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COMPACT LIE GROUP ACTIONS ON
ASPHERICAL Ak(ﬂ')-MANIFOLDS1

DINGYI TANG

Abstract. Let M be an aspherical A;(r)-manifold and #’ torsion-free,
where 7’ is some quotient group of . We prove that (1) Suppose the Eu-
ler characteristic x(M) # 0 and G is compact Lie group acting effectively
on M, then G is finite group (2) The semisimple degree of symmetry of
M Nz < (n—Fk)(n—-k+1)/2. We also unity many well-known results
with simpler proofs.

1. Introduction and Preliminaries

A CW complex (resp. manifold) is called an aspherical complex (resp.
aspherical manifold) if its covering space is contractible. An extremely impor-
tant class of aspherical complexes is the class of the Eilenberg-MacLane spaces
K(m,1). A well-known theorem of Cartan-Hadamard showed that if a cnnected
complete Riemannian n-manifold Af has sectional curvature Kj; < 0, then the
universal covering space of A is diffeomorphic to Euclidean space R™. Ience it
is a K (m,1)-space with 7 = m; ().

We will always assume that M is a compact connected oriented n-manifold
unless otherwise stated. Whether or not there exists a non-trivial continuous
map f: M"® — K(=,1) for some group 7 is an extremely important problem.

For instance, Gromov and Lawson have verified that if M is a spin manifold and
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there exists a map f : M — T™ of positive degree, then M does not admit a
Riemannian metric with positive scalar curvature [5].
By an aspherical Ag(7)-manifold, we mean a compact connected n-manifold

M together with a continuous map f : M — K (m,1) such that
fo: Hi(M;Q) — H(K(7,1);Q)

is non-trivial. Equivalenﬂy, we also can define an aspherical Ax(7)-manifold by

using cohomology, that is, the homomorphism
f*HYK(7,1);Q) —» H*(M;Q)

is non-trivial. Throughout this paper, we shall use these notations and the
Alexander-Spanier cohomology with compact supports.

The group actions on the aspherical A(7)-manifold M is a very important
problem in topology and geometry. In 1943 [12], Montgomery and Samelson
proved that if a compact Lie group acts transitively and effectively on the n-torus
T" =M = K(Z®---® Z,1) (n copies of Z), (where f is the identity), then
G = T™, and G acts freely on T™. Since then this problem has been investigated
by many mathematicians such as Donnely-Schultz [4], Conner-Montgomery (3],
H. T. Ku and M. C. Ku [8], [9], Scheon-Yau [13], etc. In this paper, we shall prove
some new results concerning compact Lie group actions on aspherical Ag(n)-
manifolds. As a by product, we are able to give new simple proofs for some
well-known results.

Now, let G be a compact Lie group acting on M. Define the map ¢ :
G — M by i(z) = g(z) for every g € G, where z is any fixed base point. Let
p: M — M/G be the orbit map, and 7 the dimension of any principal orbit. If
f:M — K(m, 1) is continuous, it is well known that f,:,7(G) C center of .
Hence we can define the quotient group 7' = 7/ f.i.m(G). Let o : 7 — 7' be

the quotient map.

Lemma 1.1. Let f : M — K(=,1) be a continuous map. Suppose that =’

is torsion free. Then there ezists a continuous map

h:M/G— K(x',1),
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such that ph ~ af (that is, ph is homotopic to af), where

a: K(r,1) — K(x',1) is induced by o : @ — ©'. In particular
a;f,.II,-(AI;L) =0, for i>n—r,

where L is any integral domain.

Proof. By [4], m(M/G) = [7(M)/i.7(G)]/N, where N is generated by a
set of elements of finite order. Since 7’ is torsion-free, hence Ker p. C Ker (af).,
where
p. (M) — m(M/G). By [4], there exists a continuous map
h:M/G — K(n',1) such that ph ~ af. Thus,
hupe = 0ufs : Ho(M;L) — Ho(K(x',1); L).

As H;(M/G;L) = 0fori > n—r, because dim M /G = n—r. The result follows.
Observe that the conclusion of Lemma 1.1 remains true if 7 is torsion free. Then
we have a map h : M/G — K(=,1) such that ph ~ f and f.H;(M;L) = 0 for

1>n-—r.

Corollary 1.2. Under the hypotheses of Lemma 1.1, if f.i.71(G) is finite,
then
feH;(M;Q)=0, for i>n-—r

In particular, this conclusion always holds if the action of G has a fized point.

Proof. We have a fibre space
K(fuium1(G),1) = K(x,1)SK(x',1).

Since f.i.m1(G) is a finite group, H;(K(f.i.m1(G),1);Q) = 0 for ¢ > 0. Hence

by the Vietoris-Begle mapping theorem, we have isomorphisms
a, : Hi(K(7,1);Q) ~ H;(K(x',1);Q), for >0

This will imply the desired result by Lemma 1.1.
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2. Toral Group Actions on Aspherical Ax(7)-manifolds

Let G = T' be a toral group acting on a compact Poincaré duality space or
a rational cohomology n-manifold M. Let Fs denote the universal space of G
and Mg = Eg Xg M. Let i : M — Mg be the inclusion and p : M — M/G
be the orbit projection as above. Folibwing [11], for = € H*(M/G;Q) and
w € Im{i* : H**(M¢g;Q) —» H""°(M;Q)}, the rational number

p(w,z) = (wU p*(2),[M])

is called a characteristic number of the orbit map, where [M] denotes the fun-
damental homology class of M. If M is a smooth manifold, w is a product of
Pontrjagin classes of M, and the action is smooth, then p(w,z) is simply the

usual Pontrjagin number of the orbit map.

Lemma 2.1. (Ku-Ku [10]). Let G = T' act on a compact Poincaré duality
n-space or a rational cohomology n-manifold M with finite robit types. Suppose
p(w,z) # 0 for some w and z € H*(M/G;Q). Then H*(F;Q) # 0, where
F = F(G, M) denotes the fized point set.

Let 7' = 7/ f.i.m1(G) as above.

Theorem 2.2. Let M be an aspherical Ay(7)-manifold and ' torsion-free.
Suppose that the Euler Characteristic x(M) is non-zero, or p(w, z) # 0 for some
w and z. Then
(1) k<n-r; ,

(2) There is a component Fy of the fized point set F = F(G; M) which is an
aspherical cohomology A(7)-manifold.

Proof. The fixed point set F is not empty because x(F) = x(M) # 0, or
by Lemma 2.1 because p(w, z) # 0. Thus, from Corollary 1.2 we have

fH(M;Q)=0, for i>n-r.

But f.: He(M;Q) — Hg(K(m,1);Q) is non-trivial because M is an aspherical
Ag(m)-manifold. Therefore, ' < n — r. This proves (1).
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To prove (2), let F = U;_, F;, where F;’s are components of F, and let
fi = fIFj : Fj = K(m,1). By Smith theory, each component Fj is-a cohomology
manifold. Suppose that |

F7: HY(K(7,1);Q) — H*(F;;Q)

is trivial for every j = 1,2,---,m. We shall proceed to get a contradiction.
From Lemma 1.1, there is a map h : M/G — K(n',1) such that hp ~ af. Let
v:F — M and v: F - M/G be inclusions. Then

3

v*h* = (hv)* = (hpu)* = (afu)” Z ot =0

in degree k. Since M is an aspherical Ai(7)-manifold and o* : H*(K(7',1);Q)
— HF(K(m,1);Q) is an isomorphism, hence
fro* : HY(K(r',1);Q) » H*(M; Q)

is non-trivial. Let ¥ € H*¥(K(7,1);Q) be such that f*a*(¥) = y # 0. Since
v*h*(y) = 0, from the exact cohomology sequence of the pair (M/G, F), there
exists an element y' € H*((M — F)/G; Q) such that j"*(y') = h*(y), where j' is

an inclusion. We have commutative diagram:

Ei;
HE(F;Q) —— HE(M;Q) ’ HE(M - F;Q)

HY(M;Q) £ H(M/G;Q) < H*(M - F;q)

where j is the inclusion, and p = p|(M — F). Thus we have

Zz (7*P*y') =0, (1)
because the top sequence above is exact, and

i*(j* I) e * I*yl it p*h*(g) — *a*(y) —; y
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Hence j*p*y’ is H*(Bg;Q)-free. But by the Borel Localization Theorem [14] we
have

> 87N ST HE(M; Q) = ST HE(F;Q),

i=1

where § = H*(Bg; Q) — —{0}. Hence S~1Z:i*[5*py'] # 0, where [j*Py’] denotes
the class of j*py’ in STVHEL(M;Q). But §71X43[5*py’'] = 0 by (1). This is a

contradiction. Hence there exists at least one component Fy of F' such that
(fIFo)" : HE(K (7, 1);Q) — H*(Fo; Q)

is non-trivial. Therefore Fy is an aspherical cohomology A(7)-manifold. If 7 is

torsion free and x(M) # 0, a similar result is proved in [6].

Theorem 2.3. Let M be an aspherical Ay(m)-manifold and 7' is torsion
free. Suppose that x(M) # 0, or p(w, z) # 0 for some w and z. If G is a compact
Lie group acting effectively on M, then G is finite group.

Proof. Suppose G is not finite, then G contains a toral subgroup 7, s > 1,
and T°* still acts effectively on M. By hypothese, the action of T° on M has non-
empty fixed point set. Hence by Corollary 1.2, fuHi(M;Q) = 0fori > n —r.
On the other hand, f. : H,(M;Q) — H,(K(r,1);Q) is non-trivial. This is

contradiction because r > 1.

As an easy corollary we have the following result. The case x(M) # 0 is the

main theorem of Conner and Montgomery in [3].

Theorem 2.4. Let G be a compact Lie group acting effectively on a closed
connected aspherical manifold M with x(M) # 0, or p(w, z) # 0 for some w and
z. Then G 1is finite.

If we define the degree of symmetry N7(M) of M as the supremum of the
dimensions of all Lie groups which can act effectively on M. Then we have the

following result from Theorem 2.3 and 2.4.

Theorem 2.5. Let M be an aspherical Ak(w)-mahifold and 7' is torsion
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free. Suppose that x(M) # 0. Then Np(M) = 0. In particular, if M is an
aspherical manifold with x(M) # 0, Np(M) = 0.

3. Semi-Simple Degree of Symmetry

Suppose that M is a compact connected n-manifold. The semi-simple degree
of symmetry N7(M) (resp. N°(M)) of M is defined as the supremum of the
dimensions of all compact semi-simple Lie groups which can act effectively (resp.
éﬁ"ectively and smoothly) on M. The semi-simple degree of symmetry has an
interesting connection with the Riemannian geometry, that is, if N°(M) # 0,

then M admits a Riemannian metric with positive scalar curvature [11].

Theorem 3.1. Let M be an aspherical Ax(7)-manifold. If ' is torsion-
free. Then k < n—r. Hence

N3(M) < (n— k)(n -k +1)/2.

Proof. Let G be a compact semi-simple Lie group acting effectivély on
M with dim G = N{(M). Since m(G) is finite, so is f.i.m(G). Hence
foH;(M;Q)=0fori>n—r. But fLH,(M;Q)# 0, hence r < n—k. Let G(z)
be a principal orbit. Then dim G(z) = r < n — k. But the group acts effectively
on G(z), hence
dimG < (n—k)(n -k +1)/2.

This gives the desired conclusion.

Let N = K(m,1). If N is a Riemannian n-manifold of negative curvature,
and M, f are both smooth, Theorem 3.1 in this special case was proved by
Scheon and Yau in [13]. In [4], Donnelly and Schultz remove the smoothness
condition. The general case with 7 torsion-free was proved in [9]. A similar

result for paracompact space A and 7 torsion-frce was proved by Berstein in [1].
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Theorem 3.2. Let M be an asperica’l Ag(m)-manifold with N3(M) = 0.
Suppose w' is torsion-free, Ny(M) # 0 and x(M) # 0. Then

Nr(M) < min(n - k, [n/2])

Proof. Since Ni = 0, let T act effectively on M, where s = Np(M).
Since x(M) # 0, F(T*,M) # 0. Again, by using Corollary 1.2 we can verify that
k < n—r. But for an effective toral group action, the principal isotopy subgroups
are finite, hence r = s. It follows that s < n—k. Since F # 0, from a result of H.
T. Ku [6], we also have s < [n/2]. This proves the theorem. A similar result was
also proved in [9] under the following hypotheses: M aspherical Ax(7)-manifold,
Ni(M) =0, Np(M) # 0, x(M) # 0, m (M) abelian and 7 torsion-free.
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