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ON THE SOLUTION OF EQUATIONS WITH

NONDIFFERENTIABLE OPERATORS

IOANNIS K. ARGYROS

Abstract. We appro迢mate solutions_ of equations with nondifferentiable
operators using the Newton-Kantorovich method and the majorant the
ory. Under some as easy to verify assumptions as the ones given by
Zabrejko and Nguen in (9) we improve their error estimates.

1. Introduction

Let X and Y be Banach spaces, and let U(x0, R) denote the closed ball with

center xo EX and of radius R in~Y. Suppose that two operators F and Gare

defined on a convex subset D of X containing U(x0, R), with values in Y, where
F is Frechet differentiable at every interior point of U(x0, R) and satisfies the
condition

IIF'(x + h)- F'(x)IJ~A(r, llhll),x E U(xo,r),O~r::; R,O~11h11~R- r, (1)
while G satisfies the condition

IIG(x + h) - G(x)II :::; B(r, 11h11), x E U(xo, r), 0 :::; r :::; R, 0 :::; 11h11 :::; R - r. (2)

Here A, B are nonnegative and continuous functions of two variables such that if

one of the variables is fixed then A, B are non-decreasing functions of the other

on the interval (0, R]. Moreover, the following arc true:
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() th . 8A(O, t)a e function·
8t

is positive, contmuous and non-decreasing on [O, R-r]
with A(O, 0) = O; (3)

(b) B is linear in the second variable and the function 8B(R, t)
8t

is positive,
continuous and non-decreasing on [O, R - r].

the definition of B implies that

B(r, t) :::; B(R, t), for all O~r :::; R and O~t~R - r. (4)

Further, assume that the operator F'(x0) is invertible. We are concerned with
approximating a solution x* of the equation

F(x) + G(x) 。 (5)

in U(xo, R) using the approximations

Zn+I = Zn - F'(xo)-1(F(zn) + G(zn)), zo = xo, n = 0, 1, 2, · · ·(6)

and

, Xn+I = Xn - F'(xn) 一 1(F(xn) + G(xn)), n = 0, 1, 2, · · ·. (7)

Equation (5) has been studied extensively in the case when G = O, using the
modified iteration (6) or the Newton-Kantorovich iteration (7), (2], 圍，[4] ,[5]. In
particular, Potra and Ptak have obtained elegant error estimates by means of a

method based on a special variant of Banach's closed graph theorem [1], [4], [8].
Zincenko in [iO] and Zabrejko and Ngyen in [9] studied the case G f O under
the hypotheses (1) and (2) provided that A, B are given by

A(r, t) = k(r)t (8)

and

B(r, t) = E(r)t, (9)

where k(r) and E(r) are non-decreasing functions on the interval [O, R]. Further
work on equation (5) can be found in [8].
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In this paper we show that under very similar assumptions. our error esti

mates on the distances llx* - xnll, llxn 一 Xn+1II (llx* - Znll, llzn 一 Zn+1II) are
better than the ones given in [9].

We will assume that for a fixed r E [O, R] the functions A and B can be

extended such that 11h11 E [O, r].

2. Existence Theorems

We will need to define the constants

a= 丨IF'(xo)-1(F(xo) + G(xo))II, b = IIF'(xo)-111 (10)

and the functions

w(r) =「k(t)dt,

汩 =a : br w(t)dt 一 r,
色 (r) = a+ b)'A(O,t)dt 一 r,

。r
帕）= b j c(t)dt,

。
侶(t) = bB(R, t),
x(r) = cp(r) 十 心(r)

(11)

(12)

(13)

(14)

(15)

(16)

and

x'Y(r) = 侶(r) 十 'ljJ'Y(r). (17)

As in [9], the main advantage of our approach consists in the fact that the study
of equation (5) reduces to the study of a simple scalar equation

x,(r) = 0 on [O,R]. (18)

The following theorem justifies our claim.

Theorem 1. Suppose that the function x"l(r) = cp土 ）十叭 (r) has a unique
zero s in the interval [O, R], and x"l(R)~0. Then equation (5) has a solution
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x* in U(xo, r). This solution is unique in U(x0, s), and the iterates genemted by

{6) are well-defined for all n, belong to U(xo,s), and satisfy the estimates

llzn+l 一 Znll~Sn+1-Sn, n = 0,1,2,···

and

JJzn - x* 廿 ~8 一 sn, n=O,l,2,···.

Moreover, the sequence defined by

sn+l = d(s五 ）， n = 0, l, 2, · · ·, so = 0

where

d土）= r+ X土）
is monotonically increasing and converges to s.

(19)

(20)

(21)

(22)

Proof. Let us define the sequence

Zn+I = P(zn), n = 0,1,2,· · ·, Zo = Xo

where

(23)

P(z) = I - F'(xo)-1(F(z) + G(z)). (24)

Moreover, consider the numerical sequence given by (21).

As in [9, p.675], a simple geometrical argument shows that the sequence
(21) is monotonically increasing and convergent to s.

We shall show the estimate

llzn+l - 叫I~Sn+I - 瓦

For n = 0 the inequality (25) is true since

llz1 一 zo II = IIF'(xo)-1(F(xo) + G(xo))II = a= d(O) = s1 - 磊．

Let us assume that (25) holds for n = 0, l, 2, · ·., k - 1. Then

(25)

llzk+I -zkll = IIP(zk)-P(zk-1)11

: ；; llzk 一 Zk-I -F'(xo)-1 (F(zk)-F(zk-I))II+ JJF'(xo)-1 (G(zk)-G(zk-I))II

「~b IIF'((l-t)zk-I +tzk)-F'(xo)ll llzk-Zk-1lldt+ 針 JG(zk)-G(zk_i)II·(26)
。
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Set

h = (l - t)zk-l + tzk - (l - t)xo - txo,

then

11h11~(1 - t)llzk-1 - xoll + tllzk - xoll~(1 - t)sk-1 + tsk. (27)

Using (1), (2), (4), (26), (27) and the induction hypothesis, (26) becomes

llzk+t 一 Zkll~ 寸" A(O, t)dt + bB(sk-t,匡- Zk-111)
Sk-1

~b(「A(O, t)dt + bB(R洹- Sk-1)] = diS•) - d泅-tl = s.+i - 孔
Sk 一 1

which shows (25) for n = k.

We have shown that (21) is a Cauchy sequence in a Banach space and as
such it converges to a solution x* E U(xo, s). We will now show that x* is a
unique solution of equation (5) in U(x0,s). Let us define the sequences

Yn+I =P(yn), n=0,1,2,···YoEU(xo,R) (28)

and

s!+i = d'Y(s的 ， n = 0, l, 2, · · ·, 畸 =R. (29)

To show uniqueness it suffices to show the estimates

丨户 - Ynll ~ 莊 - s;;, n = 0, l, 2, · · · . (30)

Using the same geometrical argument as in [9, p. 675] we can show that

the sequence (29) is monotonically decreasing and convergent to s. That is, if

for Yo we choose the second solution xi E U(xo, r) of equation (5), we get by
(30), that llxi 一 x*II :::; s! - s;;. That is, xi = x*. For n = 0, (30) is true since

II Yo - zo II :::; R - 0 = R. Let us assume that (30) holds for n = 0, l, 2, · · ·, k.
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Using (1) and (2)

丨丨Yk+l 一 Zk+1 II = IIP(Yk) - P(zk)II

~IIYk - zk - F'(xo)-1(F(yk) - F(zk))II + IIF'(x0尸(G(yk) - G(zk))II

5" b[ IIF'((J - t)互十叭 ）- P'(xo)ll·IIY• 一 zki!dt + bB(R, .st - -'k)

5 寸 1 A(O, (1 - t)sk + tst)(st - sk)dt + bB(R, st - s:.)
。

5寸
st
A(O, t)dt + bB(R s+, ks-;; 一 Sk) = d-y (St) - d-y (Sk) = St+l 一 8k+1·

That completes the proof of the theorem.

We can now prove the main theorem.

Theroem 2. Assume

(i) the hypotheses of Theorem 1 are ture;

(ii) the number R defined in Theorem l is such that

1- bA(O,R) > 0

and

T(R) ::; R

where

T(r)
寸A(r,t)dt + bB(r,r)

- a+ 。
1- bA(O,r)' r E [O, oo).

Then

(a) the sequence {瓦}, n = 0, l , 2, · · ·given by

戸0 = 0, 戸1 = a,

－ 寸 一P, A(Pn-1 > t)dt 十點（瓦）－心立 _, )

- Pn Pn-1
Pn+t

舛（瓦）
n = 1, 2, .. ·(31)
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is bounded above by R, it is monotonically increasing and co~verges to some
s* with s~s*~R. The sequence {qn} given by

x,..,(qn)
qn+I = qn - qo = 0, n = 0, l, 2, · · ·

焊訌

is monotonically increasing and converges to s. Moreover

qn+I - qn~ 瓦n+I - 瓦

S - qn~s* - 瓦

and

qn~ 瓦 for all n = 0, l, 2, · · ·.

(b) The iterates generated by (7) are well-defined in U(x0,s*) for all n, and
satisfy the estimates

llxn+I 一 Xnll S 戸n+I 一 Pn, n=0,1,2,··· (32)

and

llxn+l - x*II~s* 一 戶n, n = 0, 1, 2, ·... (33)

Proof. (a) We will first show that the sequence given by (31) is bounded
above by R. This is true fork= 0, 1. Fork= 2 we have

戶2 = a+邙A(O,t)dt + bB(R,a)
1 - bA(O,a) ::; T(R) :::; R.

Let us assume that 戶k :::; R for k = 0, 1, 2, · · ·, n. We will show that Pk ::; R
for k = n + 1. The sequence given by (31) is such that

寸t·A(R, t)dt + bB(R,瓦羣 n-iJ
瓦n+l :::; 瓦 十

p户 l

1 - bA(O, R)

< ...'.o a+ b[f:, A(R, t)dt + {'A(R, t)dt 十 十丨C,A(R, t)dt]
1 - bA(O, R)

十 b(B(R面 －面 十戶2·- 困 十 . . . 十戸n-辶 ）
1- bA(O,R)

= T(R) :::; R, for all n = 0, 1, 2, ·.. ,
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by hypothesis. Using (31) it can easily be seen that the sequence {瓦} is mono
tonically increasing. Hence, it converges to some s* with a =S s* S R. The same
proof as the proof of Proposition 3 in [9, p.677] shows that the sequence {qn} is
monotonically increasing and converges to s. It can easily be seen using induc
tion on n that 屠 (q』s cp'(瓦）for all n = 0, l, 2, · · ·. Using the definitions of the
sequences {qn} and {瓦} and the above inequality we can now easily deduce the

rest of the results in (a).
(b) As in [9, p.678] for n = 0, (32) is true. Suppose that (32) is ture for

n = 0, I, 2, · · ·, k - l. We nrnst show that F'(xk) is invertible. We have
k k

llxk 一 xoll :S I:匡－丘 111 s I:(Pj丐-1) = 戸k (34)
j=l j=l

(by the induction hypothesis).
By (1) we obtain

IIF'(xo)-1(F'(xk) - F'(xo))II S bA(O五）< bA(O, s*) = 呤(s*)+lsl.

By the Banach lemma on invertible operators F'(引 is also invertible and

11 F'(Xk)- l 11 < b b= -- 1 - bA(O,瓦） 凶伍）．
(35)

Using (7) we get

llxk+I - xk II =IIF'(xk)-1 (F(Xk)+G(Xk))II

=IIF'(xk)-1(F(xk)-F(x辶1)-F'(Xk-I (Xk -Xk-1)+G(Xk)-G(Xk-I))II

:,; IIF'伍）一l[H「IIF'((l -t)x1,-1 +txk)- F'(xk-1)11·llxk尹 -11idt
。

+ IIG(xk)-G(xk-1)11]. (36)

By (1), (2), (34) and (35), (36) becomes,

llxk+1 - x•II < - b 丨'A(戶k-1, (1 - t)戸k-1 +叭）伍 －瓦 i)dt＿ 吟伍）o
1
焊m (c.p,(Pk) - 點(pk_i))

b I
－焊瓦）丨~~: , A(f'k_,, t)dt一芍 5巴因 －這 k-1))

= Pk+I - Pk·



EQUATIONS WITH NONDIFFERENTIABLE OPERATORS 245

That shows (32) for n = k. The estimates (33) follow now immediately using
(32).

That completes the proof of the theorem.

In Theorem 2 we really wanted to show that the sequence { qn} majorizes
the sequence {x卟 Instead we showed the results for the sequence {瓦 ｝．

The corresponding estimates to (19), (20), (32) and (33) in [9] are given by

llzn+l - Znll~P~+l - P~, (37)

llzn - z*II ::; P - P~, (38)

llxn+l - Xnll ::; Pn+I - Pn, (39)

and

llxn 一 x*II~P - Pn (40)

where pis the unique zero of x(r) = t.p(r) 十心(r) in [O, R] and the sequences {凡｝
and {Pn} are given by

＊

Pn+1 d(p訂 ， n = 0, 1, 2, · · ·, 面= 0, (41)

where

d(r) = r + x(r) (42)

and

Pn+I = Pn一凶
<p'(Pn)' n = 0, I, 2, · · ·, Po = 0. (43)

We will now show that under simple assumptions

... ".

Pn+l - Pn~Pn+l - Pn·

We can show similiarly that the rest of our error estimates (19), (20) and (33)
are better than (37), (38) and (40) respectively.

We will first need to state a theorem whose proof can be found in (9, p.673].

Theorem 3. Suppose that the function x(r) = 扣 ）十心(r) has a unique zero
P in the interval [O, R], and x(R) ::; 0. Then equation (5) admits a solution x* in
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Proof. (a) We will only show (48). The rest will follow similarly. By
(12)-(17), (44) and (45) we obtain immediately that

X-y(r)~x(r) for all r E [O,RJ. (55)

Moreover, using (44) we get

-<p1(r) = 1 - bw(r)~1 - bA(O, r) > 0. (56)

That is
- 1 < -上
凶r) - <.p~(r)'

The results now follows from (55), (57), (31) ,and (43).

(b) By Theorems 2 and 3 to show (53) we only need to show

(57)

戸n+I 一 Pn ::::; Pn+I - Pn for all n = 0, 1, 2, · · ·. (58)

By (41) and (43), inequality (58) will be true if

寸二 'A(p户 1,t)dt + bB(R,瓦－戸 ）:".:b 1'·w(t)dt + a - Pn + b 1''<(t)dt,

for all n = 1, 2, · · · (59)

and

A(O,瓦）~w(pn), for all n = 0, 1, 2, ·. ·. (60)

The left hand side of (59) is bounded aobve by the left hand side of (51) for

n = l and by the left hand side of (52) for n~2. Whereas the right hand side
of (50) is bounded below by the right hand side of (51) for n = l and the right
hand side of (52) for n~2. Hence (50) is true for all n = l, 2, .. ·. Inequality
(60) is certainly ture if inequality (50) is ture. That shows (53). Inequality (54)
now follows easily. That completes the proof of the proposition.

Note that by Theorem 2, s* can be replace with R in (50)-(52).

A discussion on the convergence speed of the numerical sequences (21) and

(31) can now easily follow as the discussion in [9, p. 679-684). However, we leave
that to the motivated reader.
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the ball U(x0, p), this solution is unique in U(xo, R), and the iterates generated
by (6) and (7) are defined for all n, belong to U(xo, p) and satisfy the estimates
(37)- (40). Moreover, the sequences园} and {Pn} are monotonically increasing

and convergent to p.

We can now j11stify the claim made at the introduction.

Proposition. Under the hypotheses of Theorems 2 and 3,

(a) If
A(O, t)~w(t), 0~t~R - r, (44)

and
心,(r) s; 心(r), O~r~R. (45)

Then

llzn+l 一 Znll~Sn+I - Sn~P~+I - P~,

llzn - z*II~s 一 Sn~p- P:,

qn+I - qn~Pn+I - Pn

(46)

(47)

(48)

and
s - qn :::; p - Pn for all n = 0, l, 2, · · ·. (49)

(b) If
A(O, s*)~w(a),

b 1" A(O, t)dt + bB(R, a)<'. b 1" w(t)dt + b 1" <(t)dt 二
and

b J.'• A(s*, t)dt +bB(R, s* - a) <'. b 1"'w(t)dt+ a- p+ b 1P'E (t)dt. (52)
Then

llxn+I 一 Xn II :s; Pn+I 一 戶n :s; Pn+I - Pn (53)

and
llxn - x*II :'.S; s* - 戶n :'.Sp- Pn for all n = 0, 1,2, · · ·. (54)
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Remark. Let us define the function 瓦 (r) by

訌r) = b J A(r,t)dt+bB(R,r)+(a-r)(l-bA(O,r))
。

and the sequence {vn}, by

x,巴 ）
Vn+l ='lJn —

凶巴 ）＇
Vo= 0, n = 1,2, · · ·. (61)

Then under the hypotheses of Theorem 2 , X-y(O) = a > 0 and 元 (R) :s; 0. That
is, there exists a solution si E (0, R] of the equation 元 (r) = 0. Using induc
tion on n, it is simple calculus to show that the seqencc {v註 ，is monotonically

increasing and converges to si. Moreover,

瓦 ~Vn

llxn+l 一 Xnll~Vn+l - Vn

廿Xn - x* II :::; s* - Pn :::; s; 一 Vn, forall n=0,1,2,···

and
s* :::; s;.

Furthermore, if the following conditions are satisfied

p - a::; (v2 - a)(l - bA(O,R)),

A(r, t) ::; w(t)

(62)

(63)

and
心'Y(t)~ 心(t) forall r,tE[O,R], (64)

then

Vn+I - Vn :s; p吁I - Pn,

Vn :s; Pn

and
si - Vn :s; p- Pn for all n = 0, 1,2,· ··.
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