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ON RINGS SATISFYING BOTH OF 1-abc

AND 1-cba BEING INVERTIBLE OR NONE

CHEN-TE YEN

Abstract. Let R be a ring with identity 1 and n a positive integer.
We define the property Pn 邸 follows: (Pn) If 1 - a1呤呤 ，，.a户江n is
invertible in R, then so is 1 - a丑2a3 ... a户 1a1. Thus, R satisfies (Pn),
for some n 2: 3 if and only if R satisfies (P3). Some properties of rings
satisfying (P3) are obtained, e.g., R must be directly finite.

Throughout the paper R will denote an associative ring with identity 1, and

Perlis-Jacobson radical J(R). We define the property Pn as follows:

(Pn) If 1 - a也江3···an-坪n is invertible in R, then so is 1 - ana2 a3 ... an-卫1·

An element a in a ring R is invertible if there exists an element b of R such

that ab = ba = l; and idempotent if a2 = a. R is regular (strongly regular) if for

each a in R there exists an b of R such that aba = a (a2 b = a). R is sernisimple

if J(R) = 0. R is c詛ed prime if a, b E R, aRb = 0 implies a = 0 or b = 0. R is

called directly finite ([1], p. 166) if ab= l in R implies ba = l.

It is easy to see that R always satisfies (P汴

Lemma 1. ([3], p. 89, Exercise 4). If l - ab is invertible in R, then so is
1 - ba.

Proof. The inverse of 1 - ba is 1 + b(l - ab)-1a.
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Theorem 1. Let R satisfy (Pn). If 1 - a西呤. . . an-1 an is invertible in

R, then so are 1 - a/(1)叮(2)叮(3)· · ·ll/(n-1)叨{n) for all f in Sn, the symmetric
group of degree n.

Proof. We know that Sn is generated by the cycles (12, · · ·, n) and (ln).
Since R satisfies (Pn), by Lemma 1 the result follows.

Since R has 1, R satisfies (凡）for some n~3 if and only if R satisfies (P;卟
So, in the sequel we assume that R satisfy (P3). The class of rings with (P3) is
closed under isomorphic images, and finite direct sums.

Trivially, any field satisfies (P3), this is the only division rings:

Lemma 2. If R is a division ring and satisfies (P3), then R is a field.

Proof. For all a f= 0, b f= 0 in R, we have 1 - (a-1b-1)ba = 0. Thus by
(P3), 1 - ab(a-1b-1) = 0. Hence, ab= ba.

Lemma 3. If R is a simple Artinian ring and satisfies (P3), then R is a
field.

Proof. By Wedderburn-Artin Theorem ([2], Theorem 2.1.6), R 空 Dn,
the ring of all n X n matrices over a division ring D. Thus, Dn satisfies (P3).

Suppose n > l. Then 1- (en+ e21)e12e21 = 1 - e11 - e21 is not invertible, but
1 - e21 e12 (en + e21) = 1 - e21 is invertible, a contradiction. Hence, n = l and
so R~D a division ring. By Lemma 2, R is a field.

Theorem 2. If R is a semisimple Artinian ring and satisfies (P3), then R
is isomorphic to a direct sum of a finite number of fields.

Proof. By ([2], Theorem 2.1. 7), R~D的 喦 ···EB D的 ，where the n< i) are
division rings and where D隠 is the ring of all ni X ni matrices over n< i). It is
easy to see that each D隠 satisfies (P3). So by Lemma 3, each D的 is a field.

Lemma 4. Let A be an ideal of R, A~J(R) and万= R/A. ~巨 ER, then
石= a + A is invertible in 万<=> a is invertible in R.
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Proof. (-¢=:): Trivial.
巨 ）：Let 五 E 万 and 五 be invertible in 瓦 Then there exists·an bin 瓦 such

that 五b = I= ba. Thus 1 - ab E A and 1 - ba E A. SinceA~J(R), by ([5],
p. 57, Proposition 5), both of ab and ba are invertible in R. Hence, a has a left

and right inverse and so a is invertible.

Theorem 3. Let A be an ideal of R, A~J(R) and R = RfA. Then R
satisfies (P3)~R satisfies (P3).

Proof. Let a, b, c E R.

巨 ）：If I - ab c is invertible in 瓦 then 1 - abc is invertible in R by Lemma
4. Thus, 1 - cba is invertible. So, by Lemma 4 again I - cb五 is invertible.

(~): The implication of 巨 ）is reversed.

Noncommutative rings satisfying (P3) actually exist, e. g., Examples 1 and

2 of ([6]) or the following:

Example. Let Z3 be the field of integers modulo 3.

Let

R = { G i D I a, b, c, d E Z3 }
Then R is a noncommutative ring with identity. Since R/J(R)~Z3, R satisfies

(P3) by Theorem 3.

Combining Theorems 2 and 3 yields

Theorem 4. IfR is Artinian and satisfies (P3), then R/J(R) is isomorphic

to a direct sum of a finite number of fields.

Lemma 5. If R satisfies (P3), then R is directly finite.

Proof. Let a, b E R and ab = 1. Then 1 - a(l - ba)b = 1 implies 1 -

ab(l - ba) = ba is invertible by Theorem 1. Thus, there exists an c in R such
that (ba)c = l. Hence, ac = (ab)ac = a(ba)c = a and so ba = l.
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Lemma 6. If R is a strongly regular ring, then R is regular. (This is a
well-known result.)

Proof. It is easy to see that strong regularity implies that R has no nonzero
nilpotent elements. Let a E R. Then there 函sts an bin R such that a2b = a.
Let e = ab. Thus, ae = a and so (ea - a)2 = 0. Hence, ea — a = 0 and so
aba = a.

Lemma 7. If R is a semisimple ring and satisfies (P3), then each idem­
potent in R is central; and for a, b, c E R, aba = a = aca implies ab = ba,
aR(ba - 1) = 0 and aR(b - c) = 0.

Proof. Let e2 = e E R. Then for all x, y in R, 1 - e(ex - x)y = 1
implies 1 - (ex - x)ey is invertible by Theorem 1. By ((5), p. 57, Proposition 3),
(ex - x)e E J(R) = 0 and so exe = xe. Similarly, we can show that exe = ex.
Hence, ex = xe for all x in R. So, e is central.

Let a, b, c E R and aba = a = aca. Then (ba)2 = b(aba) = ba, and so by
the result above we have aR(ba - 1) = 0. Let f = ba, g = ac and h = ab.
Then for all x in R, 1 - a(l - ba)xb = 1 implies 1 - (1 - ba)abx is invertible by
Theorem 1 again. Thus, we get (1- f)h = (1- ba)ab E J(R) = 0 and so h = fh.

Similarly, we can show that f = fh. Therefore, ab = h = fh = f = ba. Since
(ac)2 = ac, by the results above we have hg = (ab)ac = (aba)c = ac = g and

hg = (ab)ac = (ac)ab = (aca)b =ab= h. Thus, ab= ac. Then for all x,y in R,
1 - a(b - c)xy = 1 implies 1 - ax(b - c)y is invertible by Theorem 1. Hence, we
get ax(b - c) E J(R) and so ax(b - c) = 0. Therefore, aR(b - c) = O.

Theorem 5. Let R satis,拉 (P3). Then R is regular~R is strongly
regular.

Proof. 巨 ）：Let R be regular. Then by ([4], p. 111, Theorem 21), R is
semisimple. Using Lemma 7, we conclude that R is strongly regular.

(<=): The implication is Lemma 6.
We end this paper with
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Theorem 6. If R is a prime and regular ring and satisfies (P3), then R is

a field.

Proof. By ([4], p. 111, Theorem 21), R is semisimple. Let O f= a, b E R
and aba = a. Then by Lemma 7, aR(ba - 1) = 0. This yields ba - l = 0 by
primeness of R. Applying Lemma 5, we have ab = l. So, R is a division ring.
By Lemma 2, Risa field.

For the related results, see [7] and [8].
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