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NEW SUFFICIENT CONDITIONS FOR THE
APPROXIMATION OF DISTINCT SOLUTIONS OF
THE QUADRATIC EQUATION IN BANACH SPACES

IOANNIS K. ARGYROS

Abstract. Using the “theory of majorants” we provide new sufficient
conditions for the approximation of distinct solutions of the quadratic
equation in Banach spaces. Our results are applied to a Riccati ordinary
differential equation.

1. Introduction.

Consider the equation
r = y+ B(z,z) (1)

in a Banach space E over the filed IR of real numbers, where B: F X E — Eis
a bounded bilinear operator with values in a Banach space E and y € Eis fixed.

We introduce the iteration
Tnt+1 = B(xn)-l(mn - y)a n = 0,1927' %3 (2)

for approximating solutions z* of equation (1). For each fixed z € E, B(z)
denotes a linear operator from E to E such that B(z)(y) = B(z,y), for all
y € E.
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Special cases of (1) appear in many interesting problems arising in astro-
physics, in the kinetic theory of gases as well as the theory of ordinary and partial
differential equations [4], [5]. Equation (1) has been studied extensively. The
continued fraction approach [3], [8], the contraction mapping theorem technique
[1], [2], [9], [10] and the famous Newton-Kantorovich method [6], [7], [9] have
been used to find a solution z* of equation (1).

A common hypothesis for the above techniques is the estimate 4||B|| ||y|| < 1.

It turns out that under this hypothesis the previous mentioned techniques
approximate a small solution v* of equation (1) for any starting point zo close
enough to the solution. The obtained solution v* is such that v»* = v*(y) — 0 as
y — 0. We make use of the “theory of majorants” [6], [7] and under assumptions
similar to the ones introducedd in the above mentioned techniques, iteration
(2) can be used to approximate a second solution z* of (1) with z* # v* and
z* = z*(y) — 0 as y — 0. Moreover, under the same assumptions we show that
the Newton-Kantorovich method [7] can ko used io obtain a solution z} = z*
also. This result is not known not even for quadratic systems in IR?, » > 1. Some
sufficient conditions are also given for the existence of more than one distinct
solutions of (1). Our results are illustrated with the solution of a quadratic

system in E = IR? as well as the solution of a Riccati differential equation.

2. The “MAJORANT THEORY” and Equation (1)

Definition 1. An operator B : E; X E; — Ej is called bilinear if it is linear
in each variable separately and symmetric if E; = E, and B(z,y) = B(y,z) for
all (z,y) € By X Es.

Definition 2. The mean B of B on E; X E, is defined by

1

F(CE, 3/) = 5

(B(z,y) + B(y,z)) forall (z,y)€ Eq X E.

Definition 3. A bilinear operator B : E; X Fy — Ej3 is said to be bounded
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if there exists ¢ > 0 such that
1B(z, )l < gllz]| - llyll for all (z,y) € Ex X Ea.

The quantity ||B|| = sup  ||B(z,y)|| is called the norm of B. Note that,
Izl <1, llyll<1

for B symmetric,

B(z,2) = B(z,z) forall z¢€ E,. (3)

Without loss of generality due to (3) we may assume that the operator B in (1)
is symmetric.

From now on F; = E; = E and F3 = E. We can now prove a thcorem for

the existence of a solution z* of equation (1).

Theorem 1. Let B be a bounded symmetric bilinear operator on E X E and
suppose that z¢,y € E with 29 # 0 and zo # y. Assume:
(i) The inverse of the linear operator B(zo) : E — E with B(zo)(z) = B(zo,)
for all z € F exists and is bounded.

(ii) The estimates:

0<cx<1 (4)

and ;

(1-¢)

< a9

0<d< e (5)
are true, where we have denoted

a > [|B(zo)™, (6)
b > || B, (7)
¢ > ||B(zo) ™ (I = B(=o))ll (8)

and

d > ||B(z0) " (B(xo,%0) + y — o)]|- (9)
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Then: (a) The real sequence {t,}, n =0,1,2,--- given by

14c¢c— 2(lbtn+1

= - lp —1In ’ :071a25"'v
tnt2 = Intt 1+c+2abtn+1( +1), ®
l1-c¢ 14+¢ ;
= e = 10
tO 2ab ’ tl [ 92 ]tO, ( )

is positive and decreasingly converges to zero.

(b) The sequence {z,}, n = 0,1,2,--- generated by (2) is well defined,

remains in U(zo,70) = {z € E/||lz — zo|| < ro = 3¢} and converges to a unique

solution z* € U(zg,7o) of equation (1).

Moreover, the following estimates are true for alln = 0,1,2,---,

|znt+1 — Za|| < tn — tnga

and

1 n
mn—fugug[ ;1 to.

Proof. (a) It can easily be seen by (10) that the sequence {t,}, n =

0,1,2,--- is certainly nonnegative if
(1 + C)tk+1 + 2abtytryq — (1 + C)tk >0 for all k=0,1,2, 5=, (11)

Inequality (11) is true as equality for £ = 0. Let us assume that it is true
for k = 0,1,2,---,n. We shall show that it is ture for £ = n+ 1. Using (10), the
left hand side of inequality (11) for ¥ = n + 1 becomes

2ab(1 + ¢ + 2abty)t2,, + (14 ¢)*tis1 — (1 + c)2ty
14+c+ 2abtk+1

o o 5 = 1 ts
which is nonnegative if ¢4, > ; i ct—c2)a2tk
By the choice of ty,t; and (9), to — ¢, > 0.

and that is true by our assumption.

Let us assume that

tk_tk+1>03 l"=011727"'3n°- (12)
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Using (10), we see that (12) is true for k =n + 1 if
14 c—2abtgyy >0 for £=0,1,2,.--,n. | (13)

Inequality (13) is true for k = 0 by the choice of ;. Let us assume that
(13) is ture for k = 0,1,2,---,n. To show (13) for k = n + 1 it suffices to show

€
505 " by (10)

teyo <

2ab[2(1 + C)tk+1 + 2abtktk+1 == (1 + C)tk] S (1 + 6)2 + 2(1b(1 + C)tk+1

[
or tg4+1 < —21;52 which is true by hypothesis.
We have now showed that the real sequence {t,}, n = 0,1,2,--- is positive

and decreasing and as such it converges to some t* > 0. But using simple
o . 1+c 14c]™"
induction and (10) we can easily show that ¢,41 < 5 ty < g to.
That is t* = 0.

(b) Let us observe that the linear operator B(z) is invertible for all z €

U(zg,70). Indeed we have
|B(20) ' B(z — zo)|| < |B(z0) ™ || - | BI| - llz — zol| < abllz — zo|| < 1

so that according to Banach’s lemma on invertible operators

B(z)~!|| = ||[I + B(zo) ' B(z — xo)]" B(zo) ™| < < . (14
1B(z)l = 7 + Bao) ™ Bz - 0)] ™ Blao) ™Il € t—gpr—per (1)
We shall prove that

|zn = Zng1ll £ta —=thya for n=0,1,2,---. (15)

By (a) it follows that if (2) is well defined for n = 0,1,2,---,k and if (15) holds
for n > k then ||zo — z4|| < to — tn < to — t* for n < k. This shows that (14) is
satisfied for z = z;, i < k. Thus (2) will be defined for n = k£ + 1, too. By (2)
and (9) ||z1 — zo|| £ d < to —t;. That is, (15) is true for n = 0. Suppose (15)
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holds for n = 0,1,2,---,k. Observing that
B(zp1 )(Ths1 — Thy2)
= B(Zk41,Zh41) + Y — Tht1 — B(zg,24) — ¥ + Tx + B(ze)(2k — Thy1)
= B(Zk+1 — Tk, Tit1 + Zk) + Tk — Tiqr + B(zk)(Th — Thyr)
= B(Zpn — Tk, Ton — k) + B(Tk — Zpp1, Top — Tk )+ B(Tr41, Tipr — Tk
~ (T —z4)
= (B(@k+1) = D(Zk41 — i),

we get
Te1 — Thtr = B(er1) T [B(zrs1 — 2o) + B(zo) — I(zht1 — z).  (16)

By taking norms in (16) and using (14) we obtain

[c + ab(to — tk41)](tk — tit1)
1-— ab(to - tk+1)

|Zr41 — Zrga|| < = lk41 — try2

by choice of y. Inequality (15) shows that {z,}, n = 0,1,2,---is a Cauchy
sequence in a Banach space E and as such it converges to some z* € E. By
taking the limit as n — oo in (2) we get z* = y + B(z*,z*). That is z* is a

solution of equation (1). Fix n and let p = 0,1,2,---. Then
lzn — 2%} < ||zn — Zrtpll +|Tntp — 2% < tn — tngp + ”$n+p -z (17)
By letting p — oo we obtain
s — &% £ 1y ~1*, B=0,1,2 5, (18)

By (18) for n = 0 we get
1-e¢ _I=g

*

2ab T 2ab

“IEO — (E*” Lh~1T =

That is 2™ € _U_(z:o, T0)-
Finally, let us assume that there exists a second solution 2* € U (zo0,70) of

equation (1).
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By (2) we have
Tnp1 — 2* =Tp — B(22) 7 (¥ + B(ZTn,Tn) — Tn) — 2*
=B(2,) [B(zn)(Zn — 2*)+2pn—y— B(zn,zs)+y+B(z",2") — 27]
= — B(zn) " '[B(z* — 20) + B(x0) — I)(zn — 2%).
By taking the norms in the above identity and using (14) we obtain

¢+ ab||z* — z¢|
1 +c++ 2abtn+1

[ o= 571

lonss — 2] < 2 [

By the choice of g the factor of ||z, — z*|| is less than 1 so that ||z, — 2*|| goes

to zero as n — oo0; hence z* = lim z, = z*.
n—00

That completes the proof of the theorem.

Moreover, we can show the following theorem:

Theorem 2. Let B be a bounded symmetric bilinear operator on E X E and
suppose that g,y € E with g # 0, z¢o # y. Assume:

(i) The following estimate is true
dbe < 1 (19)

where
e 2 |lyll- (20)

(i) The hypotheses of Theorem 1 are satisfied for some zo € E such that
lzo|| > p with a certain p € (p1,p2), (21)

where p; and py are the two positive solutions of the scalar quadratic equation
bz? —z4+e = 0. (22)

Then:
(2) The iteration
Unt1 = Y+ B(vnavn) (23)
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remains in U(0,p;) and converges to a unique solution v* of equation (1) in

U(0, ﬂl'B_n) for any vy € U(0,p;). Moreover, for all n = 0,1,2,---

fou =l <71 -3 TG

(b) The solution z* of equation (1) obtained via iteration (2) is such that
2" o g,

Proof. (a) The first part of the result in (a) follows from Corollary 1 in [1],
whereas the second part follows from Theorem 18 in [10].

(b) We shall show that ||z,|| > p for a certain p € (p1,p2). By (2) we obtain
ln = 31l = 1B(@nsonsll < 1Bl [zl llonsa] or

|zn — yl|
el 2 s
" |B]| - [|zx]]

Assume that ||zk|| > p for all £ =0,1,2,---,n. Since

lzall >p> e (24)
it is enough to show
—”:ﬁ:l!;” ©>p (25)
or
lanll > -

By (24) it finally suffices to show p > l—epb which is true for p € (p1,p2). By

taking the limit as n — oo in (24) we get ||[z*|| > p. Therefore, we obtain
" % a”,

That completes the proof of the theorem.

Furthermore, we can prove the following theorem concerning the number of

solutions of equation (1).

Theorem 3. Let B be a bounded symmetric bilinear operator on E x E and

suppose that zo,y € E with 9 # y and y # 0.
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Assume:

(i) the point zo € E is such that
B(fLo) = I;

(i) the inequality (19) is true.

363

(26)

Then the elements v*,z*,z¢ — z* and zo — v* are solutions of equation (1)

with

¥ #xo—2"

and

v* # zo — V",

(27)

(28)

Proof. It follows by (i) that the hypotheses of Theorem 1 are satisfied.

That is z* is a solution of equation (1). By (ii) v* is a solution of equation (1).

For z = zog — =™ we have

y + B(z,z) =y + B(zo — 27,20 — z*) = y + B(x0,%0) — 2B(zo,2*) + B(z",z")

=z* + 29 —22" =20 — 2".

Similarly we show that zg — v* is a solution of equation (1).
Let us assume now that

*x*

29— 2" —z".

Then by (29) and (1) we have

1
z0 = 2y + B(z",2")) = 2(u+ 7 B(z0,20))

which implies
zg = 4y.
That is

%

2t = 2.

(29)

(30)

But then by (30) and (1) 2y = y + B(2y,2y) or 4||B||||lyll > 1 since y # 0
contradicting (ii). This shows (27). Similarly we show (28) and that completes

the proof of the theorem.
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We can show the following.

Proposition. Let B be a bounded symmetric bilinear operator on E X E
and suppose that z¢,y € E with z¢ # 0, 29 # y. Assume:
(i) The hypotheses of Theorem 1 are satisfied.
(ii) The inequality (19) is true.
(iii) The inequality
1 —2b(e —1g) — /1 — 4deb

2o = ol > . = R (31)

is true.

Then the solutions z* and v* obtained via Theorems 1 and 2 are distinct.

Proof. Assume that z* = v*. The solution z* is such that
|B(z*,2")|| = ||z* — ] (32)

and since R > rg, (32) gives

S NPy TR )

But then from (33) we deduce
lzo —yl| < R

contradicting (31).

That completes the proof of the proposition.

Note that under the hypotheses of Theorem 3 and the above proposition it
follows immediately that

o — ¥ # xo — V.

Remarks. (2) It can easily be seen that (6) and (7) can be replaced by the

weaker condition
|B(z0) ™' B|| < q. | (34)
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(b) If we know the constants a,b,c,d then we may compute the sequence
{t,}, n = 0,1,2,--- before obtaining the sequence {z,}, n = 0,1,2,--- via the '
iterative algorithm (2). Therefore the estimates on the distances ||z, — z”||
and ||Zn4+1 — Txl| obtained in Theorem 1 may be called apriori error estimates.
Moreover the convergence of iteration (2) to a solution z* of equation (1) is only

linear. Let us assume that the linear operator
To = (I -2B(z0))! (35)
exists for some z¢g € F and

(36)

N | =

ITo|| < bo, |ITo(zo — y — B(zo,o)l| < 70, ho = 2bo]|Bl|70 <

Then the Newton-Kantorovich iteration [7]
Zprr = Zn—(T=2B(2n)) " (2n—=y—B(2ns#n))y 1=0,1,2,:,20 =29 (37)
for solving (1) converges to a unique solution zj, of equation (1) in U(zo,TN)

with
N 1-— AV ;b—b 4bb0'l70 ' (38)
0

Moreover the order of convergence is quadratic. However we do not know if

||zn|| > p for a certain p € (p1,p2) Whenever ||z|| > p. That is, we do not know
if ||zx ]| 2 p or if 23 # v™.

It will be shown later that whenever the hypotheses of Theorem 1 are satis-
fied then the Newton-Kantorovich hypotheses (36) are satisfied also and z* = z},.

That is, if we choose zg = zp with ||zo|| > p, then

lznll 2P and 2y # o (39)

even if z, > p for some n, n = 0,1,2,---. Therefore in practice we will prefer to
use iteration (37) instead of (2) to find bounded away from zero solution z* of
_equation (1), since (37) converges faster than (2). However our main concern,
that is, the property (38) could only be proved through iteration (2) as the

following theorem indicates.
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Theorem 4. Under the hypotheses of Theorem 2 the Newton-Kantorovich
iteration (37) for zp = xo converges to a unique solution z} of equation (1) in

U(zo, BN) and z} = 2*. Moreover, if ||2]|| > p for a certain p € (p1,p2) then

lzxll = p, (40)

and
1 on
lzn — 28| < EE(QhO)- 1o, n=0,1,2,---.

Furthermore, the solution zy, can be written as zx = zo + h where h is a

solution of the quadratic equation
h =y, + Bi(h,h) (41)
with

y1 = (I —2B(z0)) ' (B(z0,20) +Y — 20) and B; = (I — 2B(zo))" ' B.

Proof. By the Banach lemma, the linear operator
B(l‘o)—l @I = (B((L‘o)_l = I) -1

is invertible since ||7]| - || — B(zo)"}|| £ ¢ < 1 and

” 1
I(Bao) ™ —2D)7H < ——.
—c
The equation (40) has a solution h if
AllBill < 4|7 4] [ -a| <1 2
vl Bl < l-c — (2]

which is true by (5). It can easily be scen now that w* = zy + A is a solution of
equation (1) if and only if A is a solution of equation (41). The linear operator

(I —2B(zp))~! exists since

(I = 2B(20))™" = (B(ao)™" = 2I)7! B(z) . (43)
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The Newton-Kantorovich hypotheses (36) are now satisfied and by the def-
inition of 7, (19) and (20) we deduce that z};, = w*. By the uniqueness of the -
solutions z* and zj in the balls U(zq,70) and U(zo,7n) it follows that zj = z*
(the balls have the same center).

The rest of the theorem follows from part (ii) of Theorem 2 and Theorem
11.3 in [[7] pp. 142].

All the results obtained in Theorem 2-3 and in the proposition can apply
to iteration (37). Note that the result (40) is not known not even for quadratic
systmes in IR", n > 1.

To cover the cases when B is not symmetric we can state the following

theorem whose proof as identical to that of Theorem 1 is omitted.

Theorem 5. Let B be a bounded bilinear operator on E X E suppose that
zo,y € E with z9 # 0, o # y. Further, let

@> ||B(zo)'Bll, b2 |[B(zo)"'(2B ~ B)l|, €2 ||B(z0)"'(2B — B)(0) - I,

and let A, B be defined as

1 @+ Do+2(@- e+ B+ {B(@+ D)o + 2@+ DI +4@+ D)o@~ 5))

2a-5)
5 1-¢
0 — a+—b'a
and
B = (147¢)(1-7)
~ 2a(c+3)
Assume:

(i) The inverse of the linear operator B(zg) : E — E with B(zo)(z) =
B(zg,z) for all z € E exists and is bounded;

(ii) The following estimates are true:
@>b,

Use<g 1,
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0<d<t—-A if a>b

and
0<d<%Hh~-B if a=b.
Then
(a) the real sequence {t,}, n = 0,1,2,--- given by
- B C+ bty —btpyr - -
ln = ln41 — = = ln—tn ) =0,1,2,-:-
ia AT #hs ®
h =B ## @6

and

tv=B if a=0»
is positive and decreasingly converges to zero.

(b) The sequence {z,}, n = 0,1,2,--- generated by (2) is well defined, re-
mains in U(zy,7p) and converges to a unique solution z* € U(zg, 7o) of equation
(1) with 7y = @~ 1.

Moreover, the following estimates are true for all n = 0,1, 2, ---
|znt1 = Za]l £ th —tny1  and lzn — z*|| < Tp.

Remarks similar to the ones made after the proposition can now easily follow
for Thoerem 5.

The results obtained in the next three examples can also be obtained through
the use of iteration (37). However we will only use iteration (2) for demonstra-

tional purposes.

3. Applications.

Example 1. Let E = R? and define a bilinear operator on E by

bi1n  b112
Bw,1) = § (wn,wn) |2 ][]

baa1  baao
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= (B(w))(v) =

i bhimwivr + bigrwevr Fbri2wive + biaswovs
ba11wivy + ba2a1wav1  +ba12wive + baoswavs

binnwr + bi21wy  biawy + biawa | | vy
ba1iwy + bag1wy  barawy + bagaw, | | vg

Consider the quadratic equation on E given by
w =y + B(w,w)

or equivalently

Wy = 8~ Bw% + 2wy wy — wg
1
wy = — — + w% = '211)1'(1)2 = ’UJ% (44)
48
where
binn = -3, byg1 = -1
b112 =1, byag = —1
I wy
b =1, y= [J] =)
b2 = — 1,
1
b —] = —
211 n 48
1
b = - 1, d P e
212 an Y2 48

For z € E, let ||z|| = max|z;|, ¢ = 1,2. Using the norm on L(F, F) one can
define the norm of B on E [10] by

2 2

||1B]| = sup maxzz

lzli=1 (9 j=1 k=1

T

Z bijrz

k=1

]

3 3 _

from which it follows at once that ||B|| < n(laix > > |bijk|- Let zo = [ 55,]
t) i=1k=1 e

With the above values it can easily be seen that B is a bounded, symmetric

operator on F and

1 1
B(zo) =1, e:d:”yl|=4—8, b=% d=1,0=10, To = 1o R = .08690776
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and
llzo — ¥|]| = .520833333.

According to Theorem 2 (i), equation (44) has a small solution v* € U(0,p;)

: : . _ [-.0200308] . : :
which can be found to be v* = [.0200308_ using the iteration (23) for vy for
vg = y. We took vg = v*. According to Theorem 1, equation (44) has a solution

[ —.5200308

in U(zo,10) which can be found to be 2* = | _ 5200308

} using the iteration (2)

for zo = [_'5]. We took 29 = z* Since ||zo — yo|| > R, it was known before

—-.5
actually computing v* and z* that z* # v*. Note however that z* — 29 — v*.
: . _ | —25 . : "
It can easily be seen that vy = [ 1318813 ] , is the third solution of (44).

Finally, the fourth solution z] of equation (44) is given by z} = z¢ — v}.
We have now found all four solutions of equation (44).

A more interesting example is given by the following.

Example 2. Consider the Riccati differential equation

z2(t) + 22(t)z(t) + %1 (1) - %—? = B DLt<T <L) (0 =0 (45)

As E takes Cy[0,T),, the space of all continuously differentiable function z = z(¢),
such that z(0) = 0, and as E take the space C[0,T] of all continuous real

functions. Let us equip the above spaces with the usual sup-norm. That is

|lz]| = sup |z(t)] for z € E (or E).
0<t<T

Equation (45) is a quadratic equation of the form (1) with B(z;,z,) =
B(z1)(z2) where B(z,) is a linear operator for fixed z; given by
TR
B(z1)(w)(t) = [‘(EQZ:I xlw} ()

- :exp [ /0 t2z(q)dq” /O tlexp [— /0 S2z(q)dq] z1(s)w(s)ds,

foralw e Fand 0 <t < T, and
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d
The linear operator == 2z is indeed invertible for all z € F, in fact, the

dt

u(t) = [exp [ /0 t?z(q)dq” /0 texp [- /0 s2z(q)dq] o(s)ds, 0<t<T,

where v € E for v € E. It can easily be seen that the bilinear operator B defined

above is bounded and symmetric. Using definition 3 we deduce for T = ,-;—,

= ;
inverse transformation v = [—— - 22] v has the explicit representation

1 9
|B|| = = sup |(1 - t*)in(1 - ¢*)| < .375 for z(5) = — -
2 o<t<T 1—¢2

9

1+1°
1-—t2

Take y;(t) = —.14
.07.

then easily, y(¢) = —.14t forall 0 < ¢t < T and ||y|| =

The condition (i) in Theorem 2 is now satisfied. Moreover if the condition
(ii) in Theorem 2 is satisfied for some z, then using iterations (2) and (23) we

can obtain the solutions z* and v*, respectively, with z* # v*.

Example 3. There are examples of interesting linear operators satisfying
condition (26). Indeed, with the notation of the previous example, let us define
a linear operator B(-) by B(v) = [£ — 22] = (v). Choose z as before and v(t) =
zo(?) = i—f% It can then easily be seen that B(zg)(t) = I(t) =tforall0 <t <
T, that is B(zo) = I. Therefore the differential equation %% — 22(t)u(t) = v(t),
u(0) = 0, has the unique solution u given by u(t) =¢,0<t < T.

Example 4. Consider the scalar equation = = § + B#z2 with §, b > 0 and
1—4606 > 0.

g 1+1—-488

Let us choose == < 29 <
0 28

1
IEO>-——

— 2[6,
26 + v/2(1 — 46p) -
268 ’

The condition 4, 5 and (21)

o
i)

become, respectively,
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zog >p for pe€ (p1,p2),

}— /T~ 408 14 /1 —A4808
h = 2/3 y P2 = 2ﬂ .

That is, zo must be chosen such that

26 + 2(1=43p) _ e JT =308
48 28 '

The large solution of the scalar quadratic equation can now be obtained using

iteration (2) for the above choice of zg.

(1]

(2]
(3]

[10]
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