COMPACT LIE GROUP ACTIONS ON ASPHERICAL $A_k(\pi)$ -MANIFOLDS¹

DINGYI TANG

Abstract. Let M be an aspherical $A_k(\pi)$ -manifold and π' torsion-free, where π' is some quotient group of π . We prove that (1) Suppose the Euler characteristic $\chi(M) \neq 0$ and G is compact Lie group acting effectively on M, then G is finite group (2) The semisimple degree of symmetry of $M N_T^s \leq (n-k)(n-k+1)/2$. We also unity many well-known results with simpler proofs.

1. Introduction and Preliminaries

A CW complex (resp. manifold) is called an aspherical complex (resp. aspherical manifold) if its covering space is contractible. An extremely important class of aspherical complexes is the class of the Eilenberg-MacLane spaces $K(\pi, 1)$. A well-known theorem of Cartan-Hadamard showed that if a cnnected complete Riemannian *n*-manifold M has sectional curvature $K_M \leq 0$, then the universal covering space of M is diffeomorphic to Euclidean space \mathbb{R}^n . Hence it is a $K(\pi, 1)$ -space with $\pi = \pi_1(M)$.

We will always assume that M is a compact connected oriented *n*-manifold unless otherwise stated. Whether or not there exists a non-trivial continuous map $f: M^n \to K(\pi, 1)$ for some group π is an extremely important problem. For instance, Gromov and Lawson have verified that if M is a spin manifold and

Received February 18, 1992; revised March 8, 1993.

¹ The resuts presented here are of a doctoral dissertation written under Professor H. T. Ku. The principal results of this dissertation will be published elsewhere.

there exists a map $f: M \to T^n$ of positive degree, then M does not admit a Riemannian metric with positive scalar curvature [5].

By an aspherical $A_k(\pi)$ -manifold, we mean a compact connected *n*-manifold M together with a continuous map $f: M \to K(\pi, 1)$ such that

$$f_*: H_k(M;Q) \to H_k(K(\pi,1);Q)$$

is non-trivial. Equivalently, we also can define an aspherical $A_k(\pi)$ -manifold by using cohomology, that is, the homomorphism

$$f^*: H^k(K(\pi, 1); Q) \to H^k(M; Q)$$

is non-trivial. Throughout this paper, we shall use these notations and the Alexander-Spanier cohomology with compact supports.

The group actions on the aspherical $A_k(\pi)$ -manifold M is a very important problem in topology and geometry. In 1943 [12], Montgomery and Samelson proved that if a compact Lie group acts transitively and effectively on the *n*-torus $T^n = M = K(Z \oplus \cdots \oplus Z, 1)$ (*n* copies of Z), (where f is the identity), then $G \cong T^n$, and G acts freely on T^n . Since then this problem has been investigated by many mathematicians such as Donnely-Schultz [4], Conner-Montgomery [3], H. T. Ku and M. C. Ku [8], [9], Scheon-Yau [13], etc. In this paper, we shall prove some new results concerning compact Lie group actions on aspherical $A_k(\pi)$ manifolds. As a by product, we are able to give new simple proofs for some well-known results.

Now, let G be a compact Lie group acting on M. Define the map $i: G \to M$ by i(x) = g(x) for every $g \in G$, where x is any fixed base point. Let $p: M \to M/G$ be the orbit map, and r the dimension of any principal orbit. If $f: M \to K(\pi, 1)$ is continuous, it is well known that $f_*i_*\pi_1(G) \subset$ center of π . Hence we can define the quotient group $\pi' = \pi/f_*i_*\pi_1(G)$. Let $\alpha: \pi \to \pi'$ be the quotient map.

Lemma 1.1. Let $f: M \to K(\pi, 1)$ be a continuous map. Suppose that π' is torsion free. Then there exists a continuous map

$$h: M/G \to K(\pi', 1),$$

396

such that $ph \simeq \alpha f$ (that is, ph is homotopic to αf), where $\alpha : K(\pi, 1) \to K(\pi', 1)$ is induced by $\alpha : \pi \to \pi'$. In particular

$$\alpha_* f_* H_i(M;L) = 0, \quad for \quad i > n-r,$$

where L is any integral domain.

Proof. By [4], $\pi_1(M/G) \cong [\pi(M)/i_*\pi(G)]/N$, where N is generated by a set of elements of finite order. Since π' is torsion-free, hence Ker $p_* \subset \text{Ker}(\alpha f)_*$, where

 $p_*: \pi(M) \to \pi_1(M/G)$. By [4], there exists a continuous map $h: M/G \to K(\pi', 1)$ such that $ph \simeq \alpha f$. Thus, $h_*p_* = \alpha_*f_*: H_*(M; L) \to H_*(K(\pi', 1); L).$

As $H_i(M/G; L) = 0$ for i > n-r, because dim M/G = n-r. The result follows. Observe that the conclusion of Lemma 1.1 remains true if π is torsion free. Then we have a map $h: M/G \to K(\pi, 1)$ such that $ph \simeq f$ and $f_*H_i(M; L) = 0$ for i > n-r.

Corollary 1.2. Under the hypotheses of Lemma 1.1, if $f_*i_*\pi_1(G)$ is finite, then

$$f_*H_i(M;Q) = 0, \quad for \quad i > n-r$$

In particular, this conclusion always holds if the action of G has a fixed point.

Proof. We have a fibre space

$$K(f_*i_*\pi_1(G),1) \to K(\pi,1) \xrightarrow{\alpha} K(\pi',1).$$

Since $f_*i_*\pi_1(G)$ is a finite group, $H_i(K(f_*i_*\pi_1(G), 1); Q) = 0$ for i > 0. Hence by the Vietoris-Begle mapping theorem, we have isomorphisms

$$\alpha_*: H_i(K(\pi, 1); Q) \simeq H_i(K(\pi', 1); Q), \text{ for } i \ge 0$$

This will imply the desired result by Lemma 1.1.

2. Toral Group Actions on Aspherical $A_k(\pi)$ -manifolds

Let $G = T^{l}$ be a toral group acting on a compact Poincaré duality space or a rational cohomology *n*-manifold M. Let E_{G} denote the universal space of Gand $M_{G} = E_{G} \times_{G} M$. Let $i: M \to M_{G}$ be the inclusion and $p: M \to M/G$ be the orbit projection as above. Following [11], for $z \in H^{s}(M/G;Q)$ and $w \in Im\{i^{*}: H^{n-s}(M_{G};Q) \to H^{n-s}(M;Q)\}$, the rational number

$$p(w,x) = \langle w \cup p^*(z), [M] \rangle$$

is called a characteristic number of the orbit map, where [M] denotes the fundamental homology class of M. If M is a smooth manifold, w is a product of Pontrjagin classes of M, and the action is smooth, then p(w, z) is simply the usual Pontrjagin number of the orbit map.

Lemma 2.1. (Ku-Ku [10]). Let $G = T^l$ act on a compact Poincaré duality *n*-space or a rational cohomology *n*-manifold M with finite robit types. Suppose $p(w,z) \neq 0$ for some w and $z \in H^s(M/G;Q)$. Then $H^s(F;Q) \neq 0$, where F = F(G, M) denotes the fixed point set.

Let $\pi' = \pi/f_*i_*\pi_1(G)$ as above.

Theorem 2.2. Let M be an aspherical $A_k(\pi)$ -manifold and π' torsion-free. Suppose that the Euler Characteristic $\chi(M)$ is non-zero, or $p(w, z) \neq 0$ for some w and z. Then

- (1) $k \leq n-r;$
- (2) There is a component F_0 of the fixed point set F = F(G; M) which is an aspherical cohomology $A_k(\pi)$ -manifold.

Proof. The fixed point set F is not empty because $\chi(F) = \chi(M) \neq 0$, or by Lemma 2.1 because $p(w, z) \neq 0$. Thus, from Corollary 1.2 we have

$$f_*H_i(M;Q) = 0, \quad \text{for} \quad i > n - r.$$

But $f_*: H_k(M; Q) \to H_K(K(\pi, 1); Q)$ is non-trivial because M is an aspherical $A_K(\pi)$ -manifold. Therefore, $K \leq n - r$. This proves (1).

To prove (2), let $F = \bigcup_{j=1}^{s} F_j$, where F_j 's are components of F, and let $f_j = f|F_j: F_j \to K(\pi, 1)$. By Smith theory, each component F_j is a cohomology manifold. Suppose that

$$F_j^*: H^k(K(\pi, 1); Q) \to H^k(F_j; Q)$$

is trivial for every $j = 1, 2, \dots, m$. We shall proceed to get a contradiction. From Lemma 1.1, there is a map $h: M/G \to K(\pi', 1)$ such that $hp \simeq \alpha f$. Let $u: F \to M$ and $v: F \to M/G$ be inclusions. Then

$$v^*h^* = (hv)^* = (hpu)^* = (\alpha fu)^* = \sum_{j=1}^m f_j^*\alpha^* = 0$$

in degree k. Since M is an aspherical $A_k(\pi)$ -manifold and $\alpha^* : H^k(K(\pi', 1); Q) \to H^k(K(\pi, 1); Q)$ is an isomorphism, hence

$$f^*\alpha^*: H^k(K(\pi',1);Q) \to H^k(M;Q)$$

is non-trivial. Let $\overline{y} \in H^k(K(\pi, 1); Q)$ be such that $f^*\alpha^*(\overline{y}) = y \neq 0$. Since $v^*h^*(\overline{y}) = 0$, from the exact cohomology sequence of the pair (M/G, F), there exists an element $y' \in H^*((M - F)/G; Q)$ such that $j'^*(y') = h^*(y)$, where j' is an inclusion. We have commutative diagram:

where j is the inclusion, and $\overline{p} = p|(M - F)$. Thus we have

$$\sum_{j=1}^{m} i_{j}^{*}(j^{*}\overline{p}^{*}y') = 0, \qquad (1)$$

because the top sequence above is exact, and

$$i^*(j^*\overline{p}^*y') = p^*j'^*y' = p^*h^*(\overline{y}) = f^*\alpha^*(\overline{y}) = y.$$

Hence $j^*\overline{p}^*y'$ is $H^*(B_G; Q)$ -free. But by the Borel Localization Theorem [14] we have

$$\sum_{j=1}^{m} S^{-1} i_j^* : S^{-1} i^* H_G^*(M;Q) \simeq S^{-1} H_G^*(F;Q),$$

where $S = H^*(B_G; Q) - \{0\}$. Hence $S^{-1}\Sigma i^*[j^*\overline{p}y'] \neq 0$, where $[j^*\overline{p}y']$ denotes the class of $j^*\overline{p}y'$ in $S^{-1}H^*_G(M;Q)$. But $S^{-1}\Sigma i^*_j[j^*\overline{p}y'] = 0$ by (1). This is a contradiction. Hence there exists at least one component F_0 of F such that

$$(f|F_0)^* : H^k(K(\pi, 1); Q) \to H^k(F_0; Q)$$

is non-trivial. Therefore F_0 is an aspherical cohomology $A_k(\pi)$ -manifold. If π is torsion free and $\chi(M) \neq 0$, a similar result is proved in [6].

Theorem 2.3. Let M be an aspherical $A_k(\pi)$ -manifold and π' is torsion free. Suppose that $\chi(M) \neq 0$, or $p(w, z) \neq 0$ for some w and z. If G is a compact Lie group acting effectively on M, then G is finite group.

Proof. Suppose G is not finite, then G contains a toral subgroup T^s , $s \ge 1$, and T^s still acts effectively on M. By hypothese, the action of T^s on M has nonempty fixed point set. Hence by Corollary 1.2, $f_*H_i(M;Q) = 0$ for i > n - r. On the other hand, $f_* : H_n(M;Q) \to H_n(K(\pi,1);Q)$ is non-trivial. This is contradiction because $r \ge 1$.

As an easy corollary we have the following result. The case $\chi(M) \neq 0$ is the main theorem of Conner and Montgomery in [3].

Theorem 2.4. Let G be a compact Lie group acting effectively on a closed connected aspherical manifold M with $\chi(M) \neq 0$, or $p(w, z) \neq 0$ for some w and z. Then G is finite.

If we define the degree of symmetry $N_T(M)$ of M as the supremum of the dimensions of all Lie groups which can act effectively on M. Then we have the following result from Theorem 2.3 and 2.4.

Theorem 2.5. Let M be an aspherical $A_k(\pi)$ -manifold and π' is torsion

400

free. Suppose that $\chi(M) \neq 0$. Then $N_T(M) = 0$. In particular, if M is an aspherical manifold with $\chi(M) \neq 0$, $N_T(M) = 0$.

3. Semi-Simple Degree of Symmetry

Suppose that M is a compact connected *n*-manifold. The semi-simple degree of symmetry $N_T^s(M)$ (resp. $N^s(M)$) of M is defined as the supremum of the dimensions of all compact semi-simple Lie groups which can act effectively (resp. effectively and smoothly) on M. The semi-simple degree of symmetry has an interesting connection with the Riemannian geometry, that is, if $N^s(M) \neq 0$, then M admits a Riemannian metric with positive scalar curvature [11].

Theorem 3.1. Let M be an aspherical $A_k(\pi)$ -manifold. If π' is torsionfree. Then $k \leq n - r$. Hence

$$N_T^s(M) \le (n-k)(n-k+1)/2.$$

Proof. Let G be a compact semi-simple Lie group acting effectively on M with dim $G = N_t^s(M)$. Since $\pi_1(G)$ is finite, so is $f_*i_*\pi_1(G)$. Hence $f_*H_i(M;Q) = 0$ for i > n-r. But $f_*H_k(M;Q) \neq 0$, hence $r \leq n-k$. Let G(x) be a principal orbit. Then dim $G(x) = r \leq n-k$. But the group acts effectively on G(x), hence

$$\dim G \le (n-k)(n-k+1)/2.$$

This gives the desired conclusion.

Let $N = K(\pi, 1)$. If N is a Riemannian *n*-manifold of negative curvature, and M, f are both smooth, Theorem 3.1 in this special case was proved by Scheon and Yau in [13]. In [4], Donnelly and Schultz remove the smoothness condition. The general case with π torsion-free was proved in [9]. A similar result for paracompact space M and π torsion-free was proved by Berstein in [1].

Theorem 3.2. Let M be an asperical $A_k(\pi)$ -manifold with $N_T^s(M) = 0$. Suppose π' is torsion-free, $N_T(M) \neq 0$ and $\chi(M) \neq 0$. Then

$$N_T(M) \le \min(n-k, [n/2])$$

Proof. Since $N_T^s = 0$, let T^s act effectively on M, where $s = N_T(M)$. Since $\chi(M) \neq 0$, $F(T^s, M) \neq \emptyset$. Again, by using Corollary 1.2 we can verify that $k \leq n-r$. But for an effective toral group action, the principal isotopy subgroups are finite, hence r = s. It follows that $s \leq n-k$. Since $F \neq \emptyset$, from a result of H. T. Ku [6], we also have $s \leq \lfloor n/2 \rfloor$. This proves the theorem. A similar result was also proved in [9] under the following hypotheses: M aspherical $A_k(\pi)$ -manifold, $N_T^s(M) = 0$, $N_T(M) \neq 0$, $\chi(M) \neq 0$, $\pi_1(M)$ abelian and π torsion-free.

References

- I. Berstein, "On Covering space and Lie group actions", Contemporay Math., 37 (1985), 11-13.
- [2] W. Browder and W. C. Hsiang, "G-actions and fundamental group", Invent. Math., 65 (1982), 411-424.
- [3] P. E. Conner and D. Montgomery, "Transformation groups an $K(\pi, 1)$ ", I. Michigan Math., J. 6 (1059), 405-412.
- [4] H. Donnelly and R. Schultz, "Compact group actions and maps into aspherical manifolds", Topology, 21 (1982), 443-455.
- [5] M. Gromov and H. B. Lawson, "Spin and scalar curvature in the presence of a fundamental group", I, Ann. of Math., (2) 111 (1980), 209-230.
- [6] H. T. Ku, "Group actions on aspherical $A_k(\pi)$ -manifolds with non-zero Euler characteristics", Proc. Amer. Math. Soc., 90 (1984), 459-462.
- [7] H. T. Ku, "A generalization of the Conner inequalities", Proc. Conf. Transformations Groups, Springer-Verlag, Berlin and New York, (1968), 401-414.
- [8] H. T. Ku and M. C. Ku, "Group actions on $A_k(\pi)$ -manifolds", Trans. Amer. Math. Soc., 245 (1978), 469-492.
- [9] H. T. Ku and M. C. Ku, "Group actions on aspherical $A_k(\pi)$ -manifolds", Trans. Amer. Math. Soc., 278 (1983), 841-859.
- [10] H. T. Ku and M. C. Ku, "The Pontrjagin numbers of an orbit map and generalised Gsignature theorem, transformations groups", *Lecture Notes in Math.*, 1375 (1989), 198-206.
- [11] H. B. Lawson and S. T. Yau, "Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres", Comment. Math. Helv., 49 (1974), 232-244.
- [12] D. Montgomery and Samelson, "Groups transitive on n-dimensional torus", Bull. Amer. Math. Soc., 49 (1943) 455-456.

[13] R. Scheon and S. T. Yau, "Compact group actions and the topology of manifolds with non-positive curvature", Topology, 18 (1979), 361-380.

Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA 01003, U. S. A.