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NEW SUFFICIENT CONDITIONS FOR THE

APPROXIMATION OF DISTINCT SOLUTIONS OF

THE QUADRATIC EQUATION IN BANACH SPACES

IOANNIS K. ARGYROS

Abstract. Using the "theory of majorants" we provide new sufficient
conditions for the approximation of distinct solutions of the quadratic
equation in Banach spaces. Our results are applied to a Riccati ordinary
differential equation.

1. Introduction.

Consider the equation

x = y+B(x,x) (1)

in a Banach space E over the filed IR of real numbers, where B : E x E --+ E is

a bounded bilinear operator with values in a Banach space E and y E Eis fixed.

We introduce the iteration

Xn+l = B(x五尸 (xn-Y), n=0,1,2,··· (2)

for approximating solutions x* of equation (1). For each fixed x E E, B(x)

denotes a linear operator from E to E such that B(x)(y) = B(x,y), for 詛

y EE.
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Special cases of (1) appear in many interesting problems arising in astro
physics, in the kinetic theory of gases as well as the theory of ordinary and partial
differential equations [4], [5]. Equation (1) has been studied extensively. The

continued fraction approach [3], [8], the contraction mapping theorem technique
[1], [2], [9], [10] and the famous Newton-Kantorovich method [6], [7], [9] have

been used to find a solution x* of equation (1).

A common hypothesis for the above techniques is the estimate 4IIBII IIYII < l.
It turns out that under this hypothesis the previous mentioned techniques

approximate a small solution v* of equation (1) for any starting point x。close
enough to the solution. The obtained solution v* is such that v* = v*(y)-+ 0 as
y -+ 0. We make use of the "theory of majorants" [6], 圍 and under assumptions
similar to the ones introducedd in the above mentioned techniques, iteration
(2) can be used to approximate a second solution x* of (1) with x* f- v* and
x* = x*(y)-+ Oas y-+ 0. Moreover, under the same assumptions we show that
the Newton-Kantorovich method [7] can~::: used to obtain a solution zN =·x*
also. This result is not known not even for quadratic systems in Illn, n > l. Some
sufficient conditions are also given for the existence of more than one distinct

solutions of (1). Our results are illustrated with the solution of a quadratic

system in E = JR2 as well as the solution of a Riccati differential equation.

2. The "MAJORANT THEORY" and Equation (1)

Definition 1. An operator B : E1 X E2 -+ 恥 is called bilinear if it is linear·

in each variable separately and symmetric if趴 = E2 and B(x,y) = B(y,x) for

all (x, y) E 趴 X E2.

Definition 2. The mean 万 of Bon 趴 X 比 is defined by

1
万位 ，y) = ;--(B(x, y) + B(y, x)) for all (x, y) E E1 x E2.

2

Definition 3. A bilinear operator B : £1 X£2 一 氐 is said to be bounded
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jf there exists q > 0 such that

IIB(x,y)II~qllxll·IIYII for all (x,y) E E1 X E2.

The quantity IIBII = sup IIB(x, y)II is called the norm of B. Note that,
llxJl~l,IIYll~l

for B symmetric,

万位 ，x) = B(x, x) for all x E 趴 ． (3)

\Vithout loss of generality due to (3) we may assume that the operator Bin (1)

is symmetric.
From now on£1 = E2 = E and 氐=E. \Ve can now prove a theorem for

the existence of a solution x* of equation (1).

Theorem 1. Let B be a bounded symmetric bilinear operator on E X E and

suppose that x0, y E E with Xo i O and xo i y. Assume:
(i) The inverse of the linear operator B(xo): E"""" E with B(xo)(x) = B(xo,x)
for all x E E exists and is bounded.

(ii) The estimates:

0 三 C < 1 (4)

and

o::;d< (1 - C)2
4ab ，

are true, where we have denoted

(5)

a~IIB(xo)-111, (6)

b 2: 丨IBII,

c 2: IIB(xo)-1(1 - B(xo))II

、.',

、̀,＇

7

8

(

,＇
\

and

d 2: IIB(xo)-1(B(xo, xo) + y - xo)II- (9)
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Then: (a) The real sequence {tn}, n = 0, l, 2, ···given by

1 + C - 2abtn+1
tn+2 = tn+l 一 1 I - I'l-臣 伍 - tn+d, n = 0, l, 2, · · ·,

1 - C
to= 2ab ， t, = [屮 ] to, (10)

is positive and decreasingly converges to zero.
(b) The sequence { xn}, n = 0, 1, 2, · · ·generated by (2) is well defined,

remains in U(xo,ro) = {x E E/llx 一 xo II < ro =缸}and converges to a unique
solution x"'E 硏xo,ro) of equation (1).

Moreover, the following estimates are true for all n = 0, 1, 2, · · ·,

llxn+l - Xnll~tn - tn+I

and

llxn 一 x*II :,; t. s 尸户
Proof. (a) It can easily be seen by (10) that the sequence {tn}, n

0, 1, 2, · · ·is certainly nonnegative if

(1 + c)tk+I + 2abtktk+I - (1 + c)tk 2: 0 for all k = 0, 1,2, · · ·. (11)

Inequality (11) is true as equality for k = 0. Let us assume that it is true

fork = 0, 1, 2, · · ·, n. We shall show that it is ture fork= n + 1. Using (10), the
left hand side of inequality (11) for k = n + 1 becomes

2ab(l + c + 2abtk)tl+i + (1 + c)2tk+1 - (1 + c)2tk
1 + C + 2abtk+l

which is nonnegative if tk+I~ (l+c)tk and that is true b
1 + C + 2abtk

your assumpt10n.
By the choice of to, t1 and (9), to - t1 > 0.
Let us assume that

tk - tk+l > 0, k = 0, 1, 2, · · ·, n. (12)
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Using (10), we see that (12) is true fork= n + 1 if

l+c 一 2abtk+l > 0 for k == 0, 1, 2, · · ·, n. (13)

Inequality (13) is true for k = 0 by the choice of t1. Let us assume that
(13) is ture for k = 0, 1, 2, · · ·, n. To show (13) for k = n + 1 it suffices to show

1 十 C
tk+2 <一2ab

or by (10)

2ab[2(1 + c)tk+I + 2abtktk+1 - (1 + c)tk]~(1 + c)2 + 2ab{l + c)tk+1

l+cor tk+1 :S 一 which is true by hypothesis.
2ab

We have now showed that the real sequence {tn}, n = 0, 1,2, ···is positive
and decreasing and as such it converges to some t*~0. But using simple

1 + C 1 十 C
n+l

induction and (10) we can easily show that tn+l~[~] tn~[了 ］ 瓦
That is t* = 0.

(b) Let us observe that the linear operator B(x) is invertible for all x E

U(x0, r0). Indeed we have

IIB(xo)-1 B(x - xo)II :S IIB(xo)-1 II·IIBII·llx 一 xoll :S abllx - xoll < 1

so that according to Banach's lemma on invertible operators

a
丨IB(x)-111 = ll[J + B(xo)-1 B(x - xo)J-1 B(xo)-111 < -

一 1 - ao11x - xo
(14)

We shall prove that

llx五 一 Xn+1 II ::; tn - tn+1 for n = 0, 1, 2, · · ·. (15)

By (a) it follows that if (2) is well defined for n = 0, 1,2,· ··,k and if (15) holds
for n~k then llxo - xnll~to - tn < to - t* for n~k. Thi_s__shows that (14) is

satisfied for x = Xi, -i~k. Thus (2) will be defined for n = k + 1, too. By (2)
and (9) llx1 - xoll~d~to -·t1. That is, (15) is true for n~0. Suppose (15)
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holds for n = 0, l, 2, · · ·, k. Observing that

B(X k+l)(Xk+l - Xk+2)

= B(xk+1,xk+1) + Y - Xk+I - B(xk,xk)- y + Xk + B(xk)(xk - xk+i)

= B(X k+ 1 - X k, X k+ 1 十 xk) + Xk - xk+I + B(xk)(xk - Xk+I)

= B(x杆1-xk,XJ-.-+1-xk)+B(xk-XJo+1,x紆1 -xk)+B(x杆I, X蚪1 -xk)

- (x抖1-互）

= (B(xk+1) - I)(xk+I 一 Xk),

we get

Xk+l 一 X k+ 2 = B (X k+ 1)-1 [B (Xk+ 1 一 xo) + B(xo) - I](xk+l 一 Xk). (16)

By taking norms in (16) and using (14) we obtain

llxk+1 一 Xk+2 II~
[c + ab(t。- tk+l)](tk - tk+l)

1 - ab(to - tk+i) = tk+l - tk+2

by choice of to. Inequality (15) shows that 伝}, n = 0,1,2,···is a Cauchy

sequence in a Banach space E and as such it converges to some x* E E. By

taking the limit as n - oo in (2) we get x* = y + B(x*, x*). That is x* is a

solution of equation (1). Fix n and let p = 0, 1, 2, ·. ·. Then

llxn - x* II :::; llxn 一 Xn+pll + llxn+p 一 x*II~tn - tn+p + llxn+p 一 x*II- (17)

By letting p --+ oo we obtain

llxn - x*II~tn - t*, n = 0,1,2,·· ·. (18)

By (18) for n = 0 we get

1 - C 1 一 C
llxo - x* 11~to - t* =— - t* =—

2ab 2ab·

That is x* E 硏Xo, ro).

Finally, let us assume that there exists a second solution z* E U (x0, ro) of
equation (1).
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By (2) we have

Xn+1 - z* =xn - B(Xn尸(y + B(xn,Xn) - Xn) - z*

=B(xnr-1[B(xn)(xn - z*)+xn 一 y-B(xn, Xn)+y+B(z*, z*) - z*]

= - B(xn)-1[B(z* 一 zo) + B(xo) - I](xn - z*).

By taking the norms in the above identity and using (14) we obtain

llxn+l - z* 11 :<; 2 [ c + abllz* - xoll1 + c + 2abtn+i] llxn 一 z*II-

By the choice of ro the factor of llxn 一 z* II is less than 1 so that llxn 一 z*II goes
＊to zero as n~oo; hence z = lim Xn = x*.

n--+oo
That completes the proof of the theorem.

Moreover, we can show the following theorem:

Theorem 2. Let B be a bounded symmetric bilinear operator on E X E and

suppose that xo, y E E with Xo # 0, xo # y. Assume:
(i) The following estimate is true

4be < 1 (19)

where

e~IIYII· (20)

(ii) The hypotheses of Theorem l are satisfied for some xo E E such that

llxoll > p with a certain p E {p1,P2), (21)

where p1 and p2 are the two positive solutions of the scalar quadratic equation

bz2 - z + e = 0. (22)

Then:

(a) The iteration

Vn+1 y+B(vn,四） (23)
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U(O, pi) and converges to a unique solution v* of equation (1) in

U(O, 吊可）for any v。e 硏O,p卟 Moreover, for all n = 0, 1, 2, · · ·

362

remams m

n

囯- v* II :s; P1 - e芷 ，(2j)! (eb)1
．j=O
j (j+ 1)'

(b) The solution x* of equation (1) obtained via iteration (2) is such that
x* -f= v*.

Proof. (a) The first part of the result in (a) follows from Corollary 1 in [1],
whereas the second part follows from Theorem 18 in [10].

(b) We shall show that llxnll > p for a certain p E (Pt, p汁 By (2) we obtain

llxn - YII = 丨IB(xn,Xn+l)II~IIBll·I卜Xn 11 llxn+ 1 II or

llxn - YII
I 丨Bii·llxnll.llxn+1 II~

Assume that llxkll > p for all k = 0,1,2,···,n. Since

(24)llxnll > P > e

(25)
llxnll - e
bllxn II

>p

it is enough to show

l這 ＞己瓦

or

By尹 which is true for p E (P1 ,P2).
oo in (24) we get llx*II 2: p.

By (24) it finally suffices to show p >
taking the limit as n Therefore, we obtain
x* :/ v*.

That completes the proof of the theorem.

Furthermore, we ca.n prove the following theorem concerning the number of
solutions of equation (l).

Theorem 3. Let B be a bounded symmetric bilinear operator on Ex E and
suppose that xo, y E E with x0 :j; y and y :j; 0.

－
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Assume:
(i) the point x0 E E is such that

B(xo) I; (26)

(ii) the inequality (19) is true.
Then the elements v*,x*,x0 - x* and x0 - v* are solutions of equation (1)

with
x* f: x0 - x* (27)

and
v* =/ xo 一 v*. (28)

Proof. It follows by (i) that the hypotheses of Theorem 1 are satisfied.

That is x* is a solution of equation (1). By (ii) v* is a solution of equation (1).

For z = x0 - x* we have

y + B(z,z) =y + B(xo - x*,xo 一 x*) = y + fl(xo,xo)- 2B(xo,x*) + B(x*,x*)

=x* + xo - 汩=x0 - x*.

Similarly we show that xo - v* is a solution of equation (1).

Let us assume now that
x0 - x* 一 x*. (29)

Then by (29) and (1) we have

xo = 2(y + B(x*, x*))
1

2(y+ -B(xo,xo))
4

which implies
Xo = 4y.

That is
x* = 2y. (30)

But then by (30) and (1) 2y = y + B(2y, 2y) or 4IIBII IIYII~1 since Y :/ 0
contradicting (ii). This shows (27). Similarly we show (28) and that completes

the proof of the theorem.
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We can show the following.

Proposition. Let B be a bounded symmetric bilinear operator on E x E
and suppose that x0, y E E with xo f 0, xo f y. Assume:

(i) The hypotheses of Theorem 1 are satisfied.
(ii) The inequality (19) is true.
(iii) The inequality

llxo - YII > 1 - 2b(e 一 ro) -戸
2b

R (31)

is true.

Then the solutions x* and v* obtained via Theorems 1 and 2 are distinct.

Proof. Assume that x* = v*. The solution x* is such that

IIB(x*,x*)II = llx* - YII (32)

and since R > r0, (32) gives

1 一尸 2'. llx*II 2'. 《llxo -~II - ro. (33)

But then from (33) we deduce

llxo - YII~R

contradicting (31).
T~at completes the proof of the proposition.

Note that under the hypotheses of Theorem 3 and the above proposition it
follows immediately that

x0 - x* :/: x0 - v*.

Remarks. (a) It can easily be seen that (6) and (7) can be replaced by the
weaker condition

IIB(xo)-1BII::; q. (34)
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(b) If we know the constants a, b, c, d then we may compute the sequence

{tn}, n = 0,1,2,···before obtaining the sequence {xn}, n = 0,.1,2,···via the
iterative algorithm (2). Therefore the estimates on the distances llxn 一 x* II
and llxn+I 一 Xn II obtained in Theorem 1 may be called apriori error estimates.
Moreover the convergence of iteration (2) to a solution x* of equation (1) is only

linear. Let us assume that the linear operator

fo = (J - 2B(xo))-1 (35)

exists for some xo E E and

1
llfoll~ 如 ， llfo(xo - y - B(xo,xo)II~TJo,ho = 2如 IIBIITJo~2. (36)

Then the Newton-Kantorovich iteration [7)

Zn+l = Zn -(I - 2B(zn))-1(zn 一 y-B(zn,Zn)), n = 0, 1,2,· · ·,zo = Xo {37)

for solving (1) converges to a unique solution zN of equation (1) in U(xo, 历v)

with
1-辺- 4bb訒0

TN =
2bb。 · (38)

Moreover the order of convergence is quadratic. However we do not know if

llznll > p for a certain p E (P1 ,P2) whenever llzoll > p. That is, we do not know
if llzNll l p or if zN -:J v*.

It will be shown later that whenever the hypotheses of Theorem 1 are satis
fied then the Newton-Kantorovich hypotheses (36) are satisfied also and x* = zN.

That is, if we choose xo = zo with llxo 11~p, then

llz1vll'f_ P and zN -/= v* (39)

even if Zn 2 p for some n, n = 0, 1, 2, · · ·. Therefore in practice we will prefer to

use iteration (37) instead of (2) to find bounded away from zero solution x* of
equation (1), since (37) converges faster than (2). However our main concern,
that is, the property (38) could only be proved through iteration (2) as the

following theorem indicates.
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Theoren1 4. Under the hypotheses of Theorem 2 the Newton-Kantorovich

iteration (37) for zo = xo converges to a unique solution ziv of equation (1) in
U(Xo, RN) and ziv = x*. A1oreover, if llzo II > p for a certain p E (P1 ,P2) then

llz'ivll~P, (40)

and

llzn - ztvll:::; ~(2ho)r-1'f/o, n = 0, 1,2,· · ·.

Furthermore, the solution ZN can be written as zN = x0 + h where h is a
solution of the quadratic equation

h = Y1 + B1 (h, h) (41)

with

YI = (I - 2B(xo))-1(B(xo,xo) + Y - xo) and B1 = (I - 2B(x0))-1 B.

Proof. By the Banach lemma, the linear operator

B(xo)-1 - 21 = (B(xo)-1 - I) - I

is invertible since 丨III!·Ill - B(xo)-111~c < 1 and

1ll(B(xo)-1 - 2/)-111~ —.
l 一 C

The equation (40) has a solution h if

4lly, 11 IIB, II $ 4 [土 -d][土 ·ab] < I (42)

which is true by (5). It can easily be seen now that w* = x0 +his a solution of
equation (1) if and only if his a solution of _equation (41). The linear operator
(I - 2B(xo))-1·exists smce

(l-2B(1.』:o))-1 = (B(xo)-1 - 21)-1 B(x~)-1. (43)
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The Newton-Kantorovich hypotheses (36) are now satisfied and by the def

inition of rN, (19) and (20) we deduce that z* = w*. By thN e umqueness of the

solutions x* and z;., in the balls U(xo,ro) and U(xo,rN) it follows that z;., = x*
(the balls have the same center).

The rest of the theorem follows from part (ii) of Theorem 2 and Theorem

11.3 in [[7] pp. 142].
All the results obtained in Theorem 2-3 and in the proposition can apply

to iteration (37). Note that the result (40) is not known not even for quadratic

systmes in 职 ，n > 1.
To cover the cases when B is not symmetric we can state the following

theorem whose proof as identical to that of Theorem I is omitted.

Theorem 5. Let B be a bounded bilinear operator on Ex E suppose that

x0, y E E with x0 -f 0, x0 -f y. Further, let

a~IIB(xo)-1BII, b~IIB(xo)-1(2万- B)II, c~IIB(xo)-1(2B - B)(xo) - Ill,

and let A, B be defined as

一2 1.

A=
-[b(五十b)t0+2(a·c+b)+ {[b(五十b)t0+2(旋 十b)]2 +4(旋 十b)t0(a2 - b)} 2

2(a2 -b2)

t。 1-c
一 －－－＝
五十 b ，

and
B

(1 + c)(1 - c)
2五(c + 3)

Assume:
(i) The inverse of the linear operator B(xo) : E -* E with B(xo)(x)

B(x0, x) for all x E E exists and is bounded;
(ii) The following estimates are true:

a>b-'

o:::;·c<l,
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0 :s; d < to - A if 五 >b

and

o s; d < t0 - B if a = b.

Then
(a) the real sequence 伝}, n = 0,1,2, .. , given by

-- --c + bt。- btn+I 一
tn+2 = tn+I -

1 - 五to+ 五tn+I佑- tn+I),

t1 = B if 五 >b

n = 0, l, 2, · · ·

and
t1 = B if 石 =b

1s pos1t1ve and decreasingly converges to zero.
(b) The sequence {xn}, n = 0,1,2, .. , generated by (2) is well defined, re

mains in U(xo,而 ）and converges to a unique solution x* E 訢Xo,而）of equation
(1) with 而 ＝五王

Moreover, the following estimates are true for all n = 0, l, 2, · · ·

llxn+l 一 Xnll~tn - tn+l and llxn - x*II ::; tn.

Remarks similar to the ones made after the proposition can now easily follow
for Thoerem 5.

The results obtained in the next three examples can also be obtained through

the use of iteration (37). However we will only use iteration (2) for demonstra
tional purposes.

，

3. Applications.

Example 1. Let E = R2 and define a bilinear operator on E by

B(w,v) (W1, W2)
1

1

1

n

12一
21

b

b

b

112

122＿
212

b

b

b
lJ

Vl

吩［
b221 b222
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(B(w))(v) = [拓1 W1 + b121 W2 b112W1 + b122W2] [ 明
b211 W1 + b221 W2 b212W1 + b222W2 V」
[ b111W伊 1 + b121W2V1 +b112W1V2 + b,2,w,v, l
b211 WI VJ + b221 W2V1 +b212W1 V2 + b222W2V2 .

Consider the quadratic equation on E given by

w = y + B(w,w)

_or equivalently

1 2
叨 = - - 3wi + 2w1w2 - w2

48

W2
1 2 2- - + W1 - 2w1W2 - W248 (44)

where
，3

'

，

1

1

=

＝

＝

1

2

1

1

1

2

1

1

1

b

b

b

1

1

-

l

_＿
．＝

1

2

2一

2

2

?-

b

b

y = [ :: ] , w = [ :: l
b122 = - 1,

b211 = 1,
．

1一
48

1一
48

一

＝

＝

1

2

y

gb212 = - 1, and

For x E E, let llxll = maxlxil, i = 1, 2. Using the norm on L(E, E) one can
(i)

define the norm of B on E [10) by

，
_
_
i'

kxki
.'耐b

x
V]
曰

2
V]
曰

2
t
'
I

xa
a'

m
(1

p
=

u
II

S

x.l

＝.,．
_丨Bl

.,
1·

2 2
from which it follows at once that IIBJI~m邸 I: I: lbij社

(i) i=l k=I
With the above values it can easily be seen that B is a bounded, symmetric

Let x0 = [ 二 ］．

operator on E and

1
B(xo) = I, e = d = IIYII

1=.一·
48' b = 6, a = 1, c = 0, ro = -12' R = .08690776
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and

llxo - YII = .520833333.

According to Theorem 2 (i), equation (44) has a small solution v* E 硏O,p1)
.0200308

which coin be found to be v• = [_0200308] using the iteration (23) for v0 for

Vo = y. We took Vs = v*. According to Theorem 1, equation (44) has a solution

in U(xo, ro) which can be found to be x·= [ 二 悶鬪鬪] using the iteration (2)
for Xo = [二l·We took X9 = x• Since llxo - Yoll > R, it was known before

actually computing v* and x* that x* -:J v*. Note however that x* 一 x0 - v*.

It can easily be seen that vi = [ -.25_1318813], is the third solution of (44).

Finally, the fourth solution xi of equation (44) is given by xi = x0 - vi.
We have now found all four solutions of equation (44).

A more interesting example is given by the 飼lowing.

Example 2. Consider the Riccati differential equation

dx
x2(t) + 2z(t)x(t) + Y1(t) - — = 0, 0 ::; t < T < 1, x (0) = 0. (45)dt

As E takes C祁 (0, T],, the space of all continuously differentiable function x = x(t),
such that x(O) = 0, and as E take the space C[O, T] of all continuous real
functions. Let us equip the above spaces with the usual sup-norm. That is

llxll = sup lx(t)I for x E E (or 幻
0$t$T

Equation (45) is a quadratic equation of the form (1) with B(x1団

B(xi)(x2) where B(xi) is a linear operator for fixed x1 _given by

B(xi)(w)(t) = [[仝]-l x,w] (t)
[exp [J.'2z(q)dq]] [exp [- [ 2z(q)dq] x1(s)w(s)ds,

for all w E E and O~t~T, and

y = [羞- 2z]-l y1
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d
The linear operator - - 2z is indeed invertible for all x E E, in fact, the

dt
d -1

inverse transformation u = [dt - 2z] v has the explicit representation

u(t) = [exp [[ 2z(q)dqll l exp [- [ 2z(q)dql v(s)ds, 0 :O t'.o T,

where u E E for v E E. It can easily be seen that the bilinear operator B defined
above is bounded and symmetric. Using definition 3 we deduce for T = J,

1 1
IIBII = -2

sup 1(1 - t2)ln(l - t2)1~.375 for z(5) = -—
0網T 1 - t2.

1 + t2
Take y1(t) = -.14--;; then easily, y(t) = -.14t for all O~t~T and II針I=1 - t-
.07.

The condition (i) in Theorem 2 is now satisfied. Moreover if the condition
(ii) in Theorem 2 is satisfied for some xo, then using iterations (2) and (23) we

can obtain the solutions x* and v*, respectively, with x* :j; v*.

Example 3. There are examples of interesting linear operators satisfying
condition (26). Indeed, with the notation of the previous example, let us define

a linear operator B(·) by B(v) =懾- 2z] 一 1 (v). Choose z as before and v(t) =

xo(t) =巴；. It can then easily be seen that B(x0)(t) = I(t) = t for all O~t~
T, that is B(xo) = I. Therefore the differential equation 翳- 2z(t)u(t) = v(t),
u(O) = 0, has the unique solution u given by u(t) = t, 0~t~T.

Example 4. Consider the scalar equation x = b + (3正 with b, b > 0 and
1 - 48(3 > 0.

Let us choose 嘉 < Xo <
become, respectively,

1 + vi - 4bf3
翊

1
Xo~ —

頤'

The condition 4, 5 and (21)

2{3 + /2(1 - 4b{J)
頤

< xo,



372 IOANNIS I<. ARGYROS

xo > p for

1 - v'l - 4fJ()
頤

PE (p1 ,P2),

1 + yl - 4b{3
翊P2 =PI =

That is, x0 must be chosen such that

2/3 十澀 (1 - 46/3) 1 + vf-=-鐧
頲

< Xo <
翊

The large solution of the scalar quadratic equation can now be obtained using

iteration (2) for the above choice of xo.
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