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GEODESIC TUBES ON LOCALLY SYMMETRIC SPACES

B. J. PAPANTONIOU*t

Abstract. In this paper we state and prove a characteristic relation
which exists, between the eigenspaces of the Ricci transformation
R(N, -)N acting on the orthocomplement space of N in TmM where
m E M, M being a locally symmetric space, and the Weingarten map
SN of small enough geodesic tubes of M.

1. Introduction

It is an interesting problem to see how the properties of geodesic tubes
on a Riemannian manifold (M,g) determine the geometry of the ambient space

(M,g). This problem has been recently treated in [12] and [13] with (M,g) being

a space of constant curvature and a space of constant holomorphic sectional cur­
vature respectively. Similar problems have also been studied earlier, by using the
properties of small geodesic spheres, in several papers, see for example [1], [7],
l8], [9], [10], 回. The proofs of the latest papers are based on a significant rela­
tion which exists, between the eigenspaces of the Ricci transformation R(N, -)N
acting on {N}J_ and the Weingarten map 邸 of small enough geodesic spheres

of the space, where N is a unit tangent vector field along a geodesic starting

from the centre of the sphere.
In this aspect, we give a corresponding result for geodesic tubes of a locally
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symmetric space, by using Fermi coordinates, Fermi vector fields and a mce

relation which exists between them.
In the second section we give the definitions of Fermi coordinates and Fermi

vector fields, some basic properties and the definition of the tubes and tubular
hypersurfaces of a Riemannian manifold. In the third section we state and prove

our main result in Theorem 3.1.

2. Preliminaries

Let (M, g) be an n-dimensional connected C00 Riemannian manifold, v'its
Riemannian connection and

Rxy=[v'x,'\兮］－立X,YJ (2.1)

its curvature transformation.

Let a : (a, b) -+ M; a, b E R be a curve of finite length of M. To describe

the geometry of a Riemannian manifold M in the neighbourhood of a curve a

we use Fermi coordinates. E. Fermi introduced these coordinates in [3) and soon
utilized by Levi-Civita and L. Eisenhart in the 1920's. We give now some useful
definitions and properties, following closely (5) and [6]. To define a system of
Fermi coordinates we need, an open neighbourhood of U = U(a) of a, for which
every point of U can be joined to a by a shortest unit-speed geodesic, meeting
a orthogonally and it is assumed that it contains no focal points of a. Further,

we need an orthonormal frame field {E1, ... , En} along the curve a, which may

be a geodesic of M. Let m = a(O) and a(t) = E1lu(t)·

Definition 2.1. The Fermi coordinates (x1, ... , xn) of U centered at m =

C!(O), relative to a given orthonormal frame field {£1, ... , En}, along the curve

C! for which a(t) = E1l(7(t), are the real-valued functions defined by

x1 (expu(t) 户 問u(t)) = t (2.2)
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x; (expu(t)严lu(t)) = t;, 2 :,'. i :,'. n (2.3)

provided that the numbers t2, ... , tn are small enough so that expu(t) to be a

diffeomorphism.
Since expu(t) is a diffeomorphism on U the equations (2.2) and (2.3) define

a coordinate system near m. Let {幸 ，．．．，走 } be the coordinate vector fields
associated with the Fermi coordinate system (X1, ... , xn).

Lemma 2.1. If (x1, ... , xn) is a system of Fermi coordinates centered at

m E er, the,,;, the restrictions to er of the coordinate vector fields

8 8, ，. . . 一
8x2'8xn

(2.4)

are orthonormal.

Lemma 2.2. Let I be a unit-speed geodesic of 11.f normal to a with 1(0) =
m = a(O) and let u = 引(O). Then there is a system of Fermi coordinates

(x1, ... , xn) such that for smalls we have:

｀） ＝引(s)
'Y(s)

(2.5)

and (矗）m = (<T(t))m, (立）m = [<T(t)]上 ， i = 2, · · ·, n. (2.6)

Furthermore,

(xa 。,)(s) = sfJ;

for 1~a ::; n where b is the I(ronecker symbol.

(2.7)

For proofs of these lemmas sec for example [5).

Let X(U) be the Lie algebra of C00 vector fields on U.'vVe introduce acer­
tain finite dimensional Abelian subalgebra of the infinite dimensional Lie algebra.

項U).
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Definition 2.2. Let (x1, ... , Xn) be a Fermi coordinate system of U = U(a)
relative to the orthonormal frame field {E1, ... , En}." We say that XE 湞U) is
a Fermi vector field relative to (x1, ... , xn) provided

8

瓦
Ct

n
V]
『

＝x (2.8)

where the c/s are constants.

We define now two other simple but basic objects, sand Nin terms of Fermi
coordinates, since they will be needed in the following.

Definition 2.3. Let (x1, ... , 五 ）be a system of Fermi coordinates for
U = U(a). For s > 0 we put

n

S2 = 芷 吋
i=2

n
and N ==芷 五 - ~

s
i=2

{)xi. (2.9)

For m E CJ it is easily proved that the definitions of s and N are independent of
the choice of Fermi coordinates at m. In fact form'E M near CJ, s(m') = d(m', CJ)

where d is the distance function of M. Furthermore,

N-n,> = (亡）,(,) = 引(s), s > 0 (2.10)

where , is the unique geodesic from m'to a which meets a orthogonally at
m = ,(0).

In what follows we assume that a is also a geodesic of Mand put A= 8
冨·

The most importance properties of s and N and Fermi vector fields are included
in the following:

Lemma 2.3. [5]. Let X be a Fermi vector field for U = U位）and A, N, s
as previously. Then we have:

1. v7NN = 0

2. g(N,N) = l

3. N(s) = l

4. A(s) = 0 7. [N, sX] == X(s)N
5. [X, A] = [N, A] = 0 8. V令Z = R(N, Z)N

1 1
6. [N,X] = --X + -X(s)N

s s
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for any Z = A + sX.
I巨 is curve and Y is a vector field along 1, write Y'= V'Y,Y and Y" =

兑Y. Then we have,

Definition 2.4. A vector field Y along a geodesic 1 is called a Jacobi field
if it satisfies the following second order differential equation:

Y" = R(引，Y)引 (2.11)

It is now understood that the vector field Z, in relation (8) of Lemma 2.3, is a
Jacobi vector field. Moreover, if, is a geodesic normal to (1 at m = (1(0) and
X is a Fermi vector field on U = U((!), then the restrictions to, of A and sX
are also Jacobi vector fields, as one easily concludes it from the relation (8) of

Lemma 2.3.
Therefore, we come to the following.

Lemma 2.4. Let Xt = ( 式 ），i = 1; 3, · · ·, n be the coordinate Fermi fields
relative to the Fermi coordinate system (x1, ... , xn) of U = U((1), then the fields

Y1(s) = x;(s) = ( 。瓦） ， (2.12}
汩

=sX缶 ）= s (正）,(,) ,. . . ,Yn(s) = sX詎 ）=s(立）,(,)玲 (s)

are Jacobi vector fields along the geodesic ; .

Let a : (a, b) ---+ M be a curve of finite length (a may also be a geodesic), of

a Riemannian manifold (M,g). We give now the definition of a tube about the

curve a.

Definition 2.5. A (solid) tube of radius s~0 about a curve a is the set
of points of 1'1 given by

T(a,s) = {expc,(t) XIX E Mu(t),g(X,X) = l,g(X,iT(t)) = O,a < t < b} (2.13)

where Mu(t) denotes the tangent space of M at the point a(t).
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For small s > 0, we c詛 the hypersurface of the form

Ps = {m'E T(a,s)/d(m',a) = s} (2.14)

the tubular hypersurface at distance s form a, or just Tube. If a is a geodesic
of .A1, then the corresponding tubes are called geodesic tubes. The vector field
N now is the unit normal to each of the tubular hypersurfaces s =const., about
the curve a of .i\1.

3. Geodesic Tubes and the Main Result

Let (M, g) be a Riemannian manifold of dimension n > 2 and let U be an
open neighbourhood of a point min M. Let a be a geodesic of M a.nd Ps the
geodesic tube of radius s about a contained in the open neighbourhood U. We
always assume that the radius s of Ps is less than the distance of a to its nearest

focal point. Assume that m = a(O). Let m'E Ps and , = ,(s) be the geodesic
of ./J.1 containing m'belonging in U and meeting a orthogonally at m = a(O).

Suppose that , : (-r, 1·) 一 U, is parametrized by its arc length and 1(0) = m.
Choose an orthonormal basis {E1, ... , En} for the tangent space Mm such that

趴 = a'(O), E2 = ,'(O) and let {xi}, i = 1, · · ·, n be the corresponding Fermi
coordinate system on Ps. The unit tangent vector field to geodesic rays from m
on U - a is then N given by (2.9), where s denotes the geodesic distance from

m. Choose the nonzero vector Wm =立~3 ai(8/Bxi)m normal to 比 =N而

Let 品 ＝訖 and X2 =立~3 ais(EJ/Bxi) on U.

Lemma 3.1. On 1 - {m}, we have:

i) [Xi,N) == 0, ii) R(N,)C)N =蝶x·i, i= 1,2 (3.1)

Proof. The proof of (ii) is a consequence of Lemma 2.3, so we will only
prove that [X2, N] = 0. Ily Lemma 2.3 relation (7) we get

[N,X2] = [N, t,a,s(8/缸 ）] = (t, a, ( 矗 ））N,
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，`

but since
s2 芷 吐

i=2
we get

8s Xi
OXi s

Therefore,

[N, X2] （江~) N
i=3

But on, - {m}, by the definition of Fermi coordinates~「~3 aiXi = 0. Hence

we proved that
[N, X2] = 0.

From this Lemma one immediately concludes that

VxjN = 霹Xi, i= 1,2 (3.2)

on 1 - {m}.
Consider, now, the vector fields)~, i = 1, 2 on , defined by

n a
Y山位）＝（矗 ） ，Y2I,位）＝計 u(—) >k)' 一 r < u < r. (3.3)

"f((7) OXi

As a consequence of Lemma 3.1 we will have:

Vy; N = 霹Yi, i= 1,2 (3.4)

on, - {m}, and, by continuity,

R(N, Yi)N =蝶Yi on 1, i = l, 2

where N = e2 and {e1, ... , en} is the parallel translation of {E1, ... , En} along

,.
From the above analysis it is clear that~, i = 1, 2 are Jacobi vector fields

along , for which

(I) { 玠(0) = E1
Y{(O) = 0 ,

(II) { 坯(0) = 0
Y{(O) = Wm

(3.5)
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In particular l'i, i = 1, 2 are normal to e2 = N and for any point q on I the
subspace of M9 normal to (e2)9 is forme~by evaluation all such Jacobi vector
fields at q.

Write now SN = -VN. For any geodesic tube Ps in U about a, the
restriction of SN to tangent vectors to Ps is just the ,veingarten map with
respect to N as unit normal vector·:field.

Proposition 3.1. lVe have:

i) SN~::: 一嶧 }~

ii) R(N, ~)N::: S訌 -(VN鈺）~'i= 1,2

、
丿

、
丿

6

7

．

．

3

3

,'
＼

(

for all vector fields~, i = l, 2 orthogonal to N, along 1.

Proof.

i) From the definition of the "'eingarten map (shape operator) and the
relation (3.4) we have:

S邳 =-VY;N = -VN~, i = 1,2.

ii) First, let~be a Jacobi vector field as above, then along , - {m} we
have:

R(N,Yi)N = v'Nv'v;N = -v'N(S江 ）= -SN霹 }i - (v'N邸）l'i

= -SNv7Y;N-(v7N鈺）l'i= 緣J'i - (v7N邸）l'i.

Now, since R(N, -)N, S令 and v7N邸 are tensorial, from the above remarks it
is valid for arbitrary vector fields Y on U - u, where we note from the definition
of SN that

鈺N=_;.VNN=O

By continuity now the result is valid at m.

We state and prove now the ma.in result.

(3.8)

Theorem 3.1. Let m be a point in a R·,emannian loally symmetric space
!vi of dimension n > 2. Then m has a neighbourhood U such that, for each
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unit vector Nm E A!m and corresponding geodesic 1, the parallel translate of an
eigenspace of the linear map R(Nm, -)Nm along 1, is contained in -an eigenspace
of the lVeingarten map 緑 for each geodesic tube in U about a given geodesic

u, passing from m and meeting 1 orthogonally at m.

Proof. Let Atf be a Riemannian locally symmetric space and m E A!.

Following the same notation, as previously, suppose that E1 and l1Vm satisfy

R(Nm, 趴）Nm= kE1 and R(Nm, l¥r.i) = kl¥m, k ER. (3.9)

Since M is locally symmetric v7 R = 0, or R(N, -)N is parallel along,, hence

a
R 仔 矗）N =k瓦 and R(N, W)N = kW (3.10)

Let Yi, i = 1, 2 be the Jacobi vector fields on, satisfying (3.5).
Consider the vector field Ji晨; . \Ve are interested for those functions Ji

for which this vector field is a Jacobi vector field along,, with the same initial

conditions (3.5-1) as Y1. So, we will have:

(ti矗）m = E, , or /1 (0) = I

(ti正）~=0, or 且 (0) = o.
(3.11)

Moreover,

R (N,ft矗）N= f,R 仔 矗）N = kl,矗

vjv (1i正）= ! ;'矗
and

Hence,
J{'= k. Ji. (3.12)

with initial conditions (3.11).
It is now easy, this equation to be solved explicitly and get

f心 ）＝ 仁 ：｛霏 ：！［
1, ·if

o
o
o

＞

＜
＝

k
k
k

(3.13)
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Therefore, when 且；is an eigenvector·field of R(N, -)N, corresponding to the
a .eigenvalue k, then Ji·- 1s a Jacobi vector field on 1 when we choose Ji given8x1

by (3.13).
Next, we are interested for those functions h, for which hWis also a Jacobi

vector field along , , with the same initial conditions (3.5-II), as Y2. So,

414

(3.14)O

1

＝
＝

、
丿、
~

0

0

,
\,·
\

2
I
2

f
f

or
or

(hW)m = 0
(hW)~= Wm

(3.15)V令 (hW) = J;'wand

But, as previously, we have:

R(N,hW)N =祏W

from which
(3.16)J;'=kh,

(3.17)

k>O

k < 0

k=O

f

f

f

.
l

.
l

.
J

with initial conditions (3.14}. So, we have:

1— sin h(矗CT),
卟—sin(汎亙CT),
汨
CT'

h(u)

Thus, when W is an eigenvector field of R(N, -)N corresponding to the eigen­

value k, then hW is a Jacobi vector field on , when we choose h given by

(3.17).

Therefore, we found that

Y1 =ft_!_
8x1 ，

(3.18)Y2 = f2W.

As a consequence now of (3.4) and the definition of SN we have:

只 矗 ）＝－` 令N = -v'1,v,N = -K·"h,N = -KVNY,

fJ fJ
= (v7Nfi)一-=N(fi)—

OX1 OX1
霹Y1 = VN (f 。霏 ）

But
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so,

SN 尸 ）＝－芭拉上
趴 Ji 伝

or, using (3.13) we get equivalently

。
（

氙(tanh涯(j)— if。SN 瓦）＝｛氙 (tan洹I之 if
0, 疝 'if

(3.19)

k>O

k<O

k=O

(3.20)

Similarly, we have

SNW
1 1

- v'wN = -v'Tiy2N = --v'y2N = --v'NY2
1 1 h h

－一 . v'団W) = - —N(h)W
h h

邸W= N(h)-·W
h (3.21)

so,

or using (3.17) we equivalently get:

這 cot h、偏 w, if
邸w = {尸(cot 嬅f<r)W, if

一 計w, if

0

0

0

>
V

=

k
k

k

(3.22)

Since now the sectional curvature at m is bounded, the set of eigenvalues k of
R(Nm, -)Nm taken over all unit vectors Nm is bounded, say lkl < ,.\2, ,.\ > O.
Thus if U is a tubular neighbourhood of radius< 計,.\, then /i, i = 1, 2 is nowhere
zero on, - {m}. Therefore, as a consequence, we get the required result from
(3.19) and (3.21) or~quivalently, from (3.20) and (3.22).

In [12] and [13] we recently characterized spaces of constant sectional cur­
vature by using the shape operator of small enough geodesic tubes.

It seems to me now, after this result, that locally symmetric spaces of higher
rank, may be also characterized, by using the properties of small geodesic tubes.
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