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A BAYESIAN APPROACH TO DETECT INFORMATIVE

OBSERVATIONS IN A REGRESSION EXPERIMENT BASED

ON GENERALIZED ENTROPY MEASURES

D. MORALES AND L. PARDO

Abstract. In this paper we identify subsets of the data that appear
to have a disproportionate influence on the estimated normal regression
model in a Bayesian context. Generalized entropy measures are used to
detect a set of most informative observations in a given design.

1. Introduction

Let C be a class of statistical experiments Y. In this paper a statistical
experiment is understood by the following three conditions:

(i) a listing of possible outcomes, i.e., a measurable sample space (Y, B);
(ii) a listing of possible elementary hypotheses (explaining theories or states of

nature), i.e., a nonempty set 0; and
(iii) a correspondence assigning the random outcome, i.e., a statistical fa面ly

P = {Pa, 0 E 0} consisting of probability measures on (Y, B).
We shall suppose that the family of probability measures is dominated by a

a-finite measure, so that they may be described through their density functions,
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隕/B), with respect to a measureµ(y). We shall also suppose that 8 is endowed
with a er-field of subsets, usually, it is a subset of an n-dimensional Euclidean

space. A prior distribution for 8 is a probability density function p(B) with

respect to a measure denoted by A(B). In this paper the dominating measure
wi11 be either Lebesgue or counting measure. Thus, in accordance with these

conventional notations, we have,

f(y) = J f(y/O)p(O)d>.(O),
e

and by Bayes's theorem we have p(O/y) = (f(y/O)p(O))/f(y).
For a prior distribution p(·), the (r, s)-entropy measure is given by

霑 (p(·)) =

n:(p(·)) = (21一'-It'{ (J:。p(erd,\(8)) 昰 -1} , r f l, s f 1

I片(p(·)) = (21-s _ 1)-1 (2(1一 s)H(p(·)) _ 1) ,

1
祀 (p(.)) =戸 log2 (L p(8)'dA(8)) ,

H(p(·)) = - fe p(B) log2 p(B)d.-\(B),

r = I, s # l

T :j; 1, S = l

r = l, s = l
for all r E (0, oo) and s E (-oo, oo). It is understood that all the integrals

involved exist.
For any probability density function f(x) we have

Ht(!) = lim n:(J), H;(J) = lim H;(J) and H(f) = lim Ht(!)= lim H訌f).
r--.1 s一•l s-1 r-1

For operational purposes, a systematic attempt to develop a generalization

of Shannon's entropy (1948) was carried out by Renyi (1961), H; (!), first. Since
then many other authors have studied new generalizations: Havrda and Cha這t

(1967), H%(f), Arimoto (1971), H坏 (J), and Sharma and Mittal (1975), Hi(!)
and II:(J). Finally, a review on (r, s)-entropy measures, their importance and

their applications is given in Taneja et al (1989).
After the experiment has been performed and a value y is observed, the

(r, s)-entropy measure on the posterior distribution is given by 汜(p(. /y)).
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The information about 8 given by the observation y of Y is defined as follows:

g;(Y,p(·), y) = 啊(p(-)) - 霑(p(·/y)),

for all r E (0, oo) and s E (-oo, oo).

The average amount of (r, s)-information over 0 provided by the experiment
Y, when the prior knowledge is p(B), is given by

o:(Y,p(·)) = 霑(p(·)) - Ey儒 (p(. /y)))'

We can easily find examples, when the measures 髭 (p(·)) and E;(p(-/x))
become negative. In Taneja et al. (1989) it is established that the measure
釘 (Y,p(·)) is nonnegative for all (r,s) Er, where

f = {cr,s)/r>0,s2'.2-n.

Furthermore, E;(p(·)) is concave for all (r, s) E r.

In this paper we suppose that the class of all possible experiments C is
composed of

k

Y=Rn, 8=Rk, Yi= LOjaij+ei, i=l,2,···n,
j=l

where e = (e1, e2, ···,en) is normally distributed with mean vector (0, ... , O)
and precision matrix 尸In. Also suppose that () is normally distributed with

mean vector ()0 and precision matrix 戸Po. The n X k matrix A = (aij), with

rank (A) = k < n, is called the allocation or design matrix and the rows of A
arc called the allocation vectors. If in an experiment a set of t observations is
unavailable, where t is a positive integer such that (n - t)~k, the problem of

measuring the corresponding loss of information arises. In the case of a limited

budget for an experiment it may be wise not to collect the least informative set of
observations. The number of available measures in the literature for identifying
influential points is quite large. A partial list, with very readable explanations
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is given in Chatterjee and Hadi (1986). Further discussions can be find in Cook

and Weisberg (1980) and (1982), Cook (1986), Lawrence (1988), Ghosh (1982,
1983) and Ali (1990).

In this paper we use the (r,s)-.information measure, g:(Y,p(·)), to analyze

the loss of information due to the unavailability of a set of observations. This
measure can be used to identify the ]east informative set of observations as well
as to identify subsets of the data that appear to have a disproportionate influence
on the estimated parameter 0.

2. Unified (r,s)-entropy measures in the regression experiment model

Y =AB+ e

In this section we calculate the (r, s)-information measure provided by a
regression experiment about the vector B, when the initial opinions about () are
described by a multivariate normal density.

Theorem 1. Let us consider the regression experiment Y =A()+ e, where

e has a multivariate normal density with mean vector (0, · · ·, 0) and precision
matrix 『2 In, and where A is a known n X k matrix. Suppose the prior knowledge

on O is expressed by a multivariate normal with mean vector 術 and precision
matrix a- 2Po. Then

g:(Y,p(·))

I.Pi。严 (1-1~尸A'A+I団 ）
~ ~ 上 'r 2(r-l) (21 一 s - 1)(2可 2 as一1

I.Pi。尸 (1~。一1A'A + I严- 1)
(21re)

k(,-1)
2 (2s-l - l)a8 一 1

1
-1og2 I-Pi。;-1 A'A+ II,
2

r /; l, s /; l

sf 1, r = l

s = 1

where (r,s) Er.

Proof. Given a multivariate normal distribution with mean vector T(k x 1)
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and vrec1s10n matnx C
＾

(k x k), it follows

H:(N(T, C))

= (2'一'-1)_, {[L cc2可丑 ;2J ICl'/2 exp(-~位-T)'C(x-T)))rdx] 局-1

k(~-1)

｝
= (21一s_l尸 （回 于 r- 2(r尹 (21r)一守 - 1) , r # l, s # l

Since the posterior distribution (see DeGroot (1970)) is multivariate normal with
precision matrix (A'A+ P0)a-2, we have

H:(p(·)) = (21一s - 1尸 (IPou-2 丨早 r一曰 但 ）－罕 - 1)' r # l, s # l

and

g:(Y,p(·))
I.A訌 (1-1~。11A'A + I严 ）
k(• 一 1)
r2(r-l) (21 一s - 1)(2可 (•- 屯 '

2 as一 1
r 孕 1, sf;l, (r,s)Ef

and by continuity of£; in r and s we obtain the proposed result after applying
the L'Hopital rule.

Remark 1. If </> = MO is a orthogonal transformation, then 釘 (Y,p(·))
remains the same, whether we consider information about O or about <f>.

3. Loss of Information due to unavailable observations

Let A1((n - t) x k) be the allocation matrix corresponding to the situation
when any set oft observations is unavailable in the experiment. Clearly, there are

（叮t possible allocat10n matrices. Let Y1 ((n- t) x 1) be the vector of observations
corresponding to the allocation matrix A1. Further, let A2 t x k be the rows in A

corresponding to the vector~f unavailable observations Y2 (t x 1). We partition
Y and A as follows

Y' (Y{, Y{) and A' (A~,A位
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Since the distribution of 玠 given (} is a multivariate normal with mean
vector A1(} and precision matrix a-2 I(n-t), and the prior distribution of B is
multivariate normal with mean 恥 and precision matrix a-2 Po, the distribution

of () given Y1 is multivariate normal with parameters (µ1, a刁 片 ），where

µ1 = (Po+ A~l(n-t)A1尸(Pi誠o + A~L伍-t)玠 ）

and

P1 = (Po+ A~I(n-t)A1).

Note also that the marginal distribution of Y1 is multivariate normal with mean

vector A1 Bo and covariance matrix V1 = In-t + A1~。;-1 A~.
Now, we give the following definition:

Definition 1. A measure of loss of information due to the unavailability

of the vector 玲 in the allocation matrix A based on the unified (r, s)-entropy

measure is given by

珥 (A2; A1) = 釘(Y,p(-)) - 釘(Y1,P(·))

The next theorem establishes the expression of£: (A2; A卟

Theorem 2. The amount of 吋'ormation loss due to Y2, the vector of

unavailable observation in the given allocation matrix A, is

£;(A2,A1)

叭囯 (1- IA2SA~+It严 ）因 于
严 三

T 2(r-l) (21 一 s - 1)(2可 2 as 一1

IV1 尸 (1 心SA~+ It百辶 1) IPol乎

(21re)
k(• 一 1)

2 (2s-l _ 1)as-I
1
-log2 IA2SA; + ltl,
2

r -:/= l, s -:/= l

, sf= 1, r = 1

s = 1

where

s = p尸 ~Pi。)1 - Pi。11 A~v尸A1~。;--1 and V1 = In-t + A1Pi。,1 A~
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Proof. First, we consider r f; 1, s f; 1. Then

珥 (A2;A1) = 釘(Y,p(·)) - 釘(Y1,P(·))

= P [IPi。一 1 A~A1 + Ik尸 －廌-iA'A + h严 ］
= P [IIn-t + A1Pi。,1 A~I 于- IIn + AP0-1 A'严 ］，

where
IPol9

k(• 一 1)
r如-1) (21-s - 1)(2可 ( •一 l)k

2 as一 1

Now in accordance with the partition of A, we partition In + A~尸A'as
follows:

p =

lln + APi。;--1 A'I = IV1l 1It 十 A2Pi『丛 －品P。11 A~"Vi-1 A1Pi。•1 A計

= IV1l 1It + A2SA計 ，

where

S=~。,1 - ~。,1 A~v1-1A1~訌
Therefore for r :/ 1 and s :/ l, we get

広 (A2; A1) = plV1囯 [1-llt+A2SA『严 ］．

Now the results follows by continuity of 珥 with respect to r and s.

Remark 2. To compare the influence of two sets oft observations Ghosh

and Namini (1989) proposed several measures. One of their measures is

G(A2; A1) = llt + A2(A凶尸A計

If we consider Ft。~O; i.e., if we suppose a low level of prior knowledge and
independence between the /3恆 ，we obtain

£:(A2;A1) = aG(A2;Ai)+b

For a set of unavailable observations with minimum c:(A2, A1) the resulting
design A~will the best among all possible designs A1. The observations, Y1,
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corresponding to the best design Ai will be called most informative. We consider

the case t = 1 and we write 心 (lxk) = a'. Here a (kxl)isanarbitrarynon-null

vector with fixed euclidean norm a= llall- Therefore

£: (心，A1) = K
1- (1 + a'Sa)<s一 1)/2

(l)

where

K = 旳~IPol 早
"(•-1)
r2< (•- 珝

r-1) (2可 2 O"s一 1

is a positive number for all r E (0, oo) and s E (-oo, +oo).

Theorem 3. Among all observations vectors a (k x 1) with fixed euclidean
norm a, the loss of磺rmation (1) will be minimum if the observation is taken
in the direction of the eigenvector associated to the smallest eigenvalue of S.
Furthermore the unavailability of an observation in the direction of the eigenvec­
tor associated to the largest eigenvalue of S maximizes the loss of information
(1).

Proof. For all r E (0, oo) and any s E (-oo, 十oo), c:(A2,A)"1 1s an mcreas-
ing function of a'Sa, so the problem

rnm1rn1ze 乓 (A2,A1)
a/!lall = a

reduces to

m1rum1ze a'Sa.
a/llall = a

As S is a symmetric and positive definite matrix, we can write S = CDC',
where D (k X k) is a diagonal matrix whose elements are the eigenvalues .-\1 2:
.-\2 2: · · ·2: Ak > 0 of S and C (n X k) is a matrix whose columns are the
corresponding orthonormal eigenvectors. Accordingly, it follows that

k

o:'Sa = a'CDC'a = 芝 Ai(a'Ti)2
i=l

k

a2L肛OS2 。r
i=l
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k
As (T1, T:幻. . . ,Tk) is an orthonormal basis of Rk, 1 = I: cos2 (}i, so the problem

i=l
reduces to

k

m1mm1ze 芷 A出·

1r1, ... , 7rk i=l

under the constrain 1 = 可 十 7r2 十 ．．．十 7rk, where 1ri = cos2 Bi. Clearly, a minimum
is attained when 1rk = l, i.e., when a is proportional to Tk, and a maximum is
attained when 1r1 = 1, i.e., when a is proportional to T1.

Remark 3. The result of theorem 3 should be extended to the care of
unavailable t observations; however no clear statement can be given. To show
the complexity of the problem, we analyze the case t = 2. Let us write 心 (2xk) =
(n',/3']', where n(k x 1) and {3(k x 1) are arbitrary non-null vectors with fixed
euclidean norms a and b respectively. Therefore, the problem to be solved is:

minimize£比 (A2, A1) = minimize !It+ A2SA計
n/llnll = a n/llnll = a
/3/11/311 = b /3/11/311 = b

m1mm1ze { (a'Sa + 1)(/3'S/3 + 1) - (a'S吖 ｝
a/llall = a
/3/11/311 = b

m1mm1ze
Pi, ... ,Pk { (l+a2 1:7=1 AiPi) (l+b21:7=1 Aiqi)-(ab I:7=1 Ai(Piqi)112)},
q1, • • • , qk

under the constrams Pi+ P2 + ... +Pk = 1, q1 + q2 十 ．．．十 qk = 1, Pi 2'. 0, _qi 2'. 0,
i = 1, · · ·, k, where Pi = cos2 Bi, qi = cos2 昀 Bi= Angle(a,Ti), Vi= Angle(/3,Ti)
and Ai and Ti are the ith eigenvalue and the ith normalized eigenvector of matrix
S resp cctively.
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