SOME REMARKS ON MULTIPLICATON MODULES*

CHANG WOO CHOI AND EUN SUP KIM

1. Introduction

Throughout this thesis all rings are commutative rings with an identity and all modules are unital.

Let R be a ring and M an R-module. Then M is called a multiplication module provided for each submodule N of M there exists an ideal I of R such that N = IM.

If N is a submodule of M then $(N : M) = \{r \in R : rM \subseteq N\}$. It is clear that every cyclic R-module is a multiplication module. In particular, invertible, and more generally projective, ideals of R are multiplication R-modules (see [9, Theorem 1]).

Let M be an R-module. If P is a maximal ideal of R, then we define

$$T_P(M) = \{m \in M : (1-p)m = 0 \text{ for some } p \in P\}.$$

Clearly $T_P(M)$ is a submodule of M. We say that M is P-cyclic provided there exist $q \in P$ and $m \in M$ such that $(1-q)M \subseteq Rm$. On the other hand M is called P-torsion provided for each $m \in M$ there exists $p \in P$ such that (1-p)m = 0.

In this paper we investigate the relationships between multiplication module and its dual module. In particular, we prove the Fitting's Lemma in terms of multiplication module. Also, we define $\theta(M) = \sum_{m \in M} (Rm : M)$ for any *R*-module *M* and show that some properties of multiplication module by the technique $\theta(M)$.

Received April 15, 1992.

^{*} This research was partially supported by TGRC-KOSEF, 1992.

2. Multiplication modules

Let R be a commutative ring with identity and M an R-module. Then M is called a *multiplication module* if for each submodule N of M there exists an ideal I of R such that N = IM.

It is easy to check that M is a multiplication module if and only if N = (N : M)M for every submodule N of M. An R-module M is called a *locally cyclic* if M_P is a cyclic R_P -module for all maximal ideals P of R. Our starting point is the following result taken from [4, Theorem 1.2].

Lemma 2.1. An R-module M is a multiplication module if and only if for every maximal ideal P of R either $M = T_P(M)$ or M is P-cyclic.

Proposition 2.2. Let K and L be submodules of an R-module M and let N be a multiplication submodule of M which is not P-cyclic for every maximal ideal P of R. Then $L \cap (K + N) \subseteq (L \cap K) + PL$.

Proof. Let $a \in L \cap (K + N)$. Then there exist $b \in K$ and $c \in N$ such that a = b + c. Since N is a multiplication submodule of M which is not P-cyclic, $N = T_P(N)$ by Lemma 2.1. Therefore for all $n \in N$, there exists $p \in P$ such that (1 - p)n = 0 and hence (1 - p)c = 0. Thus (1 - p)a = (1 - p)(b + c) = (1 - p)b + (1 - p)c = (1 - p)b and so a = (1 - p)a + pa = (1 - p)b + pa. But $(1 - p)b = (1 - p)a \in L \cap K$. This implies $a = (1 - p)b + pa \in (L \cap K) + PL$. Hence $L \cap (K + N) \subseteq (L \cap K) + PL$.

Proposition 2.3. Let M be a multiplication R-module and P a maximal ideal of R. Then the following statements are equivalent.

- (i) M is P-torsion.
- (ii) M = PM.
- (iii) ann(m) + P = R for all $m \in M$.

Proof. (i) \iff (ii). It is well-known ([8, Lemma 2.4]). (i) \Rightarrow (iii). Suppose *M* is *P*-torsion. Then there exists $p \in P$ such that (1-p)m = 0 for all $m \in M$. This implies $1-p \in ann(m)$ and so $1 \in ann(m)+P$. Hence ann(m) + P = R for all $m \in M$.

(iii) \Rightarrow (i). Suppose ann(m) + P = R for all $m \in M$. Then 1 = a + q for some $a \in ann(m)$ and $q \in P$. This means m = qm and so (1 - q)m = 0. Thus M is P-torsion.

Remark. In the proof of the equivalence between (i) and (iii), the condition that M is a multiplication module is not necessary.

Corollary 2.4. An R-module M is a multiplication module if and only if for each maximal ideal P of R either ann(m) + P = R for all $m \in M$ or M is P-cyclic.

Proof. By Proposition 2.3 and Lemma 2.1, it is obvious.

Let R be a ring and M an R-module. The module M will be called a torsion module in case $ann(m) \neq 0$ for every $m \in M$, otherwise it will be called non-torsion. Note that any non-torsion module is faithful. For the ring R let C(R) denote the set of regular elements (i.e. non-zero-divisors,), so $c \in C(R)$ if any only if $cr \neq 0$ for all $0 \neq r \in R$. Let F denote the ring of quotients of R, so that every element of F can be written in the form $c^{-1}r$ for some $c \in C(R)$, $r \in R$. If I is an ideal of R let $I^+ = \{f \in F : fI \subseteq R\}$. The ideal I is called invertible provided $I^+I = R$. It is well known and easy to prove that an ideal I of R is invertible if and only if it is a multiplication ideal which contains a regular element of R.

An *R*-module *M* is called *torsion-free* provided $cm \neq 0$ for all $c \in C(R)$, $0 \neq m \in M$. The dual M^* of *M* is defined to be $\operatorname{Hom}_R(M, R)$ which is itself an *R*-module with respect to the definitions: $(\alpha + \beta)(m) = \alpha(m) + \beta(m)$ and $(r\alpha)(m) = r\alpha(m)$, for all $\alpha, \beta \in M^*$, $r \in R$ and $m \in M$.

Theorem 2.5. Let R be a domain and let M be a nonzero multiplication R-module. Then M is torsion free if and only if M^* is a non-torsion module.

Proof. Let $0 \neq y \in M$. There exists an ideal I of R such that Ry = IM.

Clearly $I \neq 0$. Let $0 \neq x \in I$. Define $\phi: M \to Ry$ by $\phi(m) = xm(m \in M)$. Since M is torsion free, ϕ is a monomorphism. But $Ry \cong R$. Thus M is isomorphic to an ideal A of R. This implies that A is a multiplication ideal containing a regular element of R and hence an invertible ideal of R. Let a be the regular element of R contained in A. Then ann(a) = 0 and hence ann(A) = 0. Thus A is a faithful R-module and so M is a faithful R-module because $M \cong A$. By [6, Lemma 1.1], M^* is a non-torsion module.

Conversely, suppose M^* is a non-torsion module. By definition, M^* is a faithful *R*-module. But $ann(M) \subseteq ann(M^*)$. For, let $y \in ann(M)$ and $\phi \in M^*$. Then $y \in R$, yM = 0 and so $\phi(yM) = \phi(0) = 0$. This implies $y\phi(M) = (y\phi)M = 0$ and so $y\phi = 0$ and hence $yM^* = 0$ i.e. $y \in ann(M^*)$. Since $ann(M^*) = 0$, ann(M) = 0 i.e. *M* is faithful. By [4, Lemma 4.1], *M* is torsion free.

Corollary 2.6. Let R be a domain and let M be a non zero multiplication R-module. If M is torsion free, then M^* is a finitely generated faithful multiplication R-module and $M^{**} \cong M$.

Proof. By the proof of Theorem 2.5 and [6, Theorem 1.3 Corollary 2], it follows immediately.

Corollary 2.7. Let R be a domain and let M be a non zero multiplication R-module. If M is torsion free, then M is a finitely generated non-torsion module.

Proof. By the proof of Theorem 2.5 and [6, Theorem 1.7], it is clear.

Definition 2.8. A module M is said to satisfy *Fitting's Lemma* if for each $f \in End_R(M)$ there exists an integer $n \ge 1$ such that $M = \text{Ker} f^n \oplus \text{Im} f^n$.

Definition 2.9. A ring R is left (right) π -regular if for each a in R there exists b in R and an integer $n \ge 1$ such that $a^n = ba^{n+1}(a^n = a^{n+1}b)$.

Theorem 2.10. Let M be a multiplication R-module satisfying descending chain condition on multiplication submodules and $f \in End_R(M)$. Then M

satisfies Fitting's Lemma.

Proof. Consider the sequence $M \supset f(M) \supset f^2(M) \cdots$. Since every homomorphic images of multiplication modules are multiplication module, the sequence becomes stationary after n steps, say. Thus $f^{(n)}(M) = f^{(n+1)}(M) = \cdots = f^{2n}(M) = \cdots$. Therefore f^n induces an endomorphism on multiplication module $f^{(n)}(M)$ which is an epimorphism, hence an automorphism because every epimorphism of a multiplication module onto itself is an automorphism. Thus $f^{(n)}(M) \cap \operatorname{Ker} f^{(n)} = 0$. Now take any $m \in M$, then $f^n(m) = f^{2n}(n)$ for some $n \in M$, hence $m - f^{(n)}(n) \in \operatorname{Ker}(f^n)$. But $m = f^n(n) + (m - f^n(n))$. Thus $M = f^{(n)}(M) \oplus \operatorname{Ker} f^n$. This completes the proof.

Following Azumaya [3], a ring which is both left and right π -regular will be called strongly π -regular. However, F. Dischinger proved that every left π -regular rings are right π -regular (and hence stronly π -regular).

Corollary 2.11. If a multiplication R-module M satisfies descending chain condition on multiplication submodules and $f \in End_R(M)$, then $End_R(M)$ is strongly π -regular.

Proof. By Theorem 2.10 and [2, Proposition 2.3].

Corollary 2.12. If a multiplication R-module M satisfies the hypothesis of corollary 2.11, then every injective or surjective endomorphisms of M are isomorphisms.

Proof. By Corollary 2.11 and [2, Corollary 2.4].

Let R be a ring and M an R-module. A submodule X of M is said to be fully invariant if $f(X) \subseteq X$, for all $f \in \operatorname{Hom}_R(M, M)$.

Lemma 2.13. Let M be a multiplication R-module. Then every submodule of M is fully invariant.

Proof. Let N be any submodule of M. Then N = IM for some ideal I of R. Let $f \in \operatorname{End}_R(M, M)$. Then $f(N) = f(IM) = If(M) \subseteq IM = N$.

A. G. Naoum [7] has shown that if M is a finitely generated multiplication module then for each $f \in \operatorname{End}_R(M, M)$, there exists $r \in R$ such that f(m) = rmfor each $m \in M$. Our next theorem generalizing this fact communicated to me in a personal correspondence by Patrick F. Smith.

Theorem 2.14. Let M be a multiplication R-module and let $f \in \text{End}_R(M)$. Then there exists $r \in R$ such that f(m) = rm for each $m \in M$.

Proof. It follows from Lemma 2.13.

Corollary 2.15. If M is a multiplication R-module, then $\operatorname{End}_R(M)$ is isomorphic to $R/\operatorname{ann}(M)$.

Proof. Define $\psi : R \to \operatorname{End}_R(M)$ by $\psi(r) = f_r$ for any $r \in R$, where $f_r(m) = rm$ for any $m \in M$. It can easily be checked that ψ is a ring homomorphism and by Theorem 2.14, ψ is onto.

A little elementary calculation shows that $\operatorname{Ker}(\psi) = \operatorname{ann}(M)$. Thus $\operatorname{End}_R(M)$ is isomorphic to $R/\operatorname{ann}(M)$.

3. Multiplication module and $\theta(M)$

For given an *R*-module *M*, we consider the associated ideal $\theta(M) = \sum_{m \in M} (Rm: M)$ and we shall be concerned with relationships between the ideal $\theta(M)$ of a commutative ring *R* and multiplication modules.

Lemma 3.1 [5]. A finitely generated module is a multiplication module if and only if it is locally cyclic.

Theorem 3.2. Let M be a finitely generated R-module. Then M is a multiplication module if and only if $\theta(My) = R$ for all $y \in R$.

Proof. Suppose M is a multiplication module. Then M is locally cyclic by Lemma 3.1 and hence My is locally cyclic for all $y \in R$. For, let P be any

maximal ideal of R and let $y \in R$. Then,

$$(My)_P = (MRy)_P = M_P(Ry)_P$$

= $M_P R_p y$
= $\left(\frac{a}{s}\right) y$ for some $\frac{a}{s} \in M_P$ because M is locally cyclic.
= $\left(\frac{ay}{s}\right)$.

Since $\frac{ay}{s} \in (My)_P$, My is locally cyclic for all $y \in R$. Clearly My is finitely generated. Hence $\theta(My) = R$ by [1, Theorem 1].

Conversely, suppose $\theta(My) = R$ for all $y \in R$. In particular, $\theta(M) = R$ and hence M is finitely generated and locally cyclic by [1, Theorem 1]. By Lemma 3.1, M is a multiplication module.

Corollary 3.3. Let M be a finitely generated R-module. Then M is a multiplication module if and only if My is a multiplication module for all $y \in R$.

Proof. By the proof of Theorem 3.2, My is finitely generated and locally cyclic. Hence My is a multiplication module by Lemma 3.1.

Proposition 3.4. Let M be a finitely generated multiplication R-module. Then there exists a finitely generated ideal I contained in $\theta(M)$ such that M = IM.

Proof. Since M is a multiplication R-module, $M = \theta(M)M$. For $x \in M$, Rx = (Rx:M)M. Hence $M = \sum_{x \in M} Rx = \sum_{x \in M} (Rx:M)M = \theta(M)M$. Say n_1, \ldots, n_n be the generators of M. Then

$$n_1 = a_1 m_1 + \ldots + a_n m_n$$

$$\vdots$$

$$n_n = b_1 m'_1 + \ldots + b_n m'_n$$

where $a_i, b_i \in \theta(M)$ and $m_i, m'_i \in M$ for all $1 \leq i \leq n$. Take $I = (a_1, \ldots, a_n) + \cdots + (b_1, \ldots, b_n)$. Then I is a finitely generated ideal contained in $\theta(M)$ such that M = IM. This completes the proof.

Proposition 3.5. Let M be a nonzero multiplication R-module such that $M \neq IM$, for every proper ideal I of R. Then $\theta(M) = R$.

Proof. Suppose $M \neq IM$ for every proper ideal I of R. Let $x \in M$. Then Rx is a submodule of M. Since M is a multiplication R-module, Rx = (Rx : M)M. Thus $M = \sum_{x \in M} Rx = \sum_{x \in M} (Rx : M)M = (\sum_{x \in M} (Rx : M))M$ and hence $\sum_{x \in M} (Rx : M) = R$ by hypothesis. Therefore $\theta(M) = R$.

Corollary 3.6. Let M be a nonzero multiplication R-module such that $M \neq IM$ for every proper ideal I of R. Then M is finitely generated and locally cyclic.

Proof. By Proposition 3.5 and [1, Theorem 1], it is obvious.

References

- D. D. Anderson, "Some remarks on multiplication ideals," Math. Japonica 25, No. 4 (1980), 463-469.
- [2] Efraim P. Armendariz, Joe W. Fisher and Robert L. Snider, "On injective and surjective endomorphisms of finitely generated modules," Comm. Algebra, 6 (7) (1978) 659-672.
- [3] G. Azumaya, "Strongly π-regular rings," J. Fac. Sci., Hokkaido Univ., 13 (1954), 34-39.
- [4] Z. A. El-Bast and P. F. Smith, "Multiplication modules," Comm. Algebra, Vol. 16 (1988), 755-779.
- [5] A. Barnard, "Multiplication modules," J. Algebra, 71 (1981), 174-178.
- [6] G. M. Low and P. F. Smith, "Multiplication modules and ideals," Comm. Algebra 18(1990), 4353-4375.
- [7] A. G. Naoum, "On the ring of endomorphisms of a finitely generated multiplication module," Periodica Mathematica Hungarica, Vol. 21 (3), (1990), 249-255.
- [8] P. F. Smith, "Some remarks on multiplication modules," Arch. Math., Vol. 50 (1988), 223-235.
- [9] W. W. Smith, "Projective ideal of finite type," Canad. J. Math., 21 (1969), 1057-1061.

Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea.