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ON RINGS SATISFYING BOTH OF 1-abc
AND 1-cba BEING INVERTIBLE OR NONE

CHEN-TE YEN

Abstract. Let R be a ring with identity 1 and n a positive integer.
We define the property P, as follows: (P,) If 1 — aja2a3...an-1an is
invertible in R, then so is 1 — @nagas...an—-1a1. Thus, R satisfies (Py),
for some n > 3 if and only if R satisfies (P3). Some properties of rings
satisfying (P3) are obtained, e.g., R must be directly finite.

Throughout the paper R will denote an associative ring with identity 1, and
Perlis-Jacobson radical J(R). We define the property P, as follows:
(Pp) If 1 — ajazas...an—1a, is invertible in R, then sois 1 — a,aza3...a,_10a;.

An element a in a ring R is invertible if there exists an element b of R such
that ab = ba = 1; and idempotent if a®> = a. R is regular (strongly regular) if for
each a in R there exists an b of R such that aba = a (a?b = a). R is semisimple
if J(R) = 0. R is called prime if a,b € R, aRb = 0 impliesa =0 or b =0. R is
called directly finite ([1], p. 166) if ab = 1 in R implies ba = 1.

It is easy to see that R always satisfies (P,):

Lemma 1. ([3], p. 89, Exercise 4). If 1 — ab is invertible in R, then so is
1— ba.

Proof. The inverse of 1 — ba is 1+ b(1 — ab)la.
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Theorem 1. Let R satisfy (P,). If 1 — ajaza3...a,_1a, is invertible in
R, then so are 1 — af1)as2)as(3)---f(n-1)as(n) for all f in Sy, the symmetric

group of degree n.

Proof. We know that S, is generated by the cycles (12,---,n) and (1n).
Since R satisfies (P, ), by Lemma 1 the result follows.

Since R has 1, R satisfies (P, ) for some n > 3 if and only if R satisfies (P3).
So, in the sequel we assume that R satisfy (P3). The class of rings with (P3) is
closed under isomorphic images, and finite direct sums.

Trivially, any field satisfies (P3), this is the only division rings:
Lemma 2. If R is a division ring and satisfies (P3), then R is a field.

Proof. For alla # 0, b # 0 in R, we have 1 — (a™167!)ba = 0. Thus by
(P3), 1 — ab(a~tb~1) = 0. Hence, ab = ba.

Lemma 3. If R is a simple Artinian ring and satisfies (Ps), then R is a

field.

Proof. By Wedderburn-Artin Theorem ([2], Theorem 2.1.6), R = D,,
the ring of all n X n matrices over a division ring D. Thus, D,, satisfies (P3).
Suppose n > 1. Then 1 — (e11 + e21)e1z€21 = 1 — €17 — €21 is not invertible, but
1 — ez1e12(ei1 + e21) = 1 — eg; is invertible, a contradiction. Hence, » = 1 and

so R = D a division ring. By Lemma 2, R is a field.

Theorem 2. If R is a semisimple Artinian ring and satisfies (Ps), then R

is isomorphic to a direct sum of a finite number of fields.

Proof. By ([2], Theorem 2.1.7), R = Dgl) @ v DS;’:), where the D) are

division rings and where Dg,.)

easy to see that each DS:? satisfies (P3). So by Lemma 3, each Dsf,.) is a field.

is the ring of all n; X n; matrices over D(9). Tt is

Lemma 4. Let A be an ideal of R,A C J(R) and R = R/A. Ifa € R, then

@ =a+ A is invertible in R <= a is invertible in R.



RINGS WITH PROPERTY (FPp,) 319

Proof. (<«): Trivial.

(=): Let @ € R and @ be invertible in R. Then there exists an b in R such
that @b = 1 = ba. Thus 1 —ab € A and 1 — ba € A. Sinced C J(R), by ([5],
p. 57, Proposition 5), both of ab and ba are invertible in R. Hence, a has a left

and right inverse and so a is invertible.

Theorem 3. Let A be an ideal of R, A C J(R) and R = R/A. Then R
satisfies (P3) <= R satisfies (Ps).

Proof. Let a,b,c € R.
(=): If T—a@b¢c is invertible in R, then 1 — abc is invertible in R by Lemma
4. Thus, 1 — cba is invertible. So, by Lemma 4 again 1 — ¢b@ is invertible.

(<): The implication of (=) is reversed.

Noncommutative rings satisfying (P;) actually exist, e. g., Examples 1 and
- 2 of ([6]) or the following:

Example. Let Z3 be the field of integers modulo 3.

Let
a b ¢
Rz{Oad
0 0 a

Then R is a noncommutative ring with identity. Since R/J(R) = Z3, R satisfies
(P3) by Theorem 3.

a,b,c,d € Z3}.

Combining Theorems 2 and 3 yields

Theorem 4. If R is Artinian and satisfies (Ps), then R/J(R) is isomorphic

to a direct sum of a finite number of fields.
Lemma 5. If R satisfies (P3), then R is directly finite.

Proof. Let a,b € R and ab = 1. Then 1 — a(1 — ba)b = 1 implies 1 —
ab(1 — ba) = ba is invertible by Theorem 1. Thus, there exists an ¢ in R such

that (ba)c = 1. Hence, ac = (ab)ac = a(ba)c = a and so ba = 1.



320 CHEN-TE YEN

Lemma 6. If R is a strongly regular ring, then R is regular. (This is a

well-known result.)

Proof. It is easy to see that strong regularity implies that R has no nonzero
nilpotent elements. Let a € R. Then there exists an b in R such that a%b = a.
Let e = ab. Thus, ae = a and so (ea — a)? = 0. Hence, ea — a = 0 and so

aba = a.

Lemma 7. If R is a semisimple ring and satisfies (Ps), then each idem-
potent in R is central; and for a,b,c € R, aba = a = aca implies ab = ba,
aR(ba —1) =0 and aR(b—c) = 0.

Proof. Let ¢ = e € R. Then for all z,y in R, 1 — efez —z)y = 1
implies 1 — (ez — z)ey is invertible by Theorem 1. By ([5], p. 57, Proposition 3),
(ex — z)e € J(R) = 0 and so eze = ze. Similarly, we can show that eze = ez.
Hence, ez = ze for all z in R. So, e is central.

Let a,b,c € R and aba = a = aca. Then (ba)? = b(aba) = ba, and so by
the result above we have aR(ba — 1) = 0. Let f = ba, ¢ = ac and h = ab.
Then for all z in R, 1 — a(1 — ba)zb = 1 implies 1 — (1 — ba)abz is invertible by
Theorem 1 again. Thus, we get (1— f)h = (1—ba)ab € J(R) = 0 and so h = fh.
Similarly, we can show that f = fh. Therefore, ab = h = fh = f = ba. Since
(ac)® = ac, by the results above we have hg = (ab)ac = (aba)c = ac = g and
hg = (ab)ac = (ac)ab = (aca)b = ab = h. Thus, ab = ac. Then for all z,y in R,
1—-a(b—c)zy = 1 implies 1 — az(b — ¢)y is invertible by Theorem 1. Hence, we
get az(b — c) € J(R) and so az(b — c) = 0. Therefore, aR(b — ¢) = 0.

Theorem 5. Let R satisfy (P;). Then R is reqular <= R is strongly

regular.

Proof. (=): Let R be regular. Then by ([4], p. 111, Theorem 21), R is
semisimple. Using Lemma, 7, we conclude that R is strongly regular.

(«<): The implication is Lemma 6.

We end this paper with
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Theorem 6. If R is a prime and regular ring and satisfies (P3), then R is
a field. '

Proof. By ([4], p. 111, Theorem 21), R is semisimple. Let 0 # a,b € R
and aba = a. Then by Lemma 7, aR(ba — 1) = 0. This yields ba — 1 = 0 by
primeness of R. Applying Lemma 5, we have ab = 1. So, R is a division ring.
By Lemma 2, R is a field.

For the related results, see [7] and [8].
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