|F'(zx) " (F(zk)— F(ek-1)— F'(zp-1(zk — Th-1) + G(24) — G(zi-1))||
S 1 T (G PR R E R
+ 16— Glarll (36)
By (1), (2), (34) and (35), (36) becomes,

b q;
lzk+1 — ]| < — ) /0 A(P—1,(1 = t)pr_y + ) (Pr — ﬁk—_l\)dt
1 _ _
- m(%(ﬂk) — Yy (Pr-1))
_ b e e B BT Ry
=~ / AP = s 4(F) — 4(P-)

= Pr+1 — Pk
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That shows (32) for n» = k. The estimates (33) follow now immediately using
(32).

That completes the proof of the theorem.

In Theorem 2 we really wanted to show that the sequence {¢,} majorizes
the sequence {z,}. Instead we showed the results for the sequence {5, }.

The corresponding estimates to (19), (20), (32) and (33) in [9] are given by

1Znt1 = znll < pry1 — o5 (37)
lzn — 2% < p = p}, (38)
Znt1 = Zall < prt1 — pn, (39)
and
lzn —2*|| < p—pn (40)

where p is the unique zero of x(r) = ¢(r)+%(r) in [0, R] and the sequences {p*}
and {p,} are given by

prt1 = d(pz), n=0,1,2,---, p5 =0, (41)
where
d(r) = r+ x(r) (42)
and
Pnt1 = Pn—g‘,‘(%, n=0,1,2,---, po = 0. (43)

We will now show that under simple assumptions

ﬁn-!—l — P & Pn+1 — Pn-

We can show similiarly that the rest of our error estimates (19), (20) and (33)
are better than (37), (38) and (40) respectively.
We will first need to state a theorem whose proof can be found in (9, p.673].

Theorem 3. Suppose that the function x(r) = @©(r)+9(r) has a unique zero
p in the interval [0, R], and x(R) < 0. Then equation (5) admits a solution z* in
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Proof. (a) We will only show (48). The rest will follow similarly. By
(12)-(17), (44) and (45) we obtain immediately that '

- X+(r) < x(r) forall re€l0,R]. (55)
Moreover, using (44) we get
—¢'(r) =1—bw(r) > 1-bA(0,7) > 0. (56)

That is
1 1

< —-——.
¢'(r) = eh(r)
The results now follows from (55), (57), (31) and (43).
(b) By Theorems 2 and 3 to show (53) we only need to show

(57)

ﬁn-l-l - ﬁn < Prt1— Pn forall n= O’ Ly My (58)

By (41) and (43), inequality (58) will be true if

Pn Pn Pn
b | AGacs; Dt 4 0B(RP, = Fu) <5 [ it +a—pu+ [ t)at
7;ﬂ—l 0 0
forall n=1,2,-.-. (59)
and
A(0,p,) Lw(pn), forall n=0,1,2,---. (60)

The left hand side of (59) is bounded aobve by the left hand side of (51) for
n = 1 and by the left hand side of (52) for n > 2. Whereas the right hand side
of (50) is bounded below by the right hand side of (51) for 7 = 1 and the right
hand side of (52) for n > 2. Hence (50) is true for all » = 1,2,---. Inequality
(60) is certainly ture if inequality (50) is ture. That shows (53). Inequality (54)
now follows easily. That completes the proof of the proposition.

Note that by Theorem 2, s* can be replace with R in (50)-(52).

A discussion on the convergence speed of the numerical sequences (21) and
(31) can now easily follow as the discussion in [9, p. 679-684]. However, we leave

that to the motivated reader.
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the ball U(zo,p), this solution is unique in U(zo, R), and the iterates generated
by (6) and (7) are defined for all n, belong to U(zo,p) and satisfy the estimates
(37)—(40). Moreover, the sequences {p};} and {p,} are monotonically increasing

and convergent to p.

We can now justify the claim made at the introduction.

Proposition. Under the hypotheses of Theorems 2 and 3,
(a) If

A(0,t) <w(t), 0<t<R-T, (44)
and
$oy(r) S¥(r), 0<r <R (45)
Then
|zn+1 = 2nll < Snt1 — 3 < ppy1 — Prs (46)
lzn — 2*| £ s =3 < p— P} (47)
Int1 — 0n < Pntl — Pn (48)
and
S—qn<p—pn foral n=0,1,2,---. (49)
(b) If
A(0,s") < w(a), (50)
b / A(0,)dt + bB(R, a) < b / w(t)dt + b / (tydt  (51)
0 0 0 '
and

P2

s* p2
b/ A(s*,t)dt+bB(R,s* —a) < b/ w(t)dt+a—p+b/ € (t)dt. (52)
a 0 0
Then
”$n+l . wn” i ﬁn-{-l ~ Py & Pnt+1 — Pn (53)

and
zn —2*|| < 8" =P, <p—pn forall n=0,1,2,---. (54)
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Remark. Let us define the function ¥, (r) by
Xy(r) = b/ A(r,t)dt + bB(R,7) + (a — r)(1 — bA(0,7))
0

and the sequence {v,}, by

o 3(_,7(?)71)
‘P%(”n)’

Upda = Yn dp=l, Bm=1.245,; (61)

Then, under the hypotheses of Theorem 2, X.,(0) = @ > 0 and X.,(R) < 0. That
is, there exists a solution si € (0, R] of the equation X,(7) = 0. Using induc-
tion on n, it is simple calculus to show that the seqence {v,}, is monotonically

increasing and converges to sj. Moreover,
Pn S Un

”mn-i-l = xn” - Un41 — Un
len —2*|| £ 8" —pn £ 8] =V, forall n=0,1,2,---
and

& & 2

Furthermore, if the following conditions are satisfied

p—a< (v2 —a)(l-bA(0,R)), (62)
A(r,t) < w(t) (63)
and
¥y(t) < 9P(t) forall r,te€[0,R], (64)
then
Un41 — Up < Pn+1 — Pn,
VUn < Pn
and

*_

$1 vnSP“Pn for all ’I'),:O,l,z,..
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