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SOME REMARKS ON MULTIPLICATON MODULES*

CHANG WOO CHOI AND EUN SUP KIM

1. Introduction

Throughout this thesis all rings are commutative rings with an identity and
all modules are unital.

Let R be a ring and M an R-module. Then M is called a multiplication

module provided for each submodule N of M there exists an ideal J of R such

that N = IM.

If N is a submodule of M then (N : M) = {r E R: rM 戶 N}. It is clear
that every cyclic R-module is a multiplication module. In particular, invertible,
and more generally projective, ideals of R are multiplication R-modules (see [9,
Theorem 1]).

Let M be an R-module. If Pis a maximal ideal of R, then we define

Tp(M) = {mEM:(1-p)m=OforsomepEP}.

Clearly Tp(M) is a submodule of M. We say that Mis P-cyclic provided there
exist q E P and m EM such that (1-q)M 戶 Rm. On the other hand Mis called

P-torsion provided for each m E M ther~exists p E P such that (1 - p)m = 0.
In this paper we investigate the relationships between multiplication module

and its dual module. In particular, we prove the Fitting's Lemma in·terms

of multiplication module. Also, we define B(M) = LmEM(Rm : M) for any

R-module M and show that some properties of multiplication module by the
technique O(M).
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2. Multiplication modules

Let R be a commutative ring with identity and M an R-module. Then M

is called a multiplication module if for each submodule N of M there exists an

ideal I of R such that N = IM.

It is easy to check that Mis a multiplication module if and only if N = (N :
M)M for every submodule N of M. An R-module Mis called a locally cyclic if
Mp is a cyclic Rp-module for all maximal ideals P of R. Our starting point is

the following result taken from [4, Theorem 1.2).

Lemma 2.1. An R-module M is a multiplication module if and only if for
every maximal ideal P of R either M = Tp(M) or M is P-cyclic.

Proposition 2.2. Let I(and L be submodules of an R-module M and let

N be a multiplication submodule of 1v.f which is not P-cyclic for every maximal
ideal P of R. Then L n (I(+ N)~(L n K) +PL.

Proof. Let a E L n (I(+ N). Then there exist b E J(and c E N such that
a = b + c. Since N is a multiplication submodule of M which is not P-cyclic,
N = Tp(N) by Lemma 2.1. Therefore for 詛 n E N, there exists p E P such

that (1 - p)n = 0 and hence (1 - p)c = 0. Thus (1 - p)a = (l - p)(b + c) =
(1 - p)b + (l - p)c = (1 - p)b and so a = (l - p)a + pa = (1 - p)b + pa. But
(1 - p)b = (1 - p)a E L n K. This implies a = (1 - p)b + pa E (L n !()+PL.
Hence L n (K + N) 呈 (L n K) + PL.

Proposition 2.3. Let M be a multiplication R-module and P a maximal
ideal of R. Then the following statements are equivalent.

(i) M is P-torsion.

(ii) M = PM.

(iii) ann(m) + P = R for all m EM.

Proof. (i) 今 (ii). It is well-known ([8, Lemma 2.4]).

(i) => (iii). Suppose M is P-torsion. Then there exists p E P such that
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(1-p)m = Oforallm EM. This implies 1-p E ann(m) and so l.E ann(m)+P.
Hence ann(m) + P = R for all m EM.

(iii) => (i). Suppose ann(m) + P = R for all m E M. Then 1 = a+ q for
some a E ann(m) and q E P. This means m = qm and so (1 - q)m = O. Thus
M is P-torsion.

Remark. In the proof of the equivalence between (i) and (iii), the condition
that M is a multiplication module is not necessary.

Corollary 2.4. An R-module M is a multiplication module if and only 圩
for each maximal ideal P of R either ann(m) + P = R for all m E M or M is
P-cyclic.

Proof. By Proposition 2.3 and Lemma 2.1, it is obvious.

Let R be a ring and M an R-module. The mod1,1le M will be called a
torsion module in case ann(m) -/= 0 for every m E M, otherwise it will be called

non-torsion. Note that any non-torsion module is faithful. For the ring R let

C(R) denote the set of regular elements (i.e. non-zero-divisors,), so c E C(R) if
any only if er -/= 0 for all O -/= r E R. Let F denote the ring of quotients of R,
so that every element of F can be written in the form c-1r for some c E C(R),

r E R. If I is an ideal of R let J+ = {! E F : fI~R}. The ideal J is called
invertible provided J+ I = R. It is well known and easy to prove that an ideal
I of R is invertible if and only if it is a multiplication ideal which contains a
regular element of R.

An R-module M is called torsion-free provided cm f= O for all c E C(R),

0 -/= m E M. The dual M* of Mis defined to be HomR(M, R) which is itself
an R-module with respect to the definitions: (a+ fJ)(m) = a(m) + fj(m) and
(ra)(m) = ra(m), for all a,{J EM*, r ER and m EM.

Theorem 2.5. Let R be a domain and let M be a nonzero multiplication
R-module. Then M is torsion free if and only if M* is a non-torsion module.

Proof. Let O -/= y E M. There exists an ideal J of R such that Ry = IM.
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Clearly J 钅O. Let O /; x E I. Define </> : M -+ Ry by</>(m) = xm(m E M). Since
Mis torsion free, <f> is a monomorphism. But Ry~R. Thus Mis isomorphic
to an ideal A of R. This implies that A is a multiplication ideal conta1rung a

regular element of R and hence an invertible ideal of Jl. Let a be the regular
element of R contained in A. Then ann(a) = 0 and hence ann(A)~0. Thus A
is a falthful R-module and so M is a faithful R-module because M~A. By [6,

Lemma 1.1], M* is a non-torsion module.

Conversely, suppose M* is a non-torsion module. By definition, M* is

a faithful R-module. But ann(M)~ann(M*). For, let y E ann(M) and
<f> E M*. Then y E R, yM = 0 and so <f>(yM) = </>(O) = 0. This implies

哼(M) = (蝕）M = O and so y</> = 0 and hence yM* = 0 i.e. y E ann(M*).
Since ann(M*) = 0, ann(M) = 0 i.e. Mis faithful. By [4, Lemma 4.1], Mis

torsion free.

Corollary 2.6. Let R be a domain and let M be a non zero multiplica­

tion R-module. If M is torsion free, then M* is a finitely generated faithful

multiplication R-module and M**~M.

Proof. By the proof of Theorem 2.5 and [6, Theorem 1.3 Corollary 2], it

follows immediately.

Corollary 2.7. Let R be a domain and let M be a non zero multiplication R­

module. If M is torsion free, then M is a finitely generated non-torsion module.

Proof. By the proof of Theorem 2.5 and [6, Theorem 1.7], it is clear.

Definition 2.8. A module M is said to satisfy Fitting's Lemma if for each

f E EndR(M) there exists an integer n 2: 1 such that M = Kerfn 毌 Im尸

Definition 2.9. A ring R is left (right) 1r-regular if for each a in R there
exists b in R and an integer n 2: 1 such that 訒= ban+l(研= an+lb).

Theorem 2.10. Let M be a multiplication R-module satisfying descend­

ing chain co~dition on multiplication submodules and f E EndR(M).·Then M
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satisfies Fitting's Lemma.

Proof. Consider _the sequence M :::.) f(M) :::.) J2(M).. .. Since every ho­
momorphlc images of multiplication modules are multiplication module, the se­
quence becomes stationary after n steps, say. Thus f(n)(M) = f(n+l)(M) =

．．．＝ 户 (M) =· · ·. Therefore fn induces an endomorphism on multiplica­
tion module f(n)(M) which·1s an ep1morphism, hence an automorphism because
every epimorphism of a multiplication module onto itself is an automorphism.
Thus f(n)(M) n Kerf(n) = 0. Now take any m EM, then fn(m) =户(n) for

some n E M, hence m - f(n)(n) E Ker(f吁 But m = fn(n) + (m - fn(n)).
Thus M = f(n)(M) 喦 Ker尸 This completes the proof.

Following Azumaya (3), a ring which is both left and right tr-regular will be
called strongly tr-regular. However, F. Dischinger proved that every left tr-regular
rings are right tr-regular (and hence stronly tr-regular).

Corollary 2.11. If a multiplication R-module M satisfies descending chain
condition on multiplication submodules and f E EndR(M), then EndR(M) is
strongly tr-regular.

Proof. By Theorem 2.10 and [2, Proposition 2.3].

Corollary 2.12. If a multiplication R-module M satisfies the hypothesis
of corollary 2.11, then every injective or surjective endomorphisms of M are
isomorph isms.

Proof. By Corollary 2.11 and [2, Corollary 2.4].

Let R be a ring and M an R-module. A submodule X of M is said to be
fully invariant if f(X)~X, for all f E HomR(M, M).

Lemma 2.13. Let M b~a multiplication R-module. Then every submodule
of M is fully invariant.

Proof. Let N be any submodule of M. Then N = IM for some ideal J of
R. Let f E EndR(M,M). Then f(N) = f(IM) = If(M)~IM= N.
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A. G. Naoum [7] has shown that if Mis a :finitely generated multipl_ication
module then for each f E EndR(M,M), there exists r ER such that J(m) = rm
for each m E M. Our next theorem generalizing this fact communicated to me

in a personal correspondence by Patrick F. Smith.

Theorem 2.14. Let M be a multiplication R-module and let J E EndR(M).

Then there exists r E R such that f(m) = rm for each m E M.

Proof. It follows from Lemma. 2.13.

Corollary 2.15. If M is a multiplication R-module, then EndR(M) zs

isomorphic to R/ann(M).

Proof. Define 心 ：R -+ EndR(M) by 約 (r) = fr for any r E R, where
fr(m) = rm for any m EM. It can easily be checked that 7/J is a ring homomor­
phism and by Theorem 2.14, 心 is onto.

A little elementary calculation shows that Ker(心）= ann(M). Thus EndR
(M) is isomorphic to R/ann(M).

3. Multiplication module and O(M)

For given an R-module M, we consider the associated ideal ()(M) = I:mEM
(Rm: M) and we shall be concerned with relationships between the ideal ()(M)

of a commutative ring R and multiplication modules.

Lemma 3.1 [5]. A finitely generated module is a multiplication module if
and only if it is locally cyclic.

Theorem 3.2. Let M be a finitely generated R-module. Then M is a
multiplication module if and only if B(My) = R for ally ER.

Proof. Suppose M is a multiplication module. Then M is locally cyclic
by Lemma 3.1 and hence My is locally cyclic for ally E R. For, let P be any
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maximal ideal of R and let y E R. Then,

(My)p = (MRy)p = Mp(Ry)p

=MpR謹

仁）y for some 竺 E Mp because Mis locally cyclic.

（句 . s

Since 門 E (My)p, My is locally cyclic for all y E R. Clearly My is finitely
generated. Hence B(My) = R by [1, Theorem 1].

Conversely, suppose B(My) = R for ally ER. In particular, O(M) =Rand

hence Mis finitely generated and locally cyclic by [1, Theorem l]. By Lemma
3.1, M is a multiplication module.

Corollary 3.3. Let M be a finitely generated R-module. Then M is a
multiplication module if and only ifMy is a multiplication module for ally E R.

Proof. Ily the proof of Theorem 3.2, My is finitely generated and locally
cyclic. Hence My is a multiplication module by Lemma 3.1.

Proposition 3.4. Let M be a finitely generated multiplication R-module.
Then there exists a finitely generated ideal I contained in B(M) such that M =
IM.

Proof. Since Mis a multiplication R-module, M = 8(M)M. For x EM,

Rx = (Rx : M)M. Hence M = I:xEM缸= I:xEM(Rx : M)M = 8(M)M. Say
n1, ... , nn be the generators of M. Then

n1 = a1m1 十 ．．．十 anmn

四 = b1m~+ ... 十 加 m~

where ai, bi E B(M) and mi,叫 E M for all 1 :S: i~n. Take I= (a1, ... , an)+
·'·+ (b1,,,.,加）. Then I is a finitely generated ideal contained in B(M) such
that M = IM. This completes the proof.
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Proposition 3.5. Let M be a nonzero multiplication R-module such that
M -/ IM, for every proper ideal I of R. Then B(M) = R.

Proof. Suppose M -/ IM for every proper ideal J of R. Let x E M. Then
Rx is a submodule of M. Since M is a multiplication R-module, Rx = (Rx :

M)M. Thus M = LxEM缸=LxEM(Rx : M)M = (I:xEM(Rx : M))M and

hence LxEM(Jlx : M) ::: R by hypothesis. Therefo~e 8(M) = R.
Corollary 3.6. Let M be a nonzero multiplication R-module such that

M -/ IM for every proper ideal I of R. Then 1vf 汩znitely generated and locally

cyclic.

Proof. By Proposition 3.5 and [1, Theorem 1], it is obvious.
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