THE SPECTRUM OF THE LAPLACE OPERATOR FOR A GENERALIZED DOLD MANIFOLD

GR. TSAGAS AND G. DIMOU

1. Introduction:

Let (M,g), (N,h) be two compact and orientable Riemannian manifolds. Let Γ be a finite subgroup of the group of isometries $I(M \times N)$ which acts freely on the manifold $M \times N$. One of the problems of the spectrum is to determine the $Sp(M \times N/\Gamma)$.

The aim of the present paper is to determine the $Sp(S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2)$, where $S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2$ is called Dold manifold.

The whole paper contains four paragraphs.

The second paragraph deals firstly with the spectrum of the manifold $(M \times N, g \times h)$. It also gives the general theory about $Sp(M \times N/\Gamma)$, where Γ is a subgroup of $I(M \times N)$ which is isomorphic onto \mathbb{Z}_2 .

The spectrum of the Dold manifold $S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2$ is computed in the third paragraph.

The last paragraph deals with the conditions such that $Sp(S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2)$ determines the geometry on $S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2$.

§ 2. We consider two compact orientable Riemannian manifolds (M,g) and (N,h). From these manifolds we obtain the manifold $(M \times N, g \times h)$. We have the following diagram:

Received May 21, 1989.

If α and β are two functions on M and N respectively, then α op and β oq are functions on $M \times N$. We denote by $\Delta^{M \times N}$, Δ^M and Δ^N the Laplace operators on the Riemannian manifolds $(M \times N, g \times h), (M, g)$ and (N, h) respectively. It can easily be proved

$$\Delta^{M \times N}[(\alpha \, op) \times (\beta \, oq)] = (\beta \, oq) \times [\Delta^{M}(\alpha) \, op] + (\alpha \, op) \times [\Delta^{N}(\beta) oq] \quad (2.1)$$

If α is an eigenfuction of Δ^M with eigenvalue λ and β is an eigenfuction of Δ^N with eigenvalue μ , then the relation (2.1) takes the form

$$\triangle^{M \times N}[(\alpha \, op) \, \times \, (\beta \, oq)] \, = \, (\lambda + \mu)[(\alpha \, op) \, \times \, (\beta \, oq)]$$

that means $(\alpha op) \times (\beta oq)$ is an eigenfunction for the Laplace operator $\Delta^{M \times M}$ with eigenvalue $\lambda + \mu$.

Let (M',g') be a compact and orientable Riemannian manifold with metric g'. We denote by $C^{\infty}(M')$ the C-algebra of all differentiable functions on M'. From M' we obtain the $Sp(M',g') = \{\lambda / \Delta^{M'} f = \lambda f, f \in C^{\infty}(M'), \lambda \in \mathbb{R}\}$. We consider the subspace Q(M',g') of $C^{\infty}(M')$ defined by

$$Q(M',g') = \sum_{\lambda \in S_P(M',g)} Q_\lambda(M',g')$$

where $Q_{\lambda}(M',g')$ is the vector subspace of $C^{\infty}(M')$ consisting of the eigefunctions with eigenvalue λ .

 $Q_{\lambda}(M',g')$ is called eigen-subspace of (M',g') and has finite dimension. The subset Q(M',g') is dense in $C^{\infty}(M')$ provided with the topology defined by the inner product $\langle f_1, f_2 \rangle = \int_{M'} f_1 f_2 dM'$, where dM' is the volume element on M'.

We consider the subspace of $C^{\infty}(M \times N)$ generated by all products of the form $(\alpha op) \times (\beta oq)$, where $\alpha \in Q(M,g)$ and $\beta \in Q(N,h)$. This vector subspace of $C^{\infty}(M \times N)$ is denoted by $p^*Q(M,g) \otimes g^*Q(N,h)$. This is isomorphic onto the vector space $Q(M,g) \otimes Q(N,h)$. The following relations are true.

(i)
$$p^*Q(M,g) \otimes q^*Q(N,h) = Q(M \times N, g \times h)$$

(ii)
$$Sp(M \times N, g \times h) = \{\lambda + \mu/\lambda \in Sp(M,g), \mu \in Sp(N,h)\}$$

(iii)
$$Q_{\nu}(M \times N, g \times h) = \sum_{\substack{\lambda \in Sp(M,g)\\ \mu \in Sp(N,h)\\ \lambda + \mu = \nu}} p^{*}Q_{\lambda}(M,g) \otimes q^{*}Q_{\mu}(N,h)$$

Theorem 2.1. Let (M,g), (n,h) be two compact and orientable Riemannian manifolds. Let $\Gamma \simeq \mathbb{Z}_2$ be the group of isometries on the manifold $(M \times N, g \times h)$ which acts freely on $M \times N$ such that preserves the seperate coordinate system on the product manifold $M \times N$. Then the eigenfunctions on the manifold $(M \times N/\Gamma, g \times h/\Gamma)$ are of the form $(\alpha op) \times (\beta oq)$ where α and β are the eigenfunctions on the manifolds (M,g) and (N,h) respectively which are invariant under the action by the group Γ or takes opposite sign under the action of Γ .

Proof. Let $(U_i, \varphi_i)_{i \in I}$ and $(V_j, \psi_j)_{j \in J}$ be two atlas on (M, g) and (N, h)respectively. Then $(U_i \times U_j, \varphi_i \times \psi_j)_{(i,j) \in IXJ}$ is an atlas on the Riemannian manifold $(M \times N, g \times h)$. Let (x_1, \ldots, x_n) and (y_1, \ldots, y_m) be two local coordinate systems on the charts (U_i, φ_i) and (V_j, ψ_j) respectively, where dim M = n and dim N = m. Then $(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is a local coordinate system on the chart $(U_i \times V_j, \varphi_i \times \psi_j)$, If γ is an element of the group Γ , then we have

$$\begin{aligned} \gamma : M \times N &\to M \times N, \quad \gamma : \ U_i \times V_j \to U'_i \times V'_j \\ \gamma : (x_1, \dots, x_n; y_1, \dots, y_m) &\to (\gamma(x_1, \dots, x_n); \gamma(y_1, \dots, y_m)) \\ &= (x'_1, \dots, x'_n; y'_1, \dots, y'_m) \end{aligned}$$

which means that γ preserves the separate coordinate systems. We assume that

$$\alpha, \alpha_1 \ \in Q_\lambda(M,q) \quad \text{and} \quad \beta, \beta_1 \ \in Q_\mu(N,h)$$

then we have

$$\Delta^{M \times N}[(\alpha \ op) \times (\beta \ oq)] = (\lambda + \mu)[(\alpha \ op) \times (\beta \ oq)]$$
$$\Delta^{M \times N}[(\alpha_1 \ op) \times (\beta_1 \ oq)] = (\lambda + \mu)[(\alpha_1 \ op) \times (\beta_1 \ oq)]$$

If the functions α and β are invariant under the action of the group Γ and α_1 and β_1 take opposite sing by the action of the group Γ , then we have

$$\gamma(\alpha(x_{1},...,x_{n})) = \alpha(\gamma(x_{1},...,x_{n})) = \alpha(x'_{1},...,x'_{n}) = \alpha(x_{1},...,x_{n})$$

$$\gamma(\alpha_{1}(x_{1},...,x_{n})) = \alpha_{1}(\gamma(x_{1},...,x_{n})) = \alpha_{1}(x'_{1},...,x'_{n}) = -\alpha_{1}(x_{1},...,x_{n})$$

$$\gamma(\beta(y_{1},...,y_{m})) = \beta(\gamma(y_{1},...,y_{m})) = \beta(y'_{1},...,y'_{m}) = \beta(y_{1},...,y_{m})$$

$$\gamma(\beta_{1}(y_{1},...,y_{m})) = \beta_{1}(\gamma(y_{1},...,y_{m})) = \beta(y'_{1},...,y'_{m}) = -\beta_{1}(y_{1},...,y_{m})$$

then we have

$$\Delta^{M \times N/\Gamma} \left[(\alpha \ op) \times (\beta \ oq) \right] = \Delta^{M \times N} \left[(\gamma(\alpha) op) \times (\gamma(\beta) oq) \right]$$

= $\Delta^{M \times N} \left[(\alpha \ op) \times (\beta \ oq) \right] = (\lambda + \mu) \left[(\alpha \ op) \times (\beta \ oq) \right]$
$$\Delta^{M \times N/\Gamma} \left[(\alpha_1 \ op) \times (\beta_1 \ oq) \right] = \Delta^{M \times N} \left[(\gamma(\alpha_1) op) \times (\gamma(\beta_1) oq) \right]$$

= $\Delta^{M \times N} \left[| (-\alpha_1 \ op) \times (-\beta_1 \ oq) \right] = (\lambda + \mu) \left[(\alpha_1 \ op) \times (\beta_1 \ oq) \right]$

3. It is known that the Dold manifold is defined by

$$M' = S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2$$

where the action of the group Z_2 is given as follows

$$\{(x_1,\ldots,x_n),(z_0,z_1,\ldots,z_m)\} \to \{(-x_1,\ldots,-x_n),(\overline{z}_0,\overline{z}_1,\ldots,\overline{z}_m)\}$$
(3.1)

The manifold M' can be obtained by identification of the two points defined by (3.1) on the manifold $S^n \times \mathbb{P}^m(\mathbb{C})$.

Theorem 3.1. Let $M' = S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2$ be the Dold manifold provided with the metric $g_0 \times h_0$, where g_0 is the standard metric on S^n with constant sectional curvature 1 and h_0 is the Study-Fubini metric on $\mathbb{P}^m(\mathbb{C})$ with constant holomrphic sectional curvature 1. Then, the Spectrum of this manifold has the form $Sp(S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2, g_0 \times h_0/\mathbb{Z}_2) = \{0, \lambda_{2k-1} + \mu_{2\rho-1}, \lambda_{2k} + \mu_{2\rho-1}, \lambda_{2k} + \mu_{2\rho}, where \lambda_{\nu} = \nu(n + \nu - 1), \mu_{\sigma} = \sigma(m + \sigma) with multipilicities <math>q_{\nu}(\lambda_{\nu}) = \frac{(n+\nu-2)\dots(n+1)n(n+2\nu-1)}{\nu!}, q_{\sigma}(\mu_{\sigma}) = A(-m,\sigma) \text{ if } \sigma \text{ is odd and } q_{\sigma}(\mu_{\sigma}) = 2A(m,\sigma),$ if σ is even, where $A(m,\sigma) = \frac{2(2m+\sigma-1)(2m+\sigma)\dots(2m+2)(2m+1)(m+\sigma)}{\sigma!}$, respectively.

Proof. If is known the eigenfuctions of \triangle^{S^n} can be obtained by the restriction on S^n the harmonic polynomials on \mathbb{R}^{n+1} . The harmonic polynomials which are invariant under the action of the group \mathbb{Z}_2 are the even dimensional. The harmonic polynomials which take opposite sign by the action of the group \mathbb{Z}_2 are the odd dimension. Finally, we conclude that all the harmonic polynomials of \mathbb{R}^{n+1} give eigenvalues for $\triangle^{S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2}$.

Therefore we obtain

$$\lambda_k = k(n+k-1), \ q_k(\lambda_k) : (n+k-2)\cdots(n+1)n(n+2k-1)/k!$$

The complex projective space $\mathbb{P}^m(\mathbb{C})$ is the base space of the following fibre

$$S^{1} \xrightarrow{i} S^{2m+1} \xrightarrow{\pi} \mathbb{P}^{m}(\mathbb{C})$$

$$(3.4)$$

Therefore the eigenfunctions of $\triangle^{\mathbf{P}^{m(\mathbf{C})}}$ are the eigenfunctions of S^{2m+1} which are invariants by the action of S^1 , or the harmoric polynomials in $\mathbb{R}^{2m+2} \simeq \mathbb{C}^{m+1}$ which are invariant by the action of S^1 . At the same time we try to determine which of these polynomials are invariants, by the action of the conjugation and the others taking opposite sign by conjugation.

If (z_0, z_1, \ldots, z_m) and $(x_0, x_1, \ldots, x_m, y_0, y_1, \ldots, y_m)$ are the natural coordinate systems on \mathbb{C}^{m+1} and \mathbb{R}^{2m+2} respectively, then we have the relations

$$z_0 = x_0 + \sqrt{-1}y_0, \ z_1 = x_1 + \sqrt{-1}y_1, \ \dots, \ z_m = x_m + \sqrt{-1}y_m$$
 (3.5)

From (3.5) we obtain

$$\overline{z}_0 = x_0 - \sqrt{-1}y_0, \ \overline{z}_1 = x_1 - \sqrt{-1}y_1, \ \dots \ \overline{z}_m = x_m - \sqrt{-1}y_m$$
 (3.6)

The relations (3.5) and (3.6) imply

$$x_0 = \frac{1}{2}(z_0 + \overline{z}_0), \ x_1 = \frac{1}{2}(z_1 + \overline{z}_1), \dots, x_m = \frac{1}{2}(z_m + \overline{z}_m)$$
(3.7)

$$y_0 = \frac{1}{2\sqrt{-1}}(z_0 - i\overline{z}_0), \ y_1 = \frac{1}{2\sqrt{-1}}(z_1 - i\overline{z}_1), \dots, y_m = \frac{1}{2\sqrt{-1}}(z_m - i\overline{z}_m) \ (3.8)$$

Therefore $(z_0, z_1, \ldots, z_m, \overline{z}_0, \overline{z}_1, \ldots, \overline{z}_m)$ can be obtained as a coordinate system on \mathbb{R}^{2m+2} . The harmonic polynomials on $\mathbb{R}^{2m+2} \simeq \mathbb{C}^{m+1}$ are polynomials in $z = (z_1, z_2, \ldots, z_m)$ and in $\overline{z} = (\overline{z}_0, \overline{z}_1, \ldots, \overline{z}_m)$. The Laplace operator on $\mathbb{R}^{2m+2} = \mathbb{C}^{m+1}$ has the form

$$\Delta = -\frac{1}{4} \sum_{p=1}^{m+1} \frac{\partial}{\partial z_p} \frac{\partial}{\partial \overline{z}_p}$$
(3.9)

The polynomial $Q = Q(z, \overline{z}) = Q(z_0, z_1, \dots, z_m, \overline{z}_0, \overline{z}_1, \dots, \overline{z}_m)$ is harmonic if we have

$$\sum_{p=1}^{m+1} \frac{\partial^2}{\partial z_p} \frac{Q}{\partial \overline{z}_p} = 0$$
(3.10)

The harmonic polynomials $Q(z, \overline{z})$, which are invariant by the action of S^1 are the same degree with respect to z and \overline{z} . All these polynomials are denoted by $H_{p,p}$. Therefore the eigenvalue which corresponds to each of the eigenfunctions of $\triangle^{S^{2m+1}}$ which are at the same time eigenfunctions of $\triangle^{P^m(C)}$ has the form

$$\mu_p = 2p(2m+1+2p-1) = 4p(m+p), \quad p \ge 0.$$

From these polynomials we must take those remaining invariant by conjugation and the others taking opposite sign by conjugation. The first polynomials form a vector space of the same dimension as the vector space H_p , when p is odd. The other polynomials, when p is even, form a vector space whose dimension is $2\dim H_p$. Therefore, we have the following eigenvalues for the Dold manifold

6

$$\Delta^{S^n} \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2:$$

$$0, \lambda_{2k-1} + \mu_{2p-1}, \lambda_{2k} + \mu_{2p-1}, \lambda_{2k} + \mu_{2p}, \text{ where } \lambda_{\nu} = \nu(\nu+n-1), \mu_{\sigma} = 4\sigma(\mu+\sigma)$$

with multiplicities $q_k(\lambda_k) = (n+k-2)\dots(n+1)n(n+2k-1)/k!, q_{\sigma}(\mu_{\sigma}) = 2A(m,\sigma) \text{ if } \sigma \text{ is even and } q_{\sigma}(\mu_{\sigma}) = A(m,\sigma) \text{ if } \sigma \text{ is odd, where } A(m,\sigma) = \frac{2(2m+p-1)\dots(2m+1)(m+p)}{p!}.$

4. Let $(M \times N, g_1 \times g_2)$ be a compact and orientable Riemannian manifold with the following properties

- (i) N can carry a complex structure,
- (ii) $\pi_1(M \times N) = \mathbb{Z}_2$

(iii)
$$Sp(M \times N, g_1 \times g_2) = Sp(S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2, g_0 \times h_0/\mathbb{Z}_2)$$

(vi) g = Kähler metric

We give the conditions under which the Riemannian manifolds $(M \times N, g_1 \times g_2)$ and $(S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2, g_0 \times h_0/\mathbb{Z}_2)$ are isometric.

It is known that the universal covering of the manifold $S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2$ is $S^n \times \mathbb{P}^m(\mathbb{C})$. We denote by $M' \times N'$ the universal covering of $M \times N$.

These manifolds $M' \times N'$ and $S^n \times \mathbb{P}^m(\mathbb{C})$ have metrics $g'_1 \times g'_2$ and $g_0 \times h_0$ respectively such that $g'_1 \times g'_2/\mathbb{Z}_2 = g_1 \times g_2$. The manifolds $(M \times N, g_1 \times g_2)$ and $(S^n \times \mathbb{P}^M(\mathbb{C})/\mathbb{Z}_2, g_0 \times h_0/\mathbb{Z}_2)$ are locally isometric onto the manifolds $(M' \times N', g'_1 \times g'_2)$ and $(S^n \times \mathbb{P}^m(\mathbb{C}), g_0 \times h_0)$ respectively. It can easily obtained from $Sp(M \times N, g_1 \times g_2)$ and $Sp(S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2, g_0 \times h_0/\mathbb{Z}_2)$ that $Sp(S^n \times \mathbb{P}^m(\mathbb{C}), g_0 \times h_0)$ and $Sp(M' \times N', g'_1 \times g'_2)$ have the same eigenvalues. We assume that these eigenvalues have the same multiplicity and therefore we obtain

$$Sp(M' \times N', g'_1 \times g'_2) = Sp(S^n \times \mathbb{P}^m(\mathbb{C}), g_0 \times h_0)$$
(4.2)

From (4.2) we obtain

$$Sp(M',g_1') = Sp(S^n,g_0)$$
 (4.3)

$$Sp(N',g'_2) = Sp(\mathbb{P}^m(\mathbb{C}),h_0)$$
 (4.4)

The relations (4.3) and (4.4) imply (M', g'_1) is isometric onto (S^n, g_0) , if $1 \le n \le 6$ ([2]) and (N', g'_2) is beholomorphically isometric onto $(\mathbb{P}^m(\mathbb{C}), h_0)$, if $1 \le m \le 5$, ([4]).

Now we can state the following theorem .

Theorem 4.1. Let $(M \times N, g_1 \times g_2)$ be a compact, and orientable Riemannian manifold with the properties ((i) - (iv) (4.1). Let $(M' \times N', g'_1 \times g'_2)$ be the universal covering of $M \times N$ such that $g_1 \times g_2 = g'_1 \times g'_2/\mathbb{Z}_2$. If $Sp(M \times N, g_1 \times g_2) = Sp(S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2, g_0 \times h_0/\mathbb{Z}_2)$ and the multiplicity of the eigenvalues of $Sp(M' \times N', g_1 \times g_2)$ are the same as of $Sp(S^n \times \mathbb{P}^m(\mathbb{C}), g_0 \times h_0)$ and $1 \leq n \leq 6, 1 \leq m \leq 5$, Then $(M \times N, g_1 \times g_2)$ is isometric onto $(S^n \times \mathbb{R}^m(\mathbb{C})/\mathbb{Z}_2, g_0 \times h_0/\mathbb{Z}_2)$.

If the conditions (4.1) are substituded by the following

- (i) N is beholomorphically isomorphic onto $\mathbb{P}^m(\mathbb{C})$
- (ii) $Sp(M \times N, g_1 \times g_2) = Sp(S^n \times \mathbb{P}^m(\mathbb{C}), g_0 \times h_0/\mathbb{Z}_2)$ (4.5)
- (iii) Multiplity of the eigenvalues of $Sp(M' \times N', g_1 \times g_2)$ are the same as of $Sp(S^n \times \mathbf{P}^m(\mathbf{C}), g_0 \times g_0)$ then (N', g') coincides with $(\mathbf{P}^m(\mathbf{C}), h_0)$.

From the theorem (4.1) and the conditions (4.5) we conclude the following corollary.

Corollary 4.2. Let $(M \times N, g_1 \times g_2)$ be a compact and orientable Riemannian manifold with the propporties (4.5), If $Sp(M \times N, g_1 \times g_2) = Sp(S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2, g_0 \times h_0/\mathbb{Z}_2)$, where $2 \le n \le 6$, and $1 \le m \le 5$, then $(M \times N, g_1 \times g_2)$ is isometric onto $(S^n \times \mathbb{P}^m(\mathbb{C}), g_0 \times h_0)$.

§ 5. The manifold $S^{2n-1} \times \mathbf{P}^m(\mathbf{C})/\Gamma$ is called generalized Dold manifold, where *Gamma* is a finite subgroup of order greater or equal than three of the group of isommetries $I(S^{2n-1} \times \mathbf{P}^m(\mathbf{C}))$ of the manifold $S^{2n-1} \times \mathbf{P}^m(\mathbf{C})$.

If we use the same technique as for the manifold $S^n \times \mathbb{P}^m(\mathbb{C})/\mathbb{Z}_2$ then we can compute the $S_p(S^{2n-1} \times \mathbb{P}^m(\mathbb{C})/\Gamma)$.

Now we can prove the theorem:

Theorem 5.1. Let $S^{2n-1} \times P^m(\mathbb{C})/\Gamma$ be a generalized Dold manifold. If n, m and order of Γ have special prices, then $S_p(S^{2n-1} \times P^m(\mathbb{C})/\Gamma)$ determines the geometry on the manifold $S^{2n-1} \times P^m(\mathbb{C})$.

THE SPECTRUM OF THE LAPLACE OPERATOR

References

- M. Apte, "Sur certaines classes caractéristiques des variétes Kählériennes compactes", C. R. A. S., 240, p. 149, 1955.
- [2] M. Berger, P. Gandachon and E. Mozet, "Le spectre d' une variéte Riemannienne", Lecture Notes in Mathematics Vol. 194, Springer-Verlag Berlin and New York, 1971.
- [3] F. Hirzebruch, Topological methods in Algebraic Geometry, Springer-Verlag, New York, 1966.
- 4] S. Tanno, "Eigenvalues of the Laplacian of Riemannian manifolds", Tôhoku Math. Jour. 25, pp. 391-403, 1973.

Themistokleous 21, Trikala 42.100, Greece.