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A GENERALIZATION OF THE DISCRETE
HARDY'’S INEQUALITY

SUI SUN CHENG AND REUIH FEN LU

In this note we are concerned with a generalization of the well known Hardy’s
inequality for series [1, pp. 239-241] (in the sequel, p shall denote a real number
greater than 1):

Theorem 1. Ifp> 1, ax >0 for k=1,2,3,--- and Ay = a1 + as + a3 +

...+ ag, then
> %] <aEl e W

k=1

unless ar = 0 for k =1,2,---,n; and suppose further that

then
>[5 <[] ne @
unless ar = 0 for k = 1,2,3,---. The constant (p/(p — 1))P is the best possible.

We shall view inequalities (1) and (2) as necessary conditions for the exis-
tence of positive nondecreasing solutions of a nonlinear recurrence relation. To

be more precise, consider the following recurrence relation of the form

A(Tk-—l(Ayk’—-l)p_l) “p Sk—lyi_l S 077 K= 1723' e, T, (3)
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where p > 1, 7, > 0 for £ = 0,1,---,n» and s, € R for £k = 0,1,---,n — 1. A
solution of (3) is a real sequence {yx}7X5 which satisfies (3).
Given a fixed pair of real numbers ¢ > —1 and 8 < —1, a real sequene

y = {yx}it, is said to be admissible if it satisfies the following conditions:

Yo +ayr = 0, (4)
Ynt1 + Byn = 0, (5)
Y>>0 for 1<k<n, (6)
Ay >0 for 1<k<n-1. (7)

Note that the condition @ > —1 implies that Ayy > 0 and the condition § < —1
implies that Ay, > 0.

For any admissible sequence v = {vk}ﬂ'&, define the functional
n—1 n
Jl) = ro(1+ )P0l + 3 re(Ave)” = Y sp_10f — ra(—1— B)P1eR.
k=1 k=1

We shall need the following well known result,

Lemma 1. Ifz,y > 0 and p > 1, then pzP~1(z—y) > 2P —yP, equality holds
ifand only ifzx =y. Ifb>0,a+b >0 and p > 1, then (a + b)? > pab?P~! + b?,
equality holds if and only if a = 0.

By means of this Lemma, we can show the following necessary condition for

the existence of a nonnegative nondecreasing solution of (3).

Theorem 2. Suppose y = {yx}5T' is an admissible solution of (3) such

that yx > 0 for 1 < k < n. Then for any admissible sequence u = {u}3+?, we
have J[u] > 0, equality holds if and only if one of the following conditions holds:

(1) u=0, or (2) y is a solution of
A(rk-1(Byk-1)P" )+ sk19f P =0, k=1,2,---,n, (3)

and u is a constant but non-zero multiple of y.
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Proof. Let zx = ug/yx for 1 < k < n. Then 2z > 0 and ux = zxyx for
1 < k < n. Since u is admissible, thus

0 < Aup = YeAzk + z2k418Yk

for k =1,2,---,n — 1. It follows from the admissibility of y and Lemma 1 that

(Aug)? = (yelzk + 2zk41A7k)°

> pyrAzi(2e+1A9%)P " + (k41 A8)F
ve{pzh 1 Az} (Ayk)" ™ + (zk4189k)°
> y(A20)(Aye)P ™ + (2k1D9k)°

Il

fork=1,-+--,n—1, where, by Lemma 1, the first inequality is an equality if and

only if
ylAzp =0, k=1 ,n-1

and the second is an equality if and only if
By =0, B= Ly i~1,

As a consequence, we have

n—1 n—1 n—1
S re(Aue)? > Y reuk(A)Au )P + Y (i Agi)” (8)
k=1 k=1 k=1

and equality holds if and only if Az, = 0 for k = 1,2,---,7 — 1 (since yx > 0 for
1 < k < n—1). The conditions that Azy = 0for k = 1,2,---,n— 1 is equivalent
to u = cy. Indeed, if Azy =0for k=1,---,n— 1, then ux = cyx for 1 <k < n.
But then ug = —oau; = —acy; = cyo and similarly that u,41 = cyn41. The

converse is clearly true.

Note that the first sum on the right hand side of (8), if we apply the Abel’s
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transformation, changes to

n—1 n-—1
D Alreys(Aye)P2E] = > 2y Alykr(Aye)PY]
Ay, _
= [ yy ] ub — r1(Ay )P tyr2f
n-1 n—1
21 Y1 Alrk(Agk)P 7] = Y re(zrg1Ayk)”
k=1 k=1
= rn(=1=B)P " ul — {5120 A(ro(A%0)" '] + ro(1 + )P~ ul}
n-1 n-—1
- Z Z}f+1 yk+lA[7'k(Ayk)p_l] - Z Tk(Zk+1AYk)P

where we have used (4) and (5) in obtaining the last equality.
Thus

n—1 n—1

Z re(Aug)” 2 - Z Zp 1 Yer1 Alrk(Aye )P + ra (=1 — B)P 1l

k=1 k=0
—ro(1 + a)”_luf,

where equality holds if and only if ux = cy; for 0 < k < n + 1. Since by (3),

n—1 n-—1
o -l
= E Zo1 Yer1Alre(Ayk )P~ > E Zh s Yra18kYhr e
k=0 k=0

J[u] > 0, and equality holds if and only if, up = cyk (ie. 2z =¢)for0 £ k < n+l

and
n—1

> vk {Alre(Aye )P + skl ) =0,
k=0

if and only if, either ¢ = 0, or, ¢ # 0 and (3)' holds. The proof is complete.

Similarly, consider the following recurrence relation of the form
A(re-1(Ayk—1)P" ) + sk1y271 <0, k=1,2,-- (9)

where p > 1, 7, > 0 for £ > 0, and s € R for k >0. A solutlon of (9) is a real

sequence {yx}22, which satisfies (9).
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Given a fixed real numbers a > —1, a real sequence y = {yx}%2, is said to

be admissible if it satisfies the following conditions:

Yo +ay1 =0, (10)
ye >0 for k2>1, (11)
Ay, >0 for k2> 1. (12)

For any admissible sequence v = {vx}$2,, define the functional

(o] (oo
H[v] = ro(1 + )P0l + Z Tr(Avg)P — Zsk_lvi.
k=1 k=1

Theorem 3. Suppose y = {y,}$° is an admissible solution of (9) such that
yr > 0 for k > 1. Then for any admissible sequence u = {ux}§° such that

o0
Z re(Aug)? < o0,
k=1

we have H[u] > 0, equality holds if and only if one of the following conditions
holds: (1) u = 0; or (2) y is a solution of

A(rk-1(Ayx—1)P D) + skl =0, k=12, (9)

and u is a constant but non-zero multiple of y.

The proof is similar to that of Theorem 2. Let zx = ui/yx for £ > 1. Then

S o rk(Aue)? 2 ) reyk(A2E)(Aye) T + > ri(zke1 Ayr)? (13)
k=1 k=1 k=1

and equality holds if and only if ux = cyx for £ > 0. Also,

[e’e]
> rryk(AZ)(Aye)™
=
(e o] (o)

= —ro(l+ )P uf - Z 2p Yk Alri(Aye)? 7] - Zrk(zkﬂ Ayg)P.
k=0 k=1



474 SUI SUN CHENG AND REUIH FEN LU

Thus
[ee] (o 0]
Z rr(Aug)? > Zsk_luz —ro(1+ )P tul,
k=1 k=1
where equality holds if and only if, v = cy and
> v {Ar(Ay)P ] + sevbia ) = 0,
k=0

if and only if either ¢ = 0, or ¢ # 0 and (9)’ holds. The proof is complete.
We assert that Theorem 1 follows from Theorem 2 and 3. To see this, we

first show that the following recurrence relation

=1 TE1" o
A(Ayk—l)p—l-i-[g—z;—] [E] I <0, k=1,2,---,

has a solution w = {w}§° such that wo =0, w; = 1, wx > 0 and Awi > 0 for
k>1,and Awg/wr — 0 as k — 0.
Indeed, let wp = 0, wy = kP~V/? for k > 1. Then by the mean value

theorem,

=11 =
Awy = (k + 1)P=D/p-x(p=1)/p _ [2___] i P k<pm<k+1

p
so that
Awy < l:p;l:l L~1/P
p
Similarly,
P11 —1ip
Awg_y = —p_ Hr_1 > k-1< Pr—1 < k.
Thus
- 1] ~(p-1)/
A(Awg—1)P7" < [———p—] [k—(P-l)/p - p]
p=11" -2y
==1"% 1 * PUP, k-=1<p<k

It follows that

-1

sy 5 [

P
w;
<_[£‘_1]p#(1—zp)/p [ 1L ko020
P k
<

= [p_:_l] [k(l 2p)/p _ (1 "P)/P] 0
P
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as desired. The fact that wgy;/wi — 1 is clear. Our assertion is proved.

Now let ap > 0 for k=1,2,---,n. Let Ag =0, A1 = a1, A2 = a1 + az,...,
A, = a1+ ...+ a, and Apy1 = —fr Ay, where (3, = —wWp41/wn, < —1. Then
{Ax}>tis an admissible sequence with respect to o = 0 and 8 = B,. Thus by

Theorem 2,

s ST [R [5] A

where equality holds if and only if Ay = 0 for 0 < k < n + 1. This implies

>a> 3 [25] [3]

k.—
unless a; = 0 for 1 < k < n, which extends (1).
Similarly, let ax > 0for k > 1, Ag = 0, Ay = a1 + ... + a; for k > 1. Then

{Ax}& is an admissible sequence with respect to o = 0. If

(o]

Z al < o0,
n=1
o0 o0
A
a3 [ [
k=1 k=1
where equality holds if and only if Ay = 0 for £ > 0. Thus (2) holds unless
ap =0 for k& 2 1.

then by Theorem 3,
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