NEAT AND NEAT-HIGH EXTENSIONS

ASIF MASHHOOD, MUSHEER AHMAD AND SEEMA JAVES

Abstract

In the present paper, we find conditions that change a neathigh subgroup into a pure-high subgroup and a neat subgroup, to a pure subgroup. It is shown that a neat-high extension can be transformed into a pure-high extension and a neat extension, to a pure extension. Furthermore, splitting conditions for a neat exact sequence are obtained.

1. Introduction

A subgroup A of a group G is called pure in G if $n A=A \cap n G$, for all natural numbers n. This concept was generalized by Honda [4]. He defined, a subgroup A of a group G is neat in G, if $p A=A \cap p G$, for all prime numbers p. This is equivalent to $m A=A \cap m G$, for all square-free natural numbers m. Every pure subgroup of a group G is neat in G, but the converse is not always true. Every direct summand of a group G is pure in G and also neat in G. A sequence $O \rightarrow A \xrightarrow{f} G \rightarrow C \rightarrow O$ is called pure exact if $f(A)$ is a pure subgroup of G and neat exact if $f(A)$ is a neat subgroup of G. Let B be a subgroup of G, the exact sequence $O \rightarrow A \rightarrow G \rightarrow C \rightarrow O$ is called a B-pure-high extension, if A is maximal disjoint from B and $(A+B) / B$ is pure in G / B and a B-neat-high extension, if A is maximal disjoint from B and $(A+B) / B$ is neat in G / B. All groups considered in this paper are abelian.

In grneral, we adopt the notations used in [2].

[^0]
2. Main Results

First we find conditions for a B-neat-high subgroup of a p-group G to become a B-pure-high subgroup of G. In this direction we prove the following:

Theorem 1. If A is a B-neat-high subgroup of a p-group G such that $G / B=H / B \oplus K / B$, where H / B is a direct sum of cyclic groups of order p^{n} and K / B is a direct sum of cyclic groups of order p^{n+1}, then A is a B-pure-high subgroup of G.

Proof. Let $\left\{H_{i} / B: i \in I\right\}$ denote the cyclic summands of H / B having order p^{n} and $\left\{K_{j} / B: j \in J\right\}$, those of K / B having order p^{n+1}. It is clear that for $K \geq n+1, p^{k}(G / B)=0$ and for such K,

$$
p^{k}(G / B) \cap(A+B) / B=p^{k}((A+B) / B)
$$

Thus we now assume that

$$
p^{m}(G / B) \cap(A+B) / B=p^{m}((A+B) / B)
$$

for some m, such that $1 \leq m<n$. We prove that it holds for p^{m+1} also, for this purpose let $p^{m+1}(x+B \in(A+B) / B$. for some $(x+B) \in G / B$. It follows that $p^{m+1}(x+B)=\left(a^{\prime}+B\right)$ for some $\left(a^{\prime}+B\right) \in(A+B) / B$. But by assumption, for $p^{m}(g+B)=\left(a^{\prime}+B\right),(g+B) \in G / B$ there exists an clement $(a+B) \in(A+B) / B$ such that $p^{m}(a+B)=\left(a^{\prime}+B\right)$. Thus

$$
\begin{equation*}
p^{m+1}(x+B)=p^{m}(a+B) \tag{1}
\end{equation*}
$$

$\Rightarrow p^{m}(p(x+B)-(a+B))=0 \Rightarrow(p(x+B)-(a+B)) \in G / B\left[p^{m}\right]$
If $\left(x_{i}+B\right)$ and $\left(a_{i}+B\right)$ denote the $i^{\text {th }}$ coordinates of $(X+B)$ and $(a+$ B) respectively, then it follows that $\left(p\left(x_{i}+B\right)-\left(a_{i}+B\right)\right) \in H_{i} / B\left[p^{m}\right]=$ $p^{n-m}\left(H_{i} / B\right) \subseteq p\left(H_{i} / B\right) \Rightarrow\left(a_{i}+B\right) \in p\left(I_{i} / B\right)$, for each $i \in I$. Similarly, $\left(a_{j}+B\right) \in p\left(K_{j} / B\right)$ for each $j \in J$. Consequently, there exists $(a+B) \in p(G / B)$, let $(a+B)=p(g+B)$, for $(g+B) \in G / B$. By neatness of $(A+B) / B$ in G / B, we
are guaranteed an element $\left(a^{\prime}+B\right) \in(A+B) / B$ satisfying $p(g+B)=(a+B)=$ $p\left(a^{\prime}+B\right)$. But then (1) gives

$$
p^{m+1}(x+B)=p^{m}(a+B)=p^{m+1}\left(a^{\prime}+B\right) \in p^{m+1}((A+B) / B)
$$

Thus $(A+B) / B$ is pure-high in G / B and A is a B-pure-high subgroup of G.

In case of neat subgroups we have the following.
Theorem 2. If A is a neat subgroup of a p-group G such that $G=H \oplus K$, where H is a direct sum of cyclic groups of order p^{n} and K is a direct sum of cyclic groups of order p^{n+1}, then A is a pure subgroup of G.

Proof. The proof runs on similar lines as that of theorem 1.
Next, we find conditions under which the neatness of $(A+B) / B$ in G / B reduces to purity of $(A+B) / B$ in G / B.

Lemma 1. If n is a square-free natural number and A and B are subgroups of G such that $n(A+B)=0$, then $(A+B) / B$ is neat in G / B if and only if $(A+B) / B$ is a direct summand of G / B.

Proof. The factor group $\frac{G / B}{\langle(A+B) / B, n(G / B)\rangle}$ is bounded and hence by theorem 17.2 of [2] is a direct sum of cyclic groups. Let $\frac{G / B}{\langle(A+B) / B, n(G / B)\rangle}=\oplus_{i \in S}<$ $\bar{x}_{i}>$, where S is the set of all square-free natural numbers and $\left\langle\bar{x}_{i}\right\rangle$ is cyclic of order n_{i}. Define the natural homomorphism $f: G / B \rightarrow \oplus<\bar{x}_{i}>$ in such a way that for each $i \in S$ we choose $\left(x_{i}+B\right) \in G / B$ so that $i \in\left(x_{i}+B\right)=\bar{x}_{i}$, then

$$
f\left(n_{i}\left(x_{i}+B\right)\right)=n_{i} \bar{x}_{i}=0 \Rightarrow n_{i}\left(x_{i}+B\right) \in<(A+B) / B, n(G / B)>
$$

Let $n_{i}\left(x_{i}+B\right)=\left(a_{i}+B\right)+n\left(g_{i}+B\right)$, for some $\left(a_{i}+B\right) \in(A+B) / B$ and $\left(g_{i}+B\right) \in G / B$. Since $n \bar{x}_{i}=0$, it follows that n_{i} divides n and hence n_{1} is itself square-free for all i. Now,

$$
\begin{equation*}
\left(a_{i}+B\right)=n_{i}\left(\left(x_{i}+B\right)-n / n_{i}\left(g_{i}+B\right)\right) \tag{1}
\end{equation*}
$$

Neatness of $(A+B) / B$ in G / B implies that there exists $\left(a_{i}^{\prime}+B\right) \in(A+B) / B$ such that $n_{i}\left(a_{i}^{\prime}+B\right)=a_{i}+B$. If we set $y_{i}+B=\left(x_{i}+B\right)-\left(a_{i}^{\prime}+B\right)$, then with the help of relation (1)

$$
\begin{equation*}
n_{i}\left(y_{i}+B\right)=\left(a_{i}+B\right)+n\left(g_{i}+B\right)-n_{i}\left(a_{i}^{\prime}+B\right)=n\left(g_{i}+B\right) \tag{2}
\end{equation*}
$$

Furthermore, $f\left(y_{i}+B\right)=f\left(x_{i}+B\right)=\bar{x}_{i}$
Define, $L=\left\langle n(G / B), \ldots, y_{i}+B \ldots\right\rangle$. We prove that $G / B=(A+B) / B \oplus$ L.

If $x \in(A+B) / B \cap L$, then

$$
x=\sum_{i \in S} m_{i}\left(y_{i}+B\right)+(n g+B) \in(A+B) / B
$$

and with the help of relation (2), $f(x)=\sum_{i \in S} m_{i} \bar{x}_{i}=0$ implies n_{i} divides m_{i}. Now,

$$
\begin{aligned}
& n_{i}\left(y_{i}+B\right)=n\left(g_{i}+B\right) \in n(G / B) \Rightarrow m_{i}\left(y_{i}+B\right) \in n(G / B) \\
\Rightarrow & x \in n(G / B) . \text { Consequently, } \\
& x \in(A+B) / B \cap n(G / B)=n((A+B) / B)=0
\end{aligned}
$$

and hence $(A+B) / B \cap L=0$.
Now if $(g+B) \in G / B$, then definition of f and relation (2) implies that

$$
\begin{aligned}
& f(g+B)=\sum_{i \in S} m_{i}^{\prime} \bar{x}_{i}=f \sum_{i \in S} m_{i}^{\prime}\left(y_{i}+B\right) \\
\Rightarrow & f\left((g+B)-\sum_{i \in S} m_{i}^{\prime}\left(y_{i}+B\right)=0\right. \\
\Rightarrow & \left((g+B)-\sum_{i \in S} m_{i}^{\prime}\left(y_{i}+B\right)\right) \in<(A+B) / B, n(G / B)> \\
\Rightarrow & (g+B)-\sum_{i \in S} m_{i}^{\prime}\left(y_{i}+B\right)=(a+B)+n\left(g^{\prime}+B\right)
\end{aligned}
$$

for some $(a+B) \in(A+B) / B$ and $\left(g^{\prime}+B\right) \in G / B$

$$
\Rightarrow(g+B) \in<(A+B) / B, L>
$$

With the help of lemma 1, the proof of the following theorem is clear.

Theorem 3. If n is a square-free natural number, a B-neat-high extension $0 \rightarrow A \rightarrow G \rightarrow C \rightarrow 0$ is a B-pure-high extension if $n(A+B)=0$.

If we focus our attension to neat subgroups we have an analogue of the well known theorem that a bounded subgroup of a group G is pure if and only if it is a direct summand of G.

Lemma 2. If n is a square-free natural number and A a subgroup of a group G such that $n A=0$, then A is a neat subgroup of G if and only if A is a direct summand of G.

Proof. Follows on similar lines as that of lemma 1.
The proof of the following theorem is clear.

Theorem 4. If n is a square-free natural number, then the neat extension $0 \rightarrow A \rightarrow G \rightarrow B \rightarrow 0$ splits if $n A=0$.

Theorem 5. If n is a square-free natural number and A is a $n G$-high subgroup of G, then the sequence $0 \rightarrow A \rightarrow G \rightarrow B \rightarrow 0$ is splitting neat exact.

Proof. If A is a subgroup of G which is maximal with respect to the property $A \cap n G=0$, then A is neat in G, (see [3]), that is, $m A=A \cap m G$ for all square-free natural numbers m. In particular, if $m=n$ then $n A=0$ and theorem 4 completes the proof.

References

[1.] L. Fuchs, Abelian Groups, Pulishing House of the Hungarian Academy of Sciences, Budapest (1958).
[2.] L. Fuchs, Infinite Abelian Groups, Vol. 1, Academic Press New York and London (1970).
[3.] D. K. Harrison, J. M. Irwin, C. L. Peercy and E. A. Walker, "High Extensions of Abelian Groups", Acta Malh. Acad. Sci. Hungar, 14, pp. 319-330, 1963.
[4.] K. Honda, Realism in the Theory of Abelian Groups 1, Comm. Math. University St. Pauli 5, pp. 37-75, 1956.

[^0]: Received February 20, 1990.

