ON RINGS SATISFYING BOTH OF 1 - $a b c$
 AND 1-cba BEING INVERTIBLE OR NONE

CHEN-TE YEN

Abstract

Let R be a ring with identity 1 and n a positive integer. We define the property P_{n} as follows: $\left(P_{n}\right)$ If $1-a_{1} a_{2} a_{3} \ldots a_{n-1} a_{n}$ is invertible in R, then so is $1-a_{n} a_{2} a_{3} \ldots a_{n-1} a_{1}$. Thus, R satisfies $\left(P_{n}\right)$, for some $n \geq 3$ if and only if R satisfies $\left(P_{3}\right)$. Some properties of rings satisfying (P_{3}) are obtained, e.g., R must be directly finite.

Throughout the paper R will denote an associative ring with identity 1 , and Perlis-Jacobson radical $J(R)$. We define the property P_{n} as follows:
$\left(P_{n}\right)$ If $1-a_{1} a_{2} a_{3} \ldots a_{n-1} a_{n}$ is invertible in R, then so is $1-a_{n} a_{2} a_{3} \ldots a_{n-1} a_{1}$.
An element a in a ring R is invertible if there exists an element b of R such that $a b=b a=1$; and idempotent if $a^{2}=a . R$ is regular (strongly regular) if for each a in R there exists an b of R such that $a b a=a\left(a^{2} b=a\right) . R$ is semisimple if $J(R)=0 . R$ is called prime if $a, b \in R, a R b=0$ implies $a=0$ or $b=0 . R$ is called directly finite ([1], p. 166) if $a b=1$ in R implies $b a=1$.

It is easy to see that R always satisfies $\left(P_{2}\right)$:
Lemma 1. ([3], p. 89, Exercise 4). If $1-a b$ is invertible in R, then so is $1-b a$.

Proof. The inverse of $1-b a$ is $1+b(1-a b)^{-1} a$.
Received May, 5, 1992; revised July 15, 1992.
1980 Mathematics Subject Classification (1985 Revision). Primary 16A99.
Key words and phrases: Regular, semisimple, prime ring, Perlis-Jacobson radical, directly finite.

Theorem 1. Let R satisfy $\left(\mathbb{P}_{n}\right)$. If $1-a_{1} a_{2} a_{3} \ldots a_{n-1} a_{n}$ is invertible in R, then so are $1-a_{f(1)} a_{f(2)} a_{f(3)} \ldots a_{f(n-1)} a_{f(n)}$ for all f in S_{n}, the symmetric group of degree n.

Proof. We know that S_{n} is generated by the cycles $(12, \cdots, n)$ and ($1 n$). Since R satisfies $\left(P_{n}\right)$, by Lemma 1 the result follows.

Since R has $1, R$ satisfies $\left(P_{n}\right)$ for some $n \geq 3$ if and only if R satisfies $\left(P_{3}\right)$. So, in the sequel we assume that R satisfy $\left(P_{3}\right)$. The class of rings with $\left(P_{3}\right)$ is closed under isomorphic images, and finite direct sums.

Trivially, any field satisfies $\left(P_{3}\right)$, this is the only division rings:
Lemma 2. If R is a division ring and satisfies $\left(P_{3}\right)$, then R is a field.
Proof. For all $a \neq 0, b \neq 0$ in R, we have $1-\left(a^{-1} b^{-1}\right) b a=0$. Thus by $\left(P_{3}\right), 1-a b\left(a^{-1} b^{-1}\right)=0$. Hence, $a b=b a$.

Lemma 3. If R is a simple Artinian ring and satisfies $\left(P_{3}\right)$, then R is a field.

Proof. By Wedderburn-Artin Theorem ([2], Theorem 2.1.6), $R \cong D_{n}$, the ring of all $n \times n$ matrices over a division ring D. Thus, D_{n} satisfies $\left(P_{3}\right)$. Suppose $n>1$. Then $1-\left(e_{11}+e_{21}\right) e_{12} e_{21}=1-e_{11}-e_{21}$ is not invertible, but $1-e_{21} e_{12}\left(e_{11}+e_{21}\right)=1-e_{21}$ is invertible, a contradiction. Hence, $n=1$ and so $R \cong D$ a division ring. By Lemma $2, R$ is a field.

Theorem 2. If R is a semisimple Artinian ring and satisfies $\left(P_{3}\right)$, then R is isomorphic to a direct sum of a finite number of fields.

Proof. By ([2], Theorem 2.1.7), $R \cong D_{n_{1}}^{(1)} \oplus \cdots \oplus D_{n_{k}}^{(k)}$, where the $D^{(i)}$ are division rings and where $D_{n_{i}}^{(i)}$ is the ring of all $n_{i} \times n_{i}$ matrices over $D^{(i)}$. It is easy to see that each $D_{n_{i}}^{(i)}$ satisfies $\left(P_{3}\right)$. So by Lemma 3, each $D_{n_{i}}^{(i)}$ is a field.

Lemma. 4. Let A be an ideal of $R, A \subseteq J(R)$ and $\bar{R}=R / A$. If $a \in R$, then $\bar{a}=a+A$ is invertible in $\bar{R} \Longleftrightarrow a$ is invertible in R.

Proof. (\Leftarrow) : Trivial.
$(\Rightarrow):$ Let $\bar{a} \in \bar{R}$ and \bar{a} be invertible in \bar{R}. Then there exists an \bar{b} in \bar{R} such that $\bar{a} \bar{b}=\overline{1}=\bar{b} \bar{a}$. Thus $1-a b \in A$ and $1-b a \in A$. Since $A \subseteq J(R)$, by ([5], p. 57, Proposition 5), both of $a b$ and $b a$ are invertible in R. Hence, a has a left and right inverse and so a is invertible.

Theorem 3. Let A be an ideal of $R, A \subseteq J(R)$ and $\bar{R}=R / A$. Then R satisfies $\left(P_{3}\right) \Longleftrightarrow \bar{R}$ satisfies $\left(P_{3}\right)$.

Proof. Let $a, b, c \in R$.
(\Rightarrow) : If $\overline{1}-\bar{a} \bar{b} \bar{c}$ is invertible in \bar{R}, then $1-a b c$ is invertible in R by Lemma 4. Thus, $1-c b a$ is invertible. So, by Lemma 4 again $\overline{1}-\bar{c} \bar{b} \bar{a}$ is invertible.
(\Leftarrow) : The implication of (\Rightarrow) is reversed.
Noncommutative rings satisfying (P_{3}) actually exist, e. g., Examples 1 and 2 of ([6]) or the following:

Example. Let \mathbb{Z}_{3} be the field of integers modulo 3.
Let

$$
R=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & d \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{Z}_{3}\right\}
$$

Then R is a noncommutative ring with identity. Since $R / J(R) \cong \mathbb{Z}_{3}, R$ satisfies $\left(P_{3}\right)$ by Theorem 3.

Combining Theorems 2 and 3 yields
Theorem 4. If R is Artinian and satisfies $\left(P_{3}\right)$, then $R / J(R)$ is isomorphic to a direct sum of a finite number of fields.

Lemma 5. If R satisfies $\left(P_{3}\right)$, then R is directly finite.

Proof. Let $a, b \in R$ and $a b=1$. Then $1-a(1-b a) b=1$ implies $1-$ $a b(1-b a)=b a$ is invertible by Theorem 1 . Thus, there exists an c in R such that $(b a) c=1$. Hence, $a c=(a b) a c=a(b a) c=a$ and so $b a=1$.

Lemma 6. If R is a strongly regular ring, then R is regular. (This is a well-known result.)

Proof. It is easy to see that strong regularity implies that R has no nonzero nilpotent elements. Let $a \in R$. Then there exists an b in R such that $a^{2} b=a$. Let $e=a b$. Thus, $a e=a$ and so $(e a-a)^{2}=0$. Hence, $e a-a=0$ and so $a b a=a$.

Lemma 7. If R is a semisimple ring and satisfies $\left(P_{3}\right)$, then each idempotent in R is central; and for $a, b, c \in R, a b a=a=a c a$ implies $a b=b a$, $a R(b a-1)=0$ and $a R(b-c)=0$.

Proof. Let $e^{2}=e \in R$. Then for all x, y in $R, 1-e(e x-x) y=1$ implies $1-(e x-x) e y$ is invertible by Theorem 1. By ([5], p. 57, Proposition 3), $(e x-x) e \in J(R)=0$ and so exe $=x e$. Similarly, we can show that exe $=e x$. Hence, $e x=x e$ for all x in R. So, e is central.

Let $a, b, c \in R$ and $a b a=a=a c a$. Then $(b a)^{2}=b(a b a)=b a$, and so by the result above we have $a R(b a-1)=0$. Let $f=b a, g=a c$ and $h=a b$. Then for all x in $R, 1-a(1-b a) x b=1$ implies $1-(1-b a) a b x$ is invertible by Theorem 1 again. Thus, we get $(1-f) h=(1-b a) a b \in J(R)=0$ and so $h=f h$. Similarly, we can show that $f=f h$. Therefore, $a b=h=f h=f=b a$. Since $(a c)^{2}=a c$, by the results above we have $h g=(a b) a c=(a b a) c=a c=g$ and $h g=(a b) a c=(a c) a b=(a c a) b=a b=h$. Thus, $a b=a c$. Then for all x, y in R, $1-a(b-c) x y=1$ implies $1-a x(b-c) y$ is invertible by Theorem 1. Hence, we get $a x(b-c) \in J(R)$ and so $a x(b-c)=0$. Therefore, $a R(b-c)=0$.

Theorem 5. Let R satisfy $\left(P_{3}\right)$. Then R is regular $\Longleftrightarrow R$ is strongly regular.

Proof. (\Rightarrow) : Let R be regular. Then by ([4], p. 111, Theorem 21), R is semisimple. Using Lemma 7 , we conclude that R is strongly regular.
(\Leftarrow) : The implication is Lemma 6.
We end this paper with

Theorem 6. If R is a prime and regular ring and satisfies $\left(P_{3}\right)$, then R is a field.

Proof. By ([4], p. 111, Theorem 21), R is semisimple. Let $0 \neq a, b \in R$ and $a b a=a$. Then by Lemma $7, a R(b a-1)=0$. This yields $b a-1=0$ by primeness of R. Applying Lemma 5 , we have $a b=1$. So, R is a division ring. By Lemma 2, R is a field.

For the related results, see [7] and [8].

References

[1] K. R. Goodearl, "Ring theory", Marcel Dekker Inc, New York and Basel, 1976.
[2] I. N. Herstein, "Noncommutative rings", Carus Math. Monographs, No. 15, Math. Assoc. of Amer., 1971.
[3] N. Jacobson, "Basic algebra 1", San Francisco, W. H. Freeman, 1974.
[4] I. Kaplansky, "Fields and rings", Univ. of Chicago Press, Chicago, 1972.
[5] J. Lambek, "Lecture on rings and modules", Waltham, Mass.: Blaisdell, 1966.
[6] C. T. Yen, "On the commutativity of primary rings", Math. Japonica, 25 (1980), 449-452.
[7] C. T. Yen, "A condition for simple ring implying field", Acta Mathematica Hungarica, 61(1993), 51-52.
[8] C. T. Yen, "Another condition on simple ring implying field", unpublished manuscript.

Department of Mathematics, Chung Yuan University, Chung Li, Taiwan, 320, Republic of China.

