SOME REMARKS ON MULTIPLICATON MODULES*

CHANG WOO CHOI AND EUN SUP KIM

1. Introduction

Throughout this thesis all rings are commutative rings with an identity and all modules are unital.

Let R be a ring and M an R-module. Then M is called a multiplication module provided for each submodule N of M there exists an ideal I of R such that $N=I M$.

If N is a submodule of M then $(N: M)=\{r \in R: r M \subseteq N\}$. It is clear that every cyclic R-module is a multiplication module. In particular, invertible, and more generally projective, ideals of R are multiplication R-modules (see [9, Theorem 1]).

Let M be an R-module. If P is a maximal ideal of R, then we define

$$
T_{P}(M)=\{m \in M:(1-p) m=0 \text { for some } p \in P\} .
$$

Clearly $T_{P}(M)$ is a submodule of M. We say that M is P-cyclic provided there exist $q \in P$ and $m \in M$ such that $(1-q) M \subseteq R m$. On the other hand M is called P-torsion provided for each $m \in M$ there exists $p \in P$ such that $(1-p) m=0$.

In this paper we investigate the relationships between multiplication module and its dual module. In particular, we prove the Fitting's Lemma in terms of multiplication module. Also, we define $\theta(M)=\sum_{m \in M}(R m: M)$ for any R-module M and show that some properties of multiplication module by the technique $\theta(M)$.

[^0]* This research was partially supported by TGRC-KOSEF, 1992.

2. Multiplication modules

Let R be a commutative ring with identity and M an R-module. Then M is called a multiplication module if for each submodule N of M there exists an ideal I of R such that $N=I M$.

It is easy to check that M is a multiplication module if and only if $N=(N$: $M) M$ for every submodule N of M. An R-module M is called a locally cyclic if M_{P} is a cyclic R_{P}-module for all maximal ideals P of R. Our starting point is the following result taken from [4, Theorem 1.2].

Lemma 2.1. An R-module M is a multiplication module if and only if for every maximal ideal P of R either $M=T_{P}(M)$ or M is P-cyclic.

Proposition 2.2. Let K and L be submodules of $a n$-module M and let N be a multiplication submodule of M which is not P-cyclic for every maximal ideal P of R. Then $L \cap(K+N) \subseteq(L \cap K)+P L$.

Proof. Let $a \in L \cap(K+N)$. Then there exist $b \in K$ and $c \in N$ such that $a=b+c$. Since N is a multiplication submodule of M which is not P-cyclic, $N=T_{P}(N)$ by Lemma 2.1. Therefore for all $n \in N$, there exists $p \in P$ such that $(1-p) n=0$ and hence $(1-p) c=0$. Thus $(1-p) a=(1-p)(b+c)=$ $(1-p) b+(1-p) c=(1-p) b$ and so $a=(1-p) a+p a=(1-p) b+p a$. But $(1-p) b=(1-p) a \in L \cap K$. This implies $a=(1-p) b+p a \in(L \cap K)+P L$. Hence $L \cap(K+N) \subseteq(L \cap K)+P L$.

Proposition 2.3. Let M be a multiplication R-module and P a maximal ideal of R. Then the following statements are equivalent.
(i) M is P-torsion.
(ii) $M=P M$.
(iii) $\operatorname{ann}(m)+P=R$ for all $m \in M$.

Proof. (i) \Longleftrightarrow (ii). It is well-known ([8, Lemma 2.4]).
(i) \Rightarrow (iii). Suppose M is P-torsion. Then there exists $p \in P$ such that
$(1-p) m=0$ for all $m \in M$. This implies $1-p \in \operatorname{ann}(m)$ and so $1 \in \operatorname{ann}(m)+P$. Hence $\operatorname{ann}(m)+P=R$ for all $m \in M$.
(iii) \Rightarrow (i). Suppose $a n n(m)+P=R$ for all $m \in M$. Then $1=a+q$ for some $a \in \operatorname{ann}(m)$ and $q \in P$. This means $m=q m$ and so $(1-q) m=0$. Thus M is P-torsion.

Remark. In the proof of the equivalence between (i) and (iii), the condition that M is a multiplication module is not necessary.

Corollary 2.4. An R-module M is a multiplication module if and only if for each maximal ideal P of R either ann $(m)+P=R$ for all $m \in M$ or M is P-cyclic.

Proof. By Proposition 2.3 and Lemma 2.1, it is obvious.
Let R be a ring and M an R-module. The module M will be called a torsion module in case $\operatorname{ann}(m) \neq 0$ for every $m \in M$, otherwise it will be called non-torsion. Note that any non-torsion module is faithful. For the ring R let $C(R)$ denote the set of regular elements (i.e. non-zero-divisors,), so $c \in C(R)$ if any only if $c r \neq 0$ for all $0 \neq r \in R$. Let F denote the ring of quotients of R, so that every element of F can be written in the form $c^{-1} r$ for some $c \in C(R)$, $r \in R$. If I is an ideal of R let $I^{+}=\{f \in F: f I \subseteq R\}$. The ideal I is called invertible provided $I^{+} I=R$. It is well known and easy to prove that an ideal I of R is invertible if and only if it is a multiplication ideal which contains a regular element of R.

An R-module M is called torsion-free provided $c m \neq 0$ for all $c \in C(R)$, $0 \neq m \in M$. The dual M^{*} of M is defined to be $\operatorname{Hom}_{R}(M, R)$ which is itself an R-module with respect to the definitions: $(\alpha+\beta)(m)=\alpha(m)+\beta(m)$ and $(r \alpha)(m)=r \alpha(m)$, for all $\alpha, \beta \in M^{*}, r \in R$ and $m \in M$.

Theorem 2.5. Let R be a domain and let M be a nonzero multiplication R-module. Then M is torsion free if and only if M^{*} is a non-torsion module.

Proof. Let $0 \neq y \in M$. There exists an ideal I of R such that $R y=I M$.

Clearly $I \neq 0$. Let $0 \neq x \in I$. Define $\phi: M \rightarrow R y$ by $\phi(m)=x m(m \in M)$. Since M is torsion free, ϕ is a monomorphism. But $R y \cong R$. Thus M is isomorphic to an ideal A of R. This implies that A is a multiplication ideal containing a regular element of R and hence an invertible ideal of R. Let a be the regular element of R contained in A. Then $\operatorname{ann}(a)=0$ and hence $\operatorname{ann}(A)=0$. Thus A is a faithful R-module and so M is a faithful R-module because $M \cong A$. By [6, Lemma 1.1], M^{*} is a non-torsion module.

Conversely, suppose M^{*} is a non-torsion module. By definition, M^{*} is a faithful R-module. But $\operatorname{ann}(M) \subseteq \operatorname{ann}\left(M^{*}\right)$. For, let $y \in \operatorname{ann}(M)$ and $\phi \in M^{*}$. Then $y \in R, y M=0$ and so $\phi(y M)=\phi(0)=0$. This implies $y \phi(M)=(y \phi) M=0$ and so $y \phi=0$ and hence $y M^{*}=0$ i.e. $y \in \operatorname{ann}\left(M^{*}\right)$. Since $\operatorname{ann}\left(M^{*}\right)=0, \operatorname{ann}(M)=0$ i.e. M is faithful. By [4, Lemma 4.1], M is torsion free.

Corollary 2.6. Let R be a domain and let M be a non zero multiplication R-module. If M is torsion free, then M^{*} is a finitely generated faithful multiplication R-module and $M^{* *} \cong M$.

Proof. By the proof of Theorem 2.5 and [6, Theorem 1.3 Corollary 2], it follows immediately.

Corollary 2.7. Let R be a domain and let M be a non zero multiplication R module. If M is torsion free, then M is a finitely generated non-torsion module.

Proof. By the proof of Theorem 2.5 and [6, Theorem 1.7], it is clear.
Definition 2.8. A module M is said to satisfy Fitting's Lemma if for each $f \in E n d_{R}(M)$ there exists an integer $n \geq 1$ such that $M=\operatorname{Ker} f^{n} \oplus \operatorname{Im} f^{n}$.

Definition 2.9. A ring R is left (right) π-regular if for each a in R there exists b in R and an integer $n \geq 1$ such that $a^{n}=b a^{n+1}\left(a^{n}=a^{n+1} b\right)$.

Theorem 2.10. Let M be a multiplication R-module satisfying descending chain condition on multiplication submodules and $f \in \operatorname{End}_{R}(M)$. Then M

satisfies Fitting's Lemma.

Proof. Consider the sequence $M \supset f(M) \supset f^{2}(M) \cdots$. Since every homomorphic images of multiplication modules are multiplication module, the sequence becomes stationary after n steps, say. Thus $f^{(n)}(M)=f^{(n+1)}(M)=$ $\cdots=f^{2 n}(M)=\cdots$. Therefore f^{n} induces an endomorphism on multiplication module $f^{(n)}(M)$ which is an epimorphism, hence an automorphism because every epimorphism of a multiplication module onto itself is an automorphism. Thus $f^{(n)}(M) \cap \operatorname{Ker} f^{(n)}=0$. Now take any $m \in M$, then $f^{n}(m)=f^{2 n}(n)$ for some $n \in M$, hence $m-f^{(n)}(n) \in \operatorname{Ker}\left(f^{n}\right)$. But $m=f^{n}(n)+\left(m-f^{n}(n)\right)$. Thus $M=f^{(n)}(M) \oplus \operatorname{Ker} f^{n}$. This completes the proof.

Following Azumaya [3], a ring which is both left and right π-regular will be called strongly π-regular. However, F. Dischinger proved that every left π-regular rings are right π-regular (and hence stronly π-regular).

Corollary 2.11. If a multiplication R-module M satisfies descending chain condition on multiplication submodules and $f \in \operatorname{End}_{R}(M)$, then $\operatorname{End}_{R}(M)$ is strongly π-regular.

Proof. By Theorem 2.10 and [2, Proposition 2.3].
Corollary 2.12. If a multiplication R-module M satisfies the hypothesis of corollary 2.11, then every injective or surjective endomorphisms of M are isomorphisms.

Proof. By Corollary 2.11 and [2, Corollary 2.4].
Let R be a ring and M an R-module. A submodule X of M is said to be fully invariant if $f(X) \subseteq X$, for all $f \in \operatorname{Hom}_{R}(M, M)$.

Lemma 2.13. Let M be a multiplication R-module. Then every submodule of M is fully invariant.

Proof. Let N be any submodule of M. Then $N=I M$ for some ideal I of R. Let $f \in \operatorname{End}_{R}(M, M)$. Then $f(N)=f(I M)=I f(M) \subseteq I M=N$.
A. G. Naoum [7] has shown that if M is a finitely generated multiplication module then for each $f \in \operatorname{End}_{R}(M, M)$, there exists $r \in R$ such that $f(m)=r m$ for each $m \in M$. Our next theorem generalizing this fact communicated to me in a personal correspondence by Patrick F. Smith.

Theorem 2.14. Let M be a multiplication R-module and let $f \in \operatorname{End}_{R}(M)$. Then there exists $r \in R$ such that $f(m)=r m$ for each $m \in M$.

Proof. It follows from Lemma 2.13.
Corollary 2.15. If M is a multiplication R-module, then $\operatorname{End}_{R}(M)$ is isomorphic to $R / \operatorname{ann}(M)$.

Proof. Define $\psi: R \rightarrow \operatorname{End}_{R}(M)$ by $\psi(r)=f_{r}$ for any $r \in R$, where $f_{r}(m)=r m$ for any $m \in M$. It can easily be checked that ψ is a ring homomorphism and by Theorem $2.14, \psi$ is onto.

A little elementary calculation shows that $\operatorname{Ker}(\psi)=\operatorname{ann}(M)$. Thus End_{R} (M) is isomorphic to $R / \operatorname{ann}(M)$.

3. Multiplication module and $\theta(M)$

For given an R-module M, we consider the associated ideal $\theta(M)=\sum_{m \in M}$ ($R m: M$) and we shall be concerned with relationships between the ideal $\theta(M)$ of a commutative ring R and multiplication modules.

Lemma 3.1 [5]. A finitely generated module is a multiplication module if and only if it is locally cyclic.

Theorem 3.2. Let M be a finitely generated R-module. Then M is a multiplication module if and only if $\theta(M y)=R$ for all $y \in R$.

Proof. Suppose M is a multiplication module. Then M is locally cyclic by Lemma 3.1 and hence $M y$ is locally cyclic for all $y \in R$. For, let P be any
maximal ideal of R and let $y \in R$. Then,

$$
\begin{aligned}
(M y)_{P} & =(M R y)_{P}=M_{P}(R y)_{P} \\
& =M_{P} R_{p} y \\
& =\left(\frac{a}{s}\right) y \text { for some } \frac{a}{s} \in M_{P} \text { because } M \text { is locally cyclic. } \\
& =\left(\frac{a y}{s}\right) .
\end{aligned}
$$

Since $\frac{a y}{s} \in(M y)_{P}, M y$ is locally cyclic for all $y \in R$. Clearly $M y$ is finitely generated. Hence $\theta(M y)=R$ by [1, Theorem 1].

Conversely, suppose $\theta(M y)=R$ for all $y \in R$. In particular, $\theta(M)=R$ and hence M is finitely generated and locally cyclic by [1, Theorem 1]. By Lemma $3.1, M$ is a multiplication module.

Corollary 3.3. Let M be a finitely generated R-module. Then M is a multiplication module if and only if $M y$ is a multiplication module for all $y \in R$.

Proof. By the proof of Theorem 3.2, My is finitely generated and locally cyclic. Hence $M y$ is a multiplication module by Lemma 3.1.

Proposition 3.4. Let M be a finitely generated multiplication R-module. Then there exists a finitely generated ideal I contained in $\theta(M)$ such that $M=$ $I M$.

Proof. Since M is a multiplication R-module, $M=\theta(M) M$. For $x \in M$, $R x=(R x: M) M$. Hence $M=\sum_{x \in M} R x=\sum_{x \in M}(R x: M) M=\theta(M) M$. Say n_{1}, \ldots, n_{n} be the generators of M. Then

$$
\begin{aligned}
n_{1}= & a_{1} m_{1}+\ldots+a_{n} m_{n} \\
& \vdots \\
n_{n}= & b_{1} m_{1}^{\prime}+\ldots+b_{n} m_{n}^{\prime}
\end{aligned}
$$

where $a_{i}, b_{i} \in \theta(M)$ and $m_{i}, m_{i}^{\prime} \in M$ for all $1 \leq i \leq n$. Take $I=\left(a_{1}, \ldots, a_{n}\right)+$ $\cdots+\left(b_{1}, \ldots, b_{n}\right)$. Then I is a finitely generated ideal contained in $\theta(M)$ such that $M=I M$. This completes the proof.

Proposition 3.5. Let M be a nonzero multiplication R-module such that $M \neq I M$, for every proper ideal I of R. Then $\theta(M)=R$.

Proof. Suppose $M \neq I M$ for every proper ideal I of R. Let $x \in M$. Then $R x$ is a submodule of M. Since M is a multiplication R-module, $R x=(R x$: $M) M$. Thus $M=\sum_{x \in M} R x=\sum_{x \in M}(R x: M) M=\left(\sum_{x \in M}(R x: M)\right) M$ and hence $\sum_{x \in M}(R x: M)=R$ by hypothesis. Therefore $\theta(M)=R$.

Corollary 3.6. Let M be a nonzero multiplication R-module such that $M \neq I M$ for every proper ideal I of R. Then M is finitely generated and locally cyclic.

Proof. By Proposition 3.5 and [1, Theorem 1], it is obvious.

References

[1] D. D. Anderson, "Some remarks on multiplication ideals," Math. Japonica 25, No. 4 (1980), 463-469.
[2] Efraim P. Armendariz, Joe W. Fisher and Robert L. Snider, "On injective and surjective endomorphisms of finitely generated modules," Comm. Algebra, 6 (7) (1978) 659-672.
[3] G. Azumaya, "Strongly π-regular rings," J. Fac. Sci., Hokkaido Univ., 13 (1954), 34-39.
[4] Z. A. El-Bast and P. F. Smith, "Multiplication modules," Comm. Algebra, Vol. 16 (1988), 755-779.
[5] A. Barnard, "Multiplication modules," J. Algebra, 71 (1981), 174-178.
[6] G. M. Low and P. F. Smith, "Multiplication modules and ideals," Comm. Algebra 18(1990), 4353-4375.
[7] A. G. Naoum, "On the ring of endomorphisms of a finitely generated multiplication. module," Periodica Mathematica Hungarica, Vol. 21 (3), (1990), 249-255.
[8] P. F. Smith, "Some remarks on multiplication modules," Arch. Math., Vol. 50 (1988), 223-235.
[9] W. W. Smith, "Projective ideal of finite type," Canad. J. Math., 21 (1969), 1057-1061.

[^0]: Received April 15, 1992.

