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SOME REMARKS ON MULTIPLICATON MODULES*

CHANG WOO CHOI AND EUN SUP KIM

1. Introduction

Throughout this thesis all rings are commutative rings with an identity and
all modules are unital.

Let R be a ring and M an R-module. Then M is called a multiplication
module provided for each submodule N of M there exists an ideal I of R such
that N =IM. ,

If N is a submodule of M then (N : M) ={r € R:rM C N}. It is clear
that every cyclic R-module is a multiplication module. In particular, invertible,
and more generally projective, ideals of R are multiplication R-modules (see [9,
Theorem 1]).

Let M be an R-module. If P is a maximal ideal of R, then we define

Tp(M) = {m €M :(1-p)m =0 for some p € P}.

Clearly Tp(M) is a submodule of M. We say that M is P-cyclic provided there
exist ¢ € P and m € M such that (1—¢)M C Rm. On the other hand M is called
P-torsion provided for each m € M there exists p € P such that (1 — p)m = 0.

In this paper we investigate the relationships between multiplication module
and its dual module. In particular, we prove the Fitting’s Lemma in terms
of multiplication module. Also, we define (M) = > .\ (Rm : M) for any
R-module M and show that some properties of multiplication module by the
technique 8(M).
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2. Multiplication modules

Let R be a commutative ring with identity and M an R-module. Then M
is called a multiplication module if for each submodule N of M there exists an
ideal I of R such that N = IM.

It is easy to check that M is a multiplication module if and only if N = (IV :
M)M for every submodule N of M. An R-module M is called a locally cyclic if
Mp is a cyclic Rp-module for all maximal ideals P of R. Our starting point is

the following result taken from [4, Theorem 1.2].

Lemma 2.1. An R-module M is a multiplication module if and only if for
every mazimal ideal P of R either M = Tp(M) or M is P-cyclic.

Proposition 2.2. Let K and L be submodules of an R-module M and let
N be a multiplication submodule of M which is not P-cyclic for every mazimal
ideal P of R. Then LN (K +N)C (LNnK)+ PL.

Proof. Let a € LN (K + N). Then there exist b € K and ¢ € N such that
a = b+ c. Since N is a multiplication submodule of M which is not P-cyclic,
N = Tp(N) by Lemma 2.1. Therefore for all n € N, there exists p € P such
that (1 — p)n = 0 and hence (1 —p)c = 0. Thus (1 —pla=(1-p)(b+¢c) =
(1-p)b+(1—p)e=((1-p)bandsoa=(1l-pla+pa=(1l-p)b+ pa. But
(1-p)b=(1-p)a € LNK. This impliesa = (1 —p)b+pa € (LN K) + PL.
Hence LN (K +N)C(LNK)+ PL.

Proposition 2.3. Let M be a multiplication R-module and P a mazimal

ideal of R. Then the following statements are equivalent.
(i) M is P-torsion.

(ii) M = PM.

(iii) ann(m) + P = R for allm € M.

Proof. (i) <= (ii). It is well-known ([8, Lemma 2.4)).

(i) = (iii). Suppose M is P-torsion. Then there exists p € P such that
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(1—p)m = 0forallm € M. This implies 1—p ¢ ann(m) and so 1 € ann(m)+ P.
Hence ann(m)+ P = R for all m € M.

(iii) = (i). Suppose ann(m)+ P = R for all m € M. Then 1 = a + g for
some a € ann(m) and ¢ € P. This means m = gm and so (1 - ¢)m = 0. Thus
M is P-torsion.

Remark. In the proof of the equivalence between (i) and (iii), the condition

that M is a multiplication module is not necessary.

Corollary 2.4. An R-module M is a multiplication module if and only if
for each mazimal ideal P of R either ann(m)+ P = R for allm € M or M is
P-cyclic.

Proof. By Proposition 2.3 and Lemma 2.1, it is obvious.

Let R be a ring and M an R-module. The module M will be called a
torsion module in case ann(m) # 0 for every m € M, otherwise it will be called
non-torsion. Note that any non-torsion module is faithful. For the ring R let
C(R) denote the set of regular elements (i.e. non-zero-divisors,), so ¢ € C (R) if
any only if cr # 0 for all 0 # r € R. Let F denote the ring of quotients of R,
so that every element of F' can be written in the form ¢~ 17 for some ¢ € C (R),
r € R. If Iis an ideal of Rlet It = {f € F: fI C R}. The ideal I is called
invertible provided I*I = R. It is well known and easy to prove that an ideal
I of R is invertible if and only if it is a multiplication ideal which contains a
regular element of R.

An R-module M is called torsion-free provided cm # 0 for all ¢ € C(R),
0# m € M. The dual M* of M is defined to be Hompg(AM, R) which is itself
an R-module with respect to the definitions: (a + 8)(m) = a(m) + B(m) and
(ra)(m) = ra(m), for all @, € M*,r € Rand m € M.

Theorem 2.5. Let R be a domain and let M be a nonzero multiplication

R module. Then M is torsion free if and only if M* is a non-torsion module.

Proof. Let 0 # y € M. There exists an ideal I of R such that By = IM,
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Clearly I # 0. Let 0 # z € I. Define ¢ : M — Ry by ¢(m) = am(m € M). Since
M is torsion free, ¢ is a monomorphism. But Ry = R. Thus M is isomorphic
to an ideal A of R. This implies that A is a multiplication ideal containing a
regular element of R and hence an invertible ideal of R. Let a be the regular
clement of R contained in A. Then ann(a) = 0 and hence ann(A) = 0. Thus A
is a faithful B-module and so M is a faithful R-module because M = A. By [6,
Lemma 1.1], M* is a non-torsion module.

Conversely, suppose M* is a non-torsion module. By definition, M * is
a faithful R-module. But ann(M) C ann(M*). For, let y € ann(M) and
¢ € M*. Then y € R, yM = 0 and so ¢(yM) = #(0) = 0. This implies
yp(M) = (y¢)M = 0 and so y¢ = 0 and hence yM* = 0 i.e. y € ann(M™).
Since ann(M*) = 0, ann(M) = 0 i.e. M is faithful. By [4, Lemma 4.1], M is

torsion free.

Corollary 2.6. Let R be a domain and let M be a non zero multiplica-
tion R-module. If M is torsion free, then M* is a finitely generated faithful
multiplication R-module and M™** = M.

Proof. By the proof of Theorem 2.5 and [6, Theorem 1.3 Corollary 2], it

follows immediately.

Corollary 2.7. Let R be a domain and let M be a non zero multiplication R-

module. If M is torsion free, then M is a finitely generated non-torsion module.
Proof. By the proof of Theorem 2.5 and [6, Theorem 1.7], it is clear.

Definition 2.8. A module M is said to satisfy Fitting’s Lemma if for each
f € Endgr(M) there exists an integer n > 1 such that M = Kerf™ @ Imf™.

Definition 2.9. A ring R is left (right) n-regular if for each a in R there

exists b in R and an integer » > 1 such that a® = ba™*!(a™ = a™*'d).

Theorem 2.10. Let M be a multiplication R-module satisfying descend-

ing chain condition on multiplication submodules and f € Endr(M).- Then M
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satisfies Fitting’s Lemma.

Proof. Consider the sequence M D f(M) D f%(M)---. Since every ho-
momorphic images of ﬁxultiplication modules are multiplication module, the se-
quence becomes stationary after n steps, say. Thus f(™(M) = fr+)(M) =
.o+ = f?(M) = ---. Therefore f™ induces an endomorphism on multiplica-
tion module f(™)(M) which is an epimorphism, hence an automorphism because
every epimorphism of a multiplication module onto itself is an automorphism.
Thus f(®)(M) N Kerf(™ = 0. Now take any m € M, then f™(m) = f**(n) for
some n € M, hence m — f(™)(n) € Ker(f*). But m = f*(n) + (m — a)),
Thus M = f(®)(M) @ Kerf". This completes the proof.

Following Azumaya [3], a ring which is both left and right 7-regular will be
called strongly 7-regular. However, F. Dischinger proved that every left m-regular

rings are right 7-regular (and hence stronly =-regular).

Corollary 2.11. If a multiplication R-module M satisfies descending chain
condition on multiplication submodules and f € Endgr(M), then Endr(M) is

strongly m-regular.
Proof. By Theorem 2.10 and [2, Proposition 2.3].

Corollary 2.12. If a multiplication R-module M satisfies the hypothesis
of corollary 2.11, then every injective or surjective endomorphisms of M are

isomorphisms.

Proof. By Corollary 2.11 and [2, Corollary 2.4].
Let R be a ring and M an R-module. A submodule X of M is said to be
fully invariant if f(X) C X, for all f € Homgp(M, M).

Lemma 2.13. Let M be a multiplication R-module. Then every submodule

of M is fully invariant.

Proof. Let N be any submodule of M. Then N = IM for some ideal I of
R. Let f € Endr(M,M). Then f(N) = f(IM) = If(M)CIM = N.



314 CHANG WOO CHOI AND EUN SUP KIM

A. G. Naoum [7] has shown that if M is a finitely generated multiplication
module then for each f € Endg(M, M), there exists r € R such that f(m) = rm

for each m € M. Our next theorem generalizing this fact communicated to me

in a personal correspondence by Patrick F. Smith.

Theorem 2.14. Let M be a multiplication R-module and let f € Endr(M).
Then there exists 1 € R such that f(m) = rm for each m € M.

Proof. It follows from Lemma 2.13.

Corollary 2.15. If M is a multiplication R-module, then Endg(M) is
isomorphic to R/ann(M).

Proof. Define ¥ : R — Endgr(M) by ¢(r) = f, for any r € R, where
fr(m) = rm for any m € M. It can easily be checked that 9 is a ring homomor-
phism and by Theorem 2.14, % is onto.

A little elementary calculation shows that Ker(¢) = ann(M). Thus Endg
(M) is isomorphic to R/ann(M).

3. Multiplication module and (M)

For given an R-module M, we consider the associated ideal 8(M) = > </
(Rm : M) and we shall be concerned with relationships between the ideal 8( M)

of a commutative ring R and multiplication modules.

Lemma 3.1 [5]. A finitely generated module is a multiplication module if

and only if it is locally cyclic.

Theorem 3.2. Let M be a finitely generated R-module. Then M is a
multiplication module if and only if 0(My) = R for all y € R.

Proof. Suppose M is a multiplication module. Then M is locally cyclic
by Lemma 3.1 and hence My is locally cyclic for all y € R. For, let P be any
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maximal ideal of R and let y € R. Then,

(My)p = (MRy)p = Mp(Ry)p
= Mépr

B (9—) for some = € Mp because M is locally cyclic.
s S

=
( s ) ’
Since 2% € (My)p, My is locally cyclic for all y € R. Clearly My is finitely

generated. Hence §(My) = R by [1, Theorem 1].
Conversely, suppose 6(My) = R for all y € R. In particular, (M) = R and

hence M is finitely generated and locally cyclic by [1, Theorem 1]. By Lemma

3.1, M is a multiplication module.

Corollary 3.3. Let M be a finitely generated R-module. Then M is a
multiplication module if and only if My is a multiplication module for all y € R.

Proof. By the proof of Theorem 3.2, My is finitely generated and locally

cyclic. Hence My is a multiplication module by Lemma 3.1.

Proposition 3.4. Let M be a finitely generated multiplication R-module.
Then there ezists a finitely generated ideal I contained in (M) such that M =
IM.

Proof. Since M is a multiplication R-module, M = O(M)M. For z € M,
Rz = (Rz: M)M. Hence M =Y __, Rz = > cem(Bz : M)M = 6(M)M. Say

ni,...,N, be the generators of M. Then

ny =am+...+a,m,

N, =bmi+...+bym!

where a;, b; € (M) and m;,m} € M for all 1 <7 < n. Take [ = £ —
==+ (b1,...,bs). Then [ is a finitely generated ideal contained in 6(M) such
that M = IM. This completes the proof.
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Proposition 3.5. Let M be a nonzero multiplication R-module such that
M # IM, for every proper ideal I of R. Then 6(M) = R.

Proof. Suppose M # IM for every proper ideal I of R. Let 2 € M. Then
Rz is a submodule of M. Since M is a multiplication R-module, Rz = (Rz :
MM. Thus M = 3 cpe Rz = X cp(Ra : MM = (3, cp(R7 M))M and
hence ) cp(Rz : M) = R by hypothesis. Therefore 6(M) = R.

Corollary 3.6. Let M be a nonzero multiplication R-module such that
M # IM for every proper ideal I of R. Then M is finitely generated and locally

cyclic.

Proof. By Proposition 3.5 and [1, Theorem 1], it is obvious.
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