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A NOTE ON THE CONSISTENCY OF
LIMITATION METHODS
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We denote by w the space of all real or complex valued sequences. We

J:
w). We write wg = {2 : Az € w}. Let m, by, ¢, ¢ be respectively the

O
consider matrix transformations y; = Y a; jz; (that is, y = Az, where z,y €
0

spaces of bounded, bounded variation, convergent and null sequences; £ = {z :
(o]

5 |za] < o0}; 80° = bv N c®. We shall make use of the special sequences
n=0

e* = (0,0,0,---,1,0,0,0,---), e = (1,1,1,---). Denote A = {€*};50 and AT =
A + {e}. We now define a sequence space of different type, namely

00
E , AnkTk

k=m

by = {z€wy: < K(A,z) (myn=0,1,2,--)}.

If z € c its limit is denoted by limz, and if z € ¢4 we denote lim(Az) =

lim4 z. Denote the set of all e’s by
QS = {6760')617627 " S '}'

Then e € cq, €* € ¢4 are respectively equivalent to the requirements that row
sums of A exist and tend to a limit, or that the k-th column-limit of A exists.

We denote x4 = limye — > limy e* whenever this exists and is finite, and
k
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IlA]| = sup ) |ank|, finite or not. Note that £4 C c?4 Ccs Cmy C wy and
n ok
Ly Cbvy Cey.
We say that A defines a section bounded matrix transformation (introduced

by Wilansky and Zeller [7]), when it belongs to the set
A = {A tC4 g bA}

Thus matrices in .4 have the property

00
E , AnkTk

k=m

A :Vz € ¢4, sup = K(A,z) < o0.

m,n

We define
A0,= {A:C?‘i g bA}

A real matrix H = (hy,) is called diagonal positive when

B < 0 (0L B < n); By 50, hap = 0> 8 nuk=0;1,2,5s,

In [2] the authors have obtained necessary and sufficient conditions for the
consistency of two limitation methods for Norlund summable sequences. The
object of this note is to extend the results obtained in [2] and demonstrate that

by using functional analysis technique the proof becomes easier.

In order to state our theorem we need some definitions.
Let p = (pn) and g = (gn) be sequences of real or complex numbers such
that ¢, # 0 for n > 0 and ¢, = 0, p, = 0, for n < 0. Let

n
Tn = Epn—ka-
k=0

o0

We assume that, for all n, r,, # 0. Let ), a, be an infinite series with (s,) as
n=0

the sequence of its partial sums. Let (IV,p,q) denotes the generalized Norlund
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method in which the sequence (s,) is transformed into 7, given by

n

1
T™n = — Pn—kqKSk (1)
Tn k=0

o0
If 7, — s (finite) as n — oo, then the series ) a, (or the sequence (s,)) is said
n=0

to be summable by the generalized Nérlund method (N, p,q) to s. We denote it
by

00
Zan = s(N,p,q) or Sn-‘)S(N,p,Q)‘
=0

The necessary and sufficient conditions for the regularity of (N, p,q) are

Z |Pr—vqu| = 0 [|rn]] (n2>0) (2)
and

Pr—w = 0[|rn]] as m — 00 (v fixed). (41)

This follows from Toeplitz’s theorem (Hardy [1], Theorem 2). The method
(N,p,q) reduces to the Norlund method (N, p) when ¢, = 1 for all n (Hardy [1],
p.64) and to the Riesz method (NV,q) when p, = 1 for all n (Hardy [1], p.57).

Given any sequence (p,), we write

o0

pz) = anz”, P >0 (m>0)
n=0

and
(o0]

()] = Y "

n=0

whenever the series on the right converges.

It is reasonably familiar that if we define

n
Zn = ) Pn_kl
k=0

then
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n

Yn = Z’)’n—kzk-

k=0

Applying this with yr = Skqk, zxr = 7,7 we find that

n

Oy =t =7 E Yn—kTkTk-
qn e

As usual we say that the sequence (p,) € M, if pp =1,

P > 0, Prn+1 < Pn+2 <1 (n - 0,1,)
Pn Pn+1

Let A and B be two infinite matrices.

Let
o 00
Um = E OmnSny VUm = E B B
n=0 n=0

We say that the A, B transforms are equiconvergent if
o
Z(amn — bmn)sn converges for all m,
n=0

and its sum tends to 0 as m — oo. We shall prove the following theorem.

Theorem 1. Let (N,p) be a Norlund method where p, € M and let (g,,) be
a sequence where each q, > 1. Then the necessary and sufficient conditions that
A, B transforms are equiconvergent for all (N, p,q) summable sequences are

(i) lim dpn = 0 for every fized n;

(i) Im 3 dpmn =0
0

m—00 n—=

oo s o0 o0 dmn

(iii) sup >, 7| > Ykl < M
m k=0 n=k qn

In order to prove the theorem we need some known results. We shall see
that by using functional anaylysis technique the proof of Theorem 1 becomes

easier.
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n
Lemma l. Ifpe Mandifg, 26 > 0,7, = 3 pn_kqr, then H = (N,p,q).
k=0
is non-negative, normal, regular, and has the normal inverse

H™ = (hzy), b = tiPa_i/tn (0 k<),
where By = 1/po, D < 0 (k > 1); also E hor = 1. It follows that H satisfies

By €0{0 £ k< a) kZ hZ. > 0, and hence H has the section bounded
=0
property.

This result is known and given in ([7] Kriterium 1, p. 260).

Theorem A. Let H be normal, section bounded, and coregular. In order
that cg C cp it is necessary and sufficient that
(i) Xp exists;
(i) |DE < oo
This theorem follows from a Theorem ([4], Theorem 3, p. 263).

Suppose that A = {eF} C c%. This means that c¢3; is an AK-space (A is a
Schauder basis for c%).
Theorem B. Let H be normal, section-bounded, and A C ¢%. Then

& C ) = Agc%
HSCD T = DH™! satisfies D =TH, ||T|| < o

The proof of this theorem is similar to the proof given in ([4], Theorem 4). We
shall now extend Theorem B. In order to extend Theorem B we need a very

simple lemma.
Lemma 2. If there is a sequence § such that Hé = e, then
cg C e} <= bec) and cy C Y.

- In the particular application H = (N,p,q), we have E hnk = 1 for every n, or

that He = e (i.e. § = €). So if we write AT = AU {e} = {e*} U {e}, Theorem
B and Lemma 2 yield:
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Theorem C. Let I = (N,p,q) where p € M and q, > 6 > 0. Then

+ 0
AT C cp,

0
cy C cp < {T = DH™! satisfies D = TH, ||T|| < o0

Remark. More serious is the elimination of the criterion “I" = DH-1
satisfies D = TH” in Theorem C.

We shall now show that for the matrix H = (N, p, q), this is true.

In order to see this we need the following results:

Lemma 3. Let H be normal and have the inverse property. Let u be a
positive sequence such that wH =1 exists and is non-negative. If d is a sequence
such that

dr = o(ui) then dH ™' and (dH )H ezist, and
d = (dH V) H

Proof. Note that H is non-negative. Since H~! is diagonal positive and
g g D

uH ! exists, it follows that
(o]
Zun ,h;;;l < 0o, and
n=0

dn = 0(tun). This shows that dH ™! exists.

Choose any fixed r > 0; then, for any N > r

N
dr = Zdn‘Snr

n

dn Z ;]lhkr

=r

n;—
b
n;'r
(2.
k=r

00 N 0
=(Q_ 2 =2 3 dahiiha
n=k n=ra=N+1 :

= 51 — 8§ (since dH ™! exists).
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Write
dn

Un

TN = Ssup

d :
= o(1) as N — o0, since — = o(1).
n>N+1 ' L

n

Then

oo

| N
1921 € ) hir D ldnhis

k=r n=N+1

N [o)
S el T il
k=7 n=N+1

since h;; <0form>k,

N N
Z Z -
k=r n=k

N 0
since (3, + Y Junh i >0,
n=k n=N+1

N n
-1
™™ ) tn ) bk
=r k=7

N
= rNZuném = TNUuUr > 0as N — o0

It follows that d, = A}im S, = [(dHY)H], for r = 0,1,2,---.
—00
Lemma 4. Let H be normal and have the inverse property. Let u be a
positive sequence such that

Ukp1Pnk < Ukhnpyr (0<Ek<n=1,2,---).

Then uwH 1 ezists and is non-negative.

Proof. Write T = (tnk), tak = 1 (0 £ k < n), tar = 0 (k > n); its inverse
18

T! = (D), ;2 =1, t;_, = -1, t;; = 0 otherwise.
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Let B
gnk = % then g = ungy{ and, by hypothesis,

n

(GT_I)nk = gnk — gnk+1 <0 for0<k<n=123,--

Hence, (GT~!)™! = TG! is non-negative. That is,

N N
0< (TG Mk =) unhgt =uwehp — Y talhnil,
n=k n=k+1

©O
and so Y. u,h]; converges and is non-negative, for each k.
=k

In the case H = (N,p,q) we have

n
hnk — w_ (Tn = an_qu)

T
w k=0

Since p € M, it follows that

Pk & hn k41

9~ Qk+1

Hence, up = gi in the last two lemmas. This gives:

If di = o(gx), then t = dH ! exists and satisfies d = tH where H = (N, p, q).
Moreover, since gr > 6 > 0. It follows that

g = oll)=%dp= o(g)

Replacing di by d,x we have:

If lilzn dnr = 0 for each n, then T = DH ! exists and satisfies D = TH.
Finally, the condition e € ¢}, (included in the condition AT C ¢% of Theorem
C) says that

[ee)

lim Z dn k=0, and in particular this implies that
" k=0
lilgn dnr = 0 for each n.

Thus Theorem C reduces to the form
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Theorem C' Let H = (N, p,q), where p € M and q, > § > 0. Then
¢y Cch <> AT Cc} and |DHY| < o0

The conditions on the right of Theorem C' are:
(i) imdmn = 0 for each n(e™ € c3).
m
O
(ii) lim Z e = (e € c})

(iii) sup Z rkl

m k=0

| < 00).

Thus the proof of Theorem 1 is complete.
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