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ASYMPTOTICALLY MONOTONE SOLUTIONS OF
A NONLINEAR DIFFERENCE EQUATION

HORNG JAAN LI AND SUI SUN CHENG-

Abstract. Necessary conditions as well as sufficient conditions for the
eventually positive solutions of a class of nonlinear difference equation to
be monotone are derived.

1. Introduction

In this paper, we are concerned with a class of second order nonlinear dif-

ference equation of the form
A(pn—len—l)+an($n) = O’ n = 1,2)37"' (1)

where p, > 0 for n = 0,1,2,--- and f is a real nondecreasing function defined
on R such that sign f(z) = signz. Related works can be found in [1-7].

We shall be concerned with necessary conditions (see Section 3) as well as
sufficient conditions (see Section 2) for the eventually positive solutions of (1)
to be monotone. Such conditions are desirable since oscillation theorems for
equation (1) can be derived if we impose these conditions (see Section 4).

A solution of (1) is a real sequence z = {z,}§° satisfying (1). It is clear

that the standard existence and uniqueness theorem holds for (1). A nontrivial
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solution of (1) is said to be asymptotically or eventually positive if there exists
an integer IV such that z,, > 0 for n > N. It is said to be eventually increasing if
there is some integer M such that Az, > 0 for n > M. Other concepts related
to monotonicity of solutions or general sequences can be similarly defined.

A nontrivial real sequence {z,}§° is said to be oscillatory if for each N >
0, there exists an n > N such that z,2,41 < 0, otherwise, z is said to be
nonoscillatory. Equation (1) is said to be oscillatory if all its nontrivial solutions
are oscillatory. If z,, = 0 for some m > 1, then z,,_1 # 0 and z,,41 # 0
and prZmi1 = —Pm-1Zm-1 by (1), thus an oscillatory solution of (1) must
change sign infinitely often, and a nonoscillatory solution is eventually positive
or eventually negative.

The following lemma will be needed in the later discussions.

Lemma 1. Let f be a real nondecreasing function defined on R such that

sign f(z) = signz. Let {zx}§° be a real sequence such that z; > 0 for i < k <

J+ 1. Then
g Titl du s Az
?3 ezl 702 =L o)

Proof. For a fixed k between ¢ and 7, let

9t) = zx+(t—k)Az, k<t<k+1

then ¢'(t) = Azy and

Az g'(1) Az

Fon) 2 F@) 2 Fanen) F<i<k+l
so that . » ’ d )
R 3 g'(t _ Tk+1  du iy
flzx) 2 /k f(g(?)) '/-":'k f(u) F(Zrt1)
Thus

2 Az s Fit1 gy A Az
2 5w 2 Z/ f(u) / Ef)z,gf

k=t ~
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as required.

2. Sufficient Conditions

In this section, we shall derive sufficient conditions for an eventually positive
solution to be eventually monotone. For this purpose, let z = {z,}§° be an
eventually positive solution of (1) such that z, > 0 for n > N. From (1), we

have
A(prn-18z,_1)

Tlaw)

Summing (2) from n = N + 1 to n = k, we have

Az — (| pNAzZN _
f(zk) - Z pnACL'nA{f(wn)} + Z n =

(zN+1 n=N+1

+¢g. =0, n>N+1. (2)

Since f is nondecreasing,

1
A:z:nA{—-———-} <0, n>2N+1
f(zn)

so that

Pz _ pNAzy =
_ ’ 3
Fn) S flawm) 2 ! )

or "
A:ck < pNA:BN @- (4)

f(zx) = peflensr) 57 pe

Summing (4) from k = j to k = m, we have, in view of Lemma 1, that
FancEs d’u pNAxN Z Z
(5)
/x,- f(u) f(INH) k=5 =N T

Theorem 1. Suppose the following conditions hold:

> it = oo, (6)
n=1
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lim inf Z gn > 0 for all large k. (7)
m— 00 —

Then any eventually positive solution {z,} of (1) is eventually increasing.

Proof. We may assume without loss of generality that z, > 0 for n > N
and
m

lim inf :

imin: n_—ZNH gn >0
Suppose to the contrary that {Az,} is not eventually positive, we may assume
without loss of generality that Azy < 0. Then in view of (3) and the above
inequality, we have Az, < 0 for n > N, then, from (3) and (7), there is some
integer T such that

A
prAzy < {%—Nii\% - QT} f(zr)

where

k
O = E Gn >0 fork>T.
n=N+1

We now sum (1) from n = T 4 1 to n = k and obtain

k
Pelzk —prAer+ Y guf(za) = 0,
n=T+1

so that

k k
PrAzy = prAzr — Z an(xn) = prlAzr — Z f(xn)AQn—l

n=T4+1 n=T+41
< {M—Q }f(xn)— f(=r)Qx — ki QnAf(zn) = fer+1)@Q
2 f(xN-{-l) T 1 k k e n n T+1 T

Ao k-1
< { }’g‘; N)f(mT>+Qqu(xT)+ > QnAf(:vn)}
pNAxN n=T+1

= f(zn+1)

f(f'«‘T)
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since Az, < 0 for k > T implies Af(zx) < 0for k > T.

As a consequence, divide the above inequality by px and summing, we obtain

PN mN
Tm+1 — TTH1 = Z L —— f(:r: Z P
n=T+1 n—T+1

But (6) implies Z,,41 — —00 as m — oo, which contradicts our assumption.

This completes our proof. =

Note that in the above Theorem, condition (7) may be replaced by the

following condition

m
lim inf z gn > 0 for all large k
m—00 oy
if we conclude that any eventually positive solution {z,} of (1) is eventually
nondecreasing. The proof is only a slight modification of that given above and
is omitted.

Other results can be derived along similar lines of reasoning. For instance.

Theorem 2. Suppose there is some integer M such that for each T > M,
there is 7 > T satisfying

limsu 00. 8
im sup Z (8)
Then for any eventually positive solution {z,} of (1), {z.} is either eventually
increasing or

Iminfz, = 0.

n—00

Proof. As in the proof of Lemma 1, suppose N is an integer and {z,} is a

solution of (1) such that z, > 0 forn > N,

hmsupz Z = oo forsomej> N,

me—toe k=jn= N+1
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and Az, < 0forn = N. If liminf,_, . z, # 0, there then exists o > 0 and an
integer T > N such that z,,,; > a > 0 for all m > T. From (5), we obtain

m k
* du /‘”"‘“ du qn
Z; f(u) o] f(U) k=3 n=N+1 pk

But our assumption implies that the limit superior of the right hand side diverges

to —oo, we arrive at a contradiction. "

Theorem 3. Suppose

k
1
liminf — >0, for all large T. 9
k—oo pg n=ZT;-1 n f g ( )

Then for any eventually positive solution {z,} of (1), {zn} is eventually increas-

ing or {z,} is eventually decreasing to 0.

Proof. As in the proof of Theorem 1, suppose N is an integer and {z,} is
a solution of (1) such that z, > 0 for z > N,

k
2
liminf — E gn > 0
k—oco Pk i

and Azy < 0. Without loss of generality, we may assume

1

k
= Z gn>2a>0fork >T.
k

n=N+1

Then from (4), we obtain

k
Azp < —f(zk) Y & <_af(m)<0, k>T
n=N+1 k

which implies {z,} is eventually decreasing. If limz,, # 0, then there is some
B > 0 such that z,, > 8 for all large n. Assume without loss of generality that

Zn 2 B for n > T, then summing the above inequality from T to m, we have

_5_<.$m+1 Szr—(m+1-T)af(8) » —oo.
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This contradiction completes our proof. =

Theroem 4. Suppose condition (6) holds. Suppose further that there is
some integer M such that for each T > M, we can find j > T satisfying

lim sup Z > 0. (10)

W=D k=jn= T+1
Then for any eventually positive solution {z,} of (1), {z.} is either eventually
increasing or '
liminf 2z, = 0.
n—00

Proof. As in the proof of Theorem 1, suppose N is an integer and {z,} is
a solution of (1) such that z, > 0 for n > N,

lim sup Z == >0 forsomej> N
Hareee k=jn=N+1 Pk

and Azy < 0. Then in view of (4), there is an integer T > N such that Azr < 0.
If 2z, > @ > 0 for n larger than or equal to T, then from (5),

m m k

* du /I"““ du pNAzN 1 an
o M § -3

z f(v) ~ Jg (") fleni1) i e P

Since the limit superior of the right hand side is —oo by assumption, we arrive

at a contradiction. =

We remark that the condition (10) in the above Theorem can be replaced
by
hmmf o T e
=jn=T+1

if we conclude that any eventually positive solution {z,} of (1) is either even-
tually nondecreasing or liminfz, = 0. Again the proof is omitted since it is a

slight modification of that given above.
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3. Necessary Conditions

In this section, we shall consider necessary conditions for the eventually
positive solutions of (1) to be monotone. To motivate the following discussions,
we consider a very simple case. Assume (1) has an eventually positive increasing
solution {z,} so that z, > 0 and Az, > 0 for » > N. Then in view of (3),

imposing the condition

lim sup qu — - -

n—oo
k=1

would lead to a contradiction. In other words,

Theorem 5. If

lim sup qu & X5

n—00
then (1) cannot have an eventually positive nondecreasing solution.

More complicated necessary conditions can be derived along similar lines of
reasoning. For this purpose, let z be a nonoscillatory solution of (1) such that
T, > 0 and Az, > 0 for n > N. Further, let ¥ = {¥,}§° be a nonnegative
sequence. If we multiply (1) by ¥n/pn f(z5) and then sum from n = N + 1 to

n = k, we obtain

N ¥ng
Z TA(PTL 1Ay 1)+ 2 ==L = 0.
n=N+1 PnJ(ZTn n=N+1 Pn

Summing the first term of the left hand side by parts, we obtain

Y41 YN4+1
Az — Az
Pr+1f(Trt1) 5T o f($N+1)pN v
k
Ynln
> pnAwnA{———-——} Z = 0. (11)
n=N+1 pnf :Bn) n=N+1 Pn

If we assume that {p,} is nondecreasing, then

¢n { ¢n+1 '¢’n } Awn
A -
{Pnf(xn) } Pn+1f(l'n+1) Pnf(xn) = Pn+1f(zn+1) ’
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and

¥ } <n,A { Ay, } Azn Aty
PaliTnll {pﬂf(il'n) = Pnn Pn+1f(zn+1) . f(z“"'l)

thus we have from (11) that

K k
Vir1PeAZx  YNy1PNATN Y Yndn 5 AznAtpn (12)
Pret1f(zir1)  pviaf(enen) © G2 pa T S F(@ata)

Theorem 6. Suppose {p.} is nondecreasing and suppose there is a non-

negative and nonincreasing sequence 1 such that

T Pn

then (1) cannot have an eventually positive nondecreasing solution.

Proof. Suppose (1) has a solution z such that z, > 0 and Az, > 0
for n > N. Then the left hand side of (12), in view of (13), is not bounded
above. However, our assumptions on % implies that the right hand side of (12)

is nonpositive. A contradiction is thus obtained. =

As an example, the following equation
A%n_l +4zf = 0, n= 1,2,3,:+

where p is the quotient of odd positive integers, cannot have an eventually pos-

itive increasing solution, since

Note also that it has an oscillatory solution {(—1)}.

The condition that % is nonincreasing in the above Theorem can be replaced

by other conditions.
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Theorem 7. Suppose {p.} is nondecreasing and suppose there is a non-
negative sequence ¥ = {{n} such that {A,} is bounded and that (13) holds.
Suppose further that

0< ———~ < 00 for some € > 0. (14)

¢ f(u)

Then (1) cannot have an eventually positive nondecreasing solution.

Proof. Suppose (1) has a solution z such that z, > 0 and Az, > 0 for

n > N. Then in view of Lemma 1, we have

T+l Jy
> o -/ F(a)’ (15)

n=N+1

so that, in view of (14) and the boundedness of {A,},

= AznAtpn _ . MAz, ©  du
— <M —_— 16
n%:ﬂ f(@ny1) ~ g\%l f(@n41) T Sy, F(u) e (e}

where |A,| < M forn =0,1,2,---. This implies that the left hand side of (12)

is bounded above, which contradicts (13). o

Note that in the proof of Theorem 7, if z is bounded by @, then the first
inequality in (16) is replaced by

= Az, A, Q du
§ j <M S
n=N+1 f(xn-}-l) - / f(u)

The following is now clear.

Theorem 8. Suppose {p,} is nondecreasng and suppose there is a non-
negative sequence ¥ = {Pn} such that {Av,} is bounded and that (13) holds.
Suppose further that

3
U
0< e X O

o fu)
for some € > 0. Then (1) cannot have a bounded solution which is eventually

positive nondecreasing.
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Theorem 9. Suppose there is a nonnegative and nontmmal sequence 1 =

{¥n}SLy such that

% L ¢k+1 dn
limenp =20=2 EE = oo for all large T, (17)
m—00 ¢k+1
k=T Pk

then (1) cannot have an eventually positive nondecreasing solution.

Proof. Suppose (1) has a nonoscillatory solution z such that z, > 0 and

Az, >0 for n > N. If we multiply (4) by 541, we get

k
Vrp1ATk Z Vi4+1n ” Yrt1PnATN

flze) Sy e = flene)pe
Thus
in: Z Vit1 In PNAzZ N Z ¢’le
k=N+1n=Nt1 Pk f(xNH) k=N+1
which is a contradiction. =

Theorem 10. Suppose

ZQk < (18)
k=1

lim sup L - for all large T, (19)
m=0 =7 k=n+1 Pn
0< el < f >0 (14)
—— < 00 for some ¢ ' :
e f(v)

Then equation (1) cannot have an eventually posititve nondecreasing solution.

Proof. Suppose to the contrary that {z,} is a solution of (1) such that
Zn > 0 and Az, > 0 for n > N. Then in view of (3) and (18), we have

Z q pNAch
n=N+1 " f(zN+1)
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From this inequality and (15), we then obtain
m o0 i— m /xm+1 du
Z Z g f($N+1) N f(u)

In view of (19) and (14), a contradiction is clear. =

Similar reasoning leads to the following

Theorem 11. Suppose

(-

0< = < oo for somee>0
o f(u)
and that (18) and (19) hold. Then equation (1) cannot have a bounded solution

which is eventually positive nondecreasing.

4. Oscillation Theorems

Each of the results derived in the last two sections has a dual statement
valid for eventually negative decreasing solutions. This is clear from the fact

that {z,} is a solution of (1) if and only if {—z,} is a solution of

A(pn—lAyn—l) y 3 an(yn) = O) n = 152’3, * e

where F(t) = —f(—t) for all £. Note that sign F(t) = sign ¢ and F is nonde-
creasing. As a consequence, each condition imposed on {p,} or {g.} in each of
the previous result remains unchanged in the dual statement, while a condition
imposed on the function f has to be modified appropriately. As an example, a

dual statement corresponding to Theorem 7 is as follows.

Theorem 12. Suppose f is nondecreasing and suppose there is a nonneg-
ative sequence {,} such that {Avy,} is bounded and that (13) holds. Suppose
further that

0< /'_°°d_u < 0
-~ Jlu)
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for some € > 0. Then (1) cannot have an eventually negative nonincreasing

solution.

Other results can be stated, but skipped because no new principle is in-
volved.

The results derived in the previous two sections and their dual are usefyl
in deriving oscillation theorems for equation (1). We illustrate the general pro-
cedure in a simple case. Let {z,} be a nonoscillatory solution of (1), then as
mentioned in Section 1, it is either eventually positive or eventually negative.
Conditions (6) and (7) are sufficient for this solution to be eventually increasing
in the former case and decreasing in the latter. If we now impose the condition

in Theorem 5, we arrive at a contradiction.

Theorem 13. If the conditions imposed in Theorem 1 and Theroem 5 hold,

then every solution of equation (1) is oscillatory.

Various combinations of the results in the previous two Sections and their
dual will lead to oscillation theorems, but we shall confine ourself to an example.
Let r be a quotient of odd, positive integers, and let a be a real parameter. Let

Pn=1forn=0,1,2,--- and
it = (n+1)7{(n+2)*+2(n+1)*+ ¥l 20, =123
Then the equation
A%g g 4 @y, = 0, n=1,2,8::: (22)

has a soluton 2z, = (-1)"(n + 1)* for n = 0,1,2, - - -, Which is oscillatory. Fur-
thermore, we may make the following assertion: (a) f @ < 0and r > (a+ 1)/ e,
then g, = o0, so that every nontrivial solution of (22) is oscillatory in view of
Theorems 1,5 and their dual. (b) If a < 0 and (@+2)/a<r<(a+1)/a, then
7 < 1and }}(n+ 1)g, = oo, so that every bounded nontrivial solution of [22)
is oscillatory in view of Theorem 1,8 and their dual. (c) If a =0, then ¢, = 4

for n > 1 and Y ¢, = o0, so that every nontrivial solution of (22) is oscillatory
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in view of Theorems 1,5 and their dual. (d) If & > 0 and r < (e + 1)/a, then
Y. qn = 00, so that every nontrivial solution of (22) is oscillatory in view of
Theorem 1,5 and their dual. (e) f @ > 0 and (a4 1)/a < 7 < (a+ 2)/r, then
r>1and > (n+1)g, = 1, so that every nontrivial solution of (22) is oscillatory

in view of Theorems 1,7 and their dual.
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