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A GENERALIZATION OF THE DISCRETE

HARDY'S INEQUALITY

SUI SUN CHENG AND REUIH FEN LU

In this note we are concerned with a generalization of the well known Hardy's
inequality for series [1, pp. 239-241] (in the sequel, p shall denote a real number

greater than 1):

Theorem 1. If p > l, ak ?: 0 fork= l, 2, 3, · · ·and 心 = a1 + a2 + a3 十

... +ak, then

訂仃 <[五 p严
unless ak = 0 for k = 1, 2, · · ·, n; and suppose further that

(1)

00

辶 吐< oo,
k=1

then

訂刊曰户 (2)

unless ak = 0 fork= 1, 2,3, · · ·. The constant (p/(p - l))P is the best possible.

We shall view inequalities (1) and (2) as necessary conditions for the exis
tence of positive nondecreasing solutions of a nonlinear recurrence relation. To

be more precise, consider the following recurrence relation of the form

6(rk-1(6yk_i)P-1)+sk-1Yf-1~O,, k=l,2,···,n, (3)
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where p > 1, Tk > 0 for k = 0, 1, .. ·, n and Sk E R for k = 0, 1, .. ·, n - 1. A
solution of (3) is a real sequence {Yk}~昷 which satisfies (3).

Given a fixed pair of real numbers o 2: -1 and ()~-1, a real sequene

y= 伍 ｝［闆 is said to be admissible if it satisfies the following conditions:

Yo + ay1 = 0,

Yn+l + f3Yn = 0,

Yk 2=: 0 for 1~k~n,

~Yk~0 for 1 ::S; k~n - l.

(4)

(5)

(6)

(7)

Note that the condition o 2: -1 implies that~Yo 2: 0 and the condition{)~-l
implies that~Yn 2: 0.

For any admissible sequence v = 伍 ｝［誌 define the functional

n一 1 n

J[v] = ro(l + a)「lvf + I:汛~v訂- LSk-1吐－可 -1 -f3)P一`
k=l k=l

We shall need the following well known result,

Lemma 1. If x, y 2: 0 and p > I, then pxP一 1 (X -y) 2: xP -y叭 equality holds

if and only if x = y. If b 2: 0, a+ b 2: 0 and p > I, then (a+ b)P 2: pabP-l + b兀
equality holds if and only if a = 0.

By means of this Lemma, we can show the following necessary condition for
the existence of a nonnegative nondecreasing solution of (3).

Theorem 2. Suppose y = 伍 ｝；十1 is an admissible solution of (3) such

that Yk > 0 for 1 :::; k :::; n. Then for any admissible sequence u = {uk}~+1, we

have J[u]~0, equality holds if and only if one of the following conditions holds:
(1) u 三= 0, or (2) y is a solution of

L\.(rk-1(6Yk-1)P-1) + Sk-IY~ 一·1=0, ·k=l,2,···,n, (3)'

and u is a constant but non-zero multiple of y.
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Proof. Let Zk = Uk厙 for 1~k~n. Then Zk 2: 0 and Uk = ZkYk for

1~k~n. Since u is admissible, thus

0~ ~Uk = Yk~Zk 十 Zk+l~Yk

for k :::: 1, 2, ... , n - 1. It follows from the admissibility of y and Lemma 1 that

(6uk)P = (yk6Zk 十 Zk+16yk)P

2 PYk6Zk(Zk+16Yk)P一 1 + (zk+16Y叩

= Yk{Pzt+! 6zk}(6yk)P一 1 + (zk+1 6yk)P

2:: Yk(6zn(6yky-t + (zk+16yk)P

fork= I, ... , n - l, where, by Lemma 1, the first inequality is an equality if and

only if

Yk6Zk = 0, k = l, · · ·, n - l

and the second is an equality if and only if

.6.zk = 0, k = 1, · · ·, n - 1.

As a consequence, we have

n-1 n 一 1 n-1
芷 rk(~uk)P~L TkYk(~zn(~Yky-t 十芷 Tk(Zk+l~Y叩 (8)
k=l k=l k=l

and equality holds if and only if .6.zk = 0 fork= 1, 2, · · ·, n - 1 (since Yk > 0 for
1 :s; k :s; n - 1). The conditions that .6.zk = 0 for k = 1, 2, · · ·, n - 1 is equivalent

to u = cy. Indeed, if .6.zk = 0 fork= 1, · · ·, n - 1, then uk = cyk for 1~k :S n.
But then u0 = -au1 = -acy1 = cyo and similarly that Un+I = cy社 1. The

converse is clearly true.

Note that the first sum on the right hand side of (8), if we apply the Abel's
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transformation, changes to

n-I n-I
L~(TkYk(~yk)P一頃 ] - L zf+1~[ykrk(~Yk尸 ］
k=I k=I

= Tn [巴 曰吐- r1 (L'.yi)P一曰
n-1 n-I
- L z~+1 Yk+I~[rk(~Yk尸]- L rk(zk+I~Yk)P

k=l . k=l
= Tn(-l - /3)P一 1 u~- {Y1 zf~[(ro(~Yo)P一 I] 十 ro(l+a)P一 Iuf}

n-1 n-1
－芷 zf+1 Yk+1~[rk(~Yk)鬥 －芷 互(zk+I~Yk)P

k=l k=l

where we have used (4) and (5) in obtaining the last equality.

Thus

n-1 n-1
辶 互(.6.uk)P 2:: - L 式十1 Yk+ 1 .6. (r k (.6. Yk尸 ］十rn(-1 - f3)P-l u~
k=l k=O

一 ro(l + a)P-1吋 ，

where equality holds if and only if Uk = cyk for O~k~n + l. Since by (3),

n-1 n-1
＿芷 zf+1 Yk+1~[rk(~Yk)P一 112::I: 土戍k+l殊且註，

k=O k=O

J[u] 2:: 0, and equality holds if and only if, Uk = cyk (i.e. Zk = c) for O~k~n+ l
and

n-1
芷土団k+t {~[rk(~Yk尸 ］十SkYr註} = 0,
k=O

if and only if, either c = 0, or, c 钅0 and (3)'holds. The proof is complete.

Similarly, consider the following recurrence relation of the form

~(Tk-1 (~Yk-1)P 一 l) + Sk-1 Y尸 :::;o, k=l,2,··· (9)

where p > I, 几 > 0 for k 2: 0, and sk E R for k 2: 0. A solution of (9) is a real
sequence 伍 ｝諗。which satisfies (9).
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Given a fixed real numbers a 2 -1, a real sequence y = {國 迄0 is said to

be admissible if it satisfies the following conditions:

Yo+ ay1 == 0,

Yk~0 for k~I,

L\yk~0 for k~I.

(10)

(11)

(12)

For any admissible sequence v = 伍 ｝諗0, define the functional

00 00

JI[v] = ro(l + a)P 一1vf + L rk(~v訌 －芷 Sk-1吐·
k=l k=l

Theorem 3. Suppose y = 伍 ｝窋 is an admissible solution of (9) such that

Yk > 0 for k 2: 1. Then for any admissible sequence u = 伍 }0 such that

00L rk(~u訌 < oo,
k=l

we have H[u]~0, equality holds if and only if one of the following conditions

holds: (1) u 三： O; or (2) y is a solution of

~(庄-1(~Yk-1)P一 l) + Sk-lY尸=0, k = l, 2, · · · (9)'

and u is a constant but non-zero multiple of y.

The proof is similar to that of Theorem 2. Let Zk = Uk鄖 for k 2:: 1. Then
00 00

芷 rk(6四）p 2: 芷 TkYk(6弓）(6yk)P一 1 十立 k(Zk+16y訌 (13)
k=l k=l k=l

and equality holds if and only if Uk = cyk for k~0. Also,

立kYk(6z~)(6yk)P一 1
k=l

00

- ro(l + o)P一 luf - 芝土澤k+16[rk(6yk)鬥－立 k(Zk+16Yk)P.
k=O k=l
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Thus
00 00

芷 互(6uk)P~ 辶 Sk-1吐－叫 1 + a)P-1uf,
k=l k=l

where equality holds if and only if, u = cy and
CX)

芷 弓+I Yk+I {~[rk(~Yk尸 ］十SkY髯}= 0,
k=O

jf and only if either c = 0, or c f: 0 and (9)'holds. The proof is complete.
We assert that Theorem 1 follows from Theorem 2 and 3. To see this, we

first show that the following recurrence relation

L',. (L',.y辶, )' 一·+[7r皿 尸<0, k=l,2,···,

has a solution w = {wk}悰 such that w0 = 0, 叨 = 1, wk > 0 and~wk > 0 for
k~1, and~wk/wk --+ 0 as k --+ oo.

Indeed, let wo = 0, Wk = k护 l)/p for k~1. Then by the mean value
theorem,

/'J.wk = (k + 1)圧 1)/P-心-1)/p = 尸 ］肛一l/p, k <µk < k + 1
p

so that

乓 ＜［于 l k-1/p.
Similarly,

~Wk-I =尸lµ;招 ， k-l<µk-1<k.

Thus
Ll. (Ll.Wk-1尸＜鬥 P一 I [ k 一 (p-1)/p -µ畫-1)/pl

＝－鬥 pµll-2p)/P, k - I <µ< k.
p

It follows that

Ll.(L).Wk-I y-l十匠」「鬪 『
<-[7fµll-,p)/p+ [7f 且r k(P一 1)勺p

p-l p

= [pl [k(l-2p)/p -µ(l-2p)/pl < Q
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as desired. The fact that Wk+1/wk~1 is clear. Our assertion is proved.

Now let ak~0 for k = 1, 2, · · ·, n. Let Ao = 0, A1 = ai, 品 ;::::::a1 + a2, ... ,

心 = a1 + ... +an and An+t = -/3nAn where /3n = -Wn+1/wn < -1. Then
凶 ｝尸 is an admissible sequence with respect to a = 0 and /3 = /3n·Thus by

Theorem 2,

护 卣 可 圉二［芒 1『-I A~

where equality holds if and only if Ak = 0 for O :s; k :s; n + 1. This implies

护卣可圉
unless ak = 0 for 1 :s; k :s; n, which extends (1).

Similarly, let ak~0 for k~1, Ao = 0, Ak = a1 十 ．．．十 ak for k~1. Then

{Ak琮 is an admissible sequence with respect to a = 0. If
00

芷吐< oo,
n=l

then by Theorem 3,

护 2訌［可 囝
where equality holds if and only if Ak

ak = 0 for k > 1.

0 for k~O. Thus (2) holds unless
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