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MEAN.VALUE CHARACTERIZATION OF

'USEFUL'INFORMATION MEASURES

U. S. BRAKER AND D. S. HOODA

Abstract. In the present communication the generalized mean value
characterization of'useful'information and relative information measures
has -been studied. Some comparison theorems related to these measures
have also been proved.

1. Introduction

Let (n; A, P) be a probability space of an experiment E with a finite mea­

surable partition of events {E1, E2, ... , En} (n > I) of n. Probabilities of these
events are given by p(Ei) = Pi > 0 for every Ei such that p E l:::.n, where

n
今i = {(p1,P2, · · ·,Pn); Pi > 0, ~Pi = I}. The different events Eis depend

i=l
upon the experiment's goal or upon some qualitative characteristic of the phys-
ical system taken into consideration, that is, they have different weights or util­
ities. In order to distinguish the events E1, E釣. . . ' 瓦 with respect to a given
qualitative characteristic of physical system taken into account, ascribe to each

event 瓦 a non-negative number u(Ei) = ui(> 0) directly proportional to its
importance and call ui, the utility of the event Ei. In general ui is independent
of Pi (seeLongo [5]).

Belis and Guiasu [2) characterized a quantitative-qualitative measure which
was called the'useful'information by [5] of the experiment E and is given as

ll(p;u) = H(p1,P2, ... ,pn;u1,u2, ... ,u』
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－立 LiPi log pi, Ui > 0, 0 < Pi :::; 1, 郢=1. (1.1)
i=l

The measure (1.1) has been studied and generalized for complete probability
distributions by many authors. v\Te consider the following two measures of'useful'
information for generalized probability distribution

P = {(P1,P2, ... ,Pn), Pk > 0 and LPk :S l},
k=l

which is the probability distribution of a generalized random variable having
utility distribution U = {(u1,u2, ... ,un), Ui > O};

I(P;U)

n 12 默Pklog一
k=l Pk

n
2 四Pk
k=l

(1.2)

n
where I: 四JJk is not necessarily ::; 1 and

k=l

九 (P;U)

n

1 L UkPk
k=1.. . ....

．I-a log n
2 默Pk
k=1

(1.3)

It may be seen that (1.3) reduces to (1.2) when a~1 and if utilities are

ignored i.e. Ui = I for each i, the measures (1.2) and (1.3) reduce to Renyi's
entropies of order 1 and a respectively. In section 2, we give mean value charac­
tcnzat10n of measures (1.2) and (1.3).

Further Taneja and Tutcja [9] considered two utility information schemes:-

E1 E2 En n
s JJ1 JJ2 Pn JJi > 0, Ui > 0, ~JJi = 1,

U1 U2 Un i=l

of set of n events after experiment and

E1 E2 En n
S* = q1 qz qn Qi> 0, Ui > 0, 芷 qi= 1,

U1 Uz 'lln i=l
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before experiment and characterized axiomatically a quantitative-qualitative me­
asure of relative information as given below:

n

I(PIQ; U) = L Uipdogpi/qi.
i=l

(1.4)

The measure (1.4) has been characterized and generalized for complete probabil­
ity distribution by various authors. Here we consider the following two measures
for P and Q posterior and priorior generalized probability distributions of an
experiment having utility distribution U.

I(PIQ;U)

n
I: UiPi log Pi/qi
i=l

n
2 叫Pi
i=l

(1.5)

and

I。(PIQ;U)

n

1
2 叭pf/qf-l—log i=l

Q'. - 1 n

2 叫Pi
i=l

a-:/ l. (1.6)

It may be noted that (1.6) reduces to (1.5) when a ---+ 1. In case utilities
are ignored, the measures (1.5) and (1.6) reduce to the information measures
characterized by Sharma [7]. Mean value characterization of measures (1.5) and
(1.6) has been studied in section 3. In section 4 we·derive some comparison
theorems.

2. Characterization of'Useful'Information Measures

By considering a set of postulates Renyi (6] characterized the following mea­
sure of information concerning event Ek having probability of occurrence as Pk·

I({Pk})
1

log—.
Pk

(2.1)

Let us deline W1., UkPk, = n , k = l 2 .. ·, ， ，n，
2 默Pk
k=l

(2.2)
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then mean value of (2.1) taking (2.2) as weights is

I(P;U)

n 12 默Pk log—
k=l Pk

n
E UkPk
k=l

which is (1.2). It may be been that (1.2) is weighted entropy when weights are
taken

n
2 叭Pk
k=l

Further we see that (1.2) satisfies the following postulates:

wk= UkPk k = 1, 2, ... , n.

Postulate 1. JI(P; U) is a symmetric function of the elements of P and U.

Postulate 2. If {p} and {u} denote the generalized probability distribu­
tions consisting of the single probability p, single utility u of an event E, then
JI({p}; {u}) is continuous funct of p and u for O < p :s; 1. It may be noted that
the continuity of JI({p},{u}) is supposed only for p > 0 but not for p = 0.

Postulate 3. Il({1/2}; {1}) = 1 and

H({l};{u}) = 0,

that is, the measure of'useful'information is unity when p = 1/2. and u = l and
no useful information is conveyed when p.

Postulate 4.

II(P*Q; U * V) JI(P; U) + II(Q; V),

where
n

P = {(P1,P2, · · ·,Pn); L扒 :s; 1},
i=l
m

Q = {(q1'q幻. . . ,qm); 芝 qj :s; 1}.
j=l
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U = {(u1,u2, ,un), Ui > O},

V = { (V1, V2, , Vm), Vj > 0},

P*Q = (p可1,P1 q2, ... , P凶m, ... ,p謹1, Pn q2 , · · ·, P謹m),

U*V = (u1叨 ，U1乓 ...'U1 Vm'...'Un殂 ，UnV2, ... , U訒m).

387

Postulate 5. There exists a continuous and strictly increasing function

y = g(x) defined for real x, such that, its inverse function is given by x = g-1(y).
If P = (p1 U P2 U ... U Pn) and U = (u1 U U2 U ... U Un), then

H(P;U) g-1

n
E UkPk9(l{pk})
k=l

n
2 默Pk
k=l

(2.3)

It is an open question which choices of function g(x) are admissible such that
postulate 5 is compatible with postulate 4. One form of g(x) clearly is g(x) =
ax+ b with a :/: 0, then tl·f1e m ormat10n measure sat1sfymg postulate 1 to 5 with
this form of g(x) will be (1.2).

Another choice of g(x) which is admissible is an expenential function. If
g(x) = g。位 ），where a > 0, a :/: 1 and g。(x) = 2<1-o)x. Then postulates 1 to 5

characterize the weighted entropy of order a. Thus we give the above result as

theorem given below:

Theorem 1. If II(P; U) is defined for all P = {(p1,J珌·•·,Pn); Pi > 0 and
~Pi~1} and U = { (u1, u2, ... , Un), Ui > 0} and satisfies the postulates 1 to 5
with'g(x) = g。(x) where g。(x) = 2(1-0-)x, a> 0 and a f 1, then

IIa(P; U)
1-o

1 log ，

\．
I
_
_

J

Ot
k

k

p

p

k

k

u

u

n
2
曰
n
2
日

a f= 1. (2.4)
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3. Characterization of'Useful'Relative Information Measures

Let P = {(P1,P2, ... ,Pn), Pk > 0 for k = 1, 2, ... , n and E 四 ~1} and
k=l

n
Q = {(q1,q2, ... ,qn), qk > 0 fork= 1,2, ... ,n and I: qk~1} be postenor

k=l
and priorior generalized probability distributions of a random variable in au

experiment. Let U = { (u1, u2, ... , un), uk > O} be utility distribution such that
Ui is only value or importance of event Ei in reference to some specific goal.

By considering a set of postulates Renyi [6] characterized the following mea­
sure of amount of information concerning an event Ek having posterior and pri­

orior probability as Pk and qk.

I({Pk}/{qk}) = log2~- (3.1)

Let us define 叭 ＝
UkPk
n k = 1, 2, · · ·, n as weights then (1.5) can be wntten
2 默Pk
k=l

as weighted amount of information as

n
E UkPk
k=l

It implies that (1.5) is nothing but weighted'useful'relative information.

I(P/Q; U)

n
L UkPk log2 Pk/qk
k=l

Now we assume that (1.5) satisfies the following postulates:

Postulate 6. I(P/Q; U) remains unchanged if the elements of P, Q and U
are rearranged in the same way so that one-one correspondance between them

is not disturbed.

Postulate 7. I(P/Q; U) is a continuous function of Pk, qk and Uk fork=

1,2, · · ·,n.

Postulate 8. I({ 1} / {1/2}; {1}) = 1

Postulate 9.

I(P * P'/Q*Q'; U * U') = I(P/Q; U) + I(P'/Q'; U'). (3.2)
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where

p * P'= (pip~,PIP;'... ,PIP~, ... ,PnP~,PnP;'... ,PnP~),

Q*Q'= (qi外 ，qi外 ，••·, q1 q:n, • · • , qn外 ，qn外 ，. . . , qnq:n), etc.

Postulate 10. There exists a continuous and strictly increasing function

y = g(x) defined for all real x such that its inverse function is given by x
g-l(y). If

P = (P1 U P2 U ... U Pn), Q (Qi U Q2 U . , , U Qn)

and U = (U1 U U2 U ... U Un), then

I(P/Q; U) g-1

n
2 叭Pkg(![{Pk} I {qk}])
k=l

n
~UkPk
k=1

(3.3)

where I({Pk}/{qk}) = log2~for all k = 1,2,·· ·,n.
qk

Next, we consider what possible choices of the function g(x) are compatible

with postulate 9. It follows from postulate 9 that for any ,\~0 andµ ~0 we

have
J(P* {Q->.} /Q* { Q一µ} ; U) = J(P/Q; U) +µ- A. (3.4)

Thus puttingµ- .,\ = y, we see that for an arbitrary real y, we have

n
2 四Pk
k=1

g-1

n 色2 默PkY(log2)
k=l qkg -1

n 座2 四Pk9(log2 + Y)
k=l qk

n
芷 四Pk
k=l

+ y. (3.5)

If t,k::Pk = Wk and log,;; = Xk, fork= I, 2, · · ·, n, (3.6)

，`then W1, W幻. . . ,Wn is a sequence of positive numbers such that~ 叭 ::: 1
k=l

and x1, x2, ... , Xn is any sequence of real numbers.
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On substituting (3.6) in (3.5) we have

g 一 1 [言Wkg(互 十 y)] = 9-l 启Wkg(xk)] + y. (3.7)

If

gy(x) = g(x + y), (3.8)

then (3. 7) can be expressed in the following form

g;t [言叭g,包 ）] = g-1 恰 叭g(xk)] (3.9)

It implies that g(x) and gy(x) generate the same mean value and this is possible
only if gy(x) is a linear function of g(x) refer (Theorem 8(3]) i.e. there exists
constants a(y) # 0 and b(y) such that

gy(x) = g(x+y)=a(y)g(x)+b(y). (3.10)

Without restricting the ge1ierality we may suppose g(O) = 0. Thus we obtain
b(y) = g(y) and

g(x + y) = a(y)g(x) + g(y). (3.11)

Since (3.11) is true for any x and y therefore we may interchange the roles of x
and y. Thus we get

g(x+y) = a(x)g(y)+g(x).

If x :-/ 0 and y :-/ O. then (3.11) and (3.12) together give

(3.12)

a(y) - 1
g(y)

a(x) - 1
g(x)

= K(say)

It implies

a(x) - l = J(g(x), (3.13)

for all real x. Two cases arise:
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Case (i). vVhen J(:;= 0, (3.13) gives a(x) == 1 and from (3.11) we obtain

g(x + y) = g(x) + g(y), (3.14)

which is Cauchy's functional equation and has the solution g(x) = ex, where

c f= O is a constant. In this case from (3.3) we have

I(P/Q; U)

n
2 默Pk log2 Pk－k=1 qk

n

2 叨Pi
,i=l

Cases (ii). ,rvhen [(f 0, the substitution of (3.13) into (3.11) yields

a(x + y) = a(x)a(y), (3.15)

for any real x and y.
Now (3.13) shows that a(x) is monotonic and so from (3.15) it follows that

a(x) is an exponential function and can be written in the following form:

a(x) = c2硏l)x,

where a > 0 (;/ 1) and c ;/ 0 are constants. It follows from (3.13) that

c2位-l)x _ 1
g(x) = --

(3.16)

(3.17)

On substituting (3.17) in (3.3) we obtain (1.6), thus we have proved a theorem:

Theorem 2. The useful relative information measures satisfying postulates

6 to 10 are only of the form given by (1.5) and (1.6).

4. Comparison Theorems

Let pa = (pf ,1珝 ，．．．，攽 ），滻 > 0 for a > 0, be the power distribution of p.
vVe shall derive a comparison result involving the useful information measure of

order a given by (1.3).
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(4.1)

With the usual notations the following inequality holds:

O'. 2::'forI(P0; U)~al。(P;U)

Theorem 3.

Proof. We have the inequality (refer Beckenbach and Bellman [2]; p.17)

(4.2)

.
Jag

.
'

0

b

1

.
J

i

a
1

b·J
n
2_­j

a
n
2
二iVI

ib

.
J

i

b

a

1

1
n
Vl
=l

n

2
=

i

i
g。l

for aj > 0 and 柘 > 0, with equality iff all a1s are equal.
Setting aj = p5-1 and bj = UjPj, 吁 Pi > 0 for each j, in (4.2) we get

n n
E UjPj E 叨P江 logp尸

1 j=l j=l
og n :::;

E UjPj
j=l

n
L UjPj
j=l

n

::;(a-1)芷 Ujp5logpj
i=l

n
E UjPj
j=l

log n
2 吩Pi
j=l

or

n

1
L UjPj
j=l

O:'- 1
log n~2_I(Pet; U).
L UjPj

O:'

j=l

or

or

I(per; U) ::; al。(P; U).

Hence the theorem is proved.

Let ua = (u1,u2, ... , 咩 ），碚 > 0 for a>J 0, be the power distribution of
U. Then (1.3) becomes

(4.3)

n

1 2 吋Pf
log j=l

1-o n
LU訪
j=l

I。(P; Ua)
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Now we shall obtain a comparison result involving'useful'information measure

of order a of power distribution 妒 and'useful'information meas~re JI(P; U) =
n

-2°' 一 1 E (Ujpj)°'logpj of type a:(> 0) s_tudied by Hooda and Tuteja [4].
j=l
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With usual notations the fol lowing inequality holds:Theorem 4.

(4.4)a> 0,s 瓦I。(P; U),
n

= 20一 1 芷吖呤
,i=l

JCl(P; U)

u。where

Proof. Setting ai = P';-1 and bi = uJpi, ui ,Pi > 0, in the inequality (4.2)
n n2 吋Pj L 吋PJ logp'J-1
j=l

log n~
j=l

2 吋Pi
j=l

n

2 吋PJj=l

we get

n
(a - 1) Z: 吋p'f logpi

j_=l
n

2 吋P'fj=l

n

2 吋P'J
log j=ln~
2 吋Pi
j=l

Or

n
-20(一iI: 畔p'J Iogpi

j=l
n

20 一IE 吋PJ
j=l

n

1 2 吋PJ
1 j=l
OCT

1-a o n 2:
Eu訪
j=l

or

I。(P; U0)~
I0(P; U)

－－u。

or

or
Jet (P; U) ::; 瓦 I。(P; ua),

which is (4.4). This completes the proof.

(4.5)

If Uj = 1 for each j, then

I。(P)~ 瓦 I。(P),

Corollary.
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n,_ .
where U。= 20一IL 武. This is a comparison result between Renyi's [6] entropy

,:=1
and the, generalized entropy studied by Sharma and Taneja [8].
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