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GENERALIZATION OF CERTAIN SECOND ORDER ORDINARY

DIFFERENTIAL EQUATION OF NISHIMOTO BY

THE FRACTIONAL CAL.CULUS METHOD

SHIH-TONG TU AND KATSUYUKI NISHIMOTO

Abstract. A generalization of theorems derived by Nishimoto ((4), [8)0
pp. 154-161), for certain second order ordinary differential equation of
Fuchs type was reported by S. Owa. I<. Nishimoto and their colleagues
[7]. In this paper, a new proof for generalization theorems in previous pa­
per and the second generalization theorems for the second order ordinary
differential equation of Nishimoto are report.eel.

§0. Introduction (Definition of fractional calculus)
Definition.

Let D = {D, D}, C = {C, C},
一 十 一 十

C be a curve along the cut joining two points z and -oo 十 ilm(z),

C be a curve along the cut joining two points z and oo 十 ilm(z),

; be a domain surrounded by C,
－－Dbe a domain surrounded by C.

十 十

(Here D contains the points over the curves C)
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Moreover, let f = f(z) be a regular function in D (z E D),

fv = (f)v =c(f)v=二 I !(()
2面 c((-z)v+l d((v ft Z可 (1)

(f)-m = lim (f)v (m E Z勺 ，v-+-m (2)

where -1r~arg((- z)·~1r for~'·o~arg((-:- z)~ 沄 for C, (f z, f; Gamma
f . . 十
unct10n

----oo 十 ;/m(x)一＿＿ ，、三 OO 十 ilm(x)

C C
+

Fig. I. Fig. 2.

then (f)v is the fractional differintegration of arbitrary order v (derivatives

of order v for v > 0, and integrals of order -v for v < 0), with r~spec.t to z, of
the function f if l(f)vl < oo.

Note l. Consider the principal value for many valued f~nction f

Note 2. For th~_ complex: v, we consider the princip~l value for our conve-
mence.

Note 3.
,, .

!1.1 = (!)1.1 is
evi
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｛
for Re(v) > 0
for V = 0
for Re(v) < 0

for VE C·r, 1 fv exists.

And in case of Re(,/) = 0, fv is only formal differintegration regardless of
Im(z/)>0. That is l

＜
, we 1ave no derivative and h1tegral for v =pure imaginary.

§1. Theorems for a second order ordinary differential equation of Nishimoto
Nishimoto gave the following results by the method f fo ract10nal calculus

[4].
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Theorem A. If fa(# 0) exists, then the differential equation of Fuchs type

cp2 . z2 十 cp1·2az + cp·a(a - 1) = f (z f= 0) (1.1)

has a particular solution of the form

<p = (f-o·z-2)o 一 2, (1.2)

where <p = cp(z), n(E C) is a given constant, :i E" C and l =·f(z) is known.

Theorem B. The differential equation of Fuchs type

令 ·z2 +'PI·2az +'P·a(a - 1) = 0 (z~0) (1.3)

has a solution

<p = K(z-2)0 一 2 = J(e-i1ro-r(a)z-0' {1.4)

where a (/_ z- U {0}, J(is an arbitrary constant of the integration, <p = cp(z) and
z EC.

Theorem C. If犀# _o) exists, then the differential equation given by (1.1)
has the solution

'P = (f-o·z-2)o-2 + K(z-2)0 一 2

= (f-o·戶）0 一 2 + Ke尹叮(a)z-cr

(1.5)

(1.6)

where a (/_ z- U {0}, I(is an arbitrary constant of the integration, c.p = c.p(z),
J = J(z) is known, and z E C.

§2. A Generalization of Nishimoto's results in§1

The following theorems were derived by S. Owa, K. Nishimoto and their
colleague [7] by means of fractional calculus. The same theorems are treated

here a.gain. "However the m'ethod to obtain these theorems, which is described
as below, is different from the former slightly.
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Theorem 1. If fa:-(f; 0) exists, then the nonhomogeneous differential equa­

tion of Fuchs type

｀L[cp(z),n,a:] ='Pn·Zn+ L'Pn-k·{
r(a:)

k=l
r(a: - k)r(k + 1)

(zn)k

r(a:)n
+ ..-,/ . 1 . 、..-,/ . 、(zn 一 1h-1}:::: f (z~0) (2.1)

has a particular solution of the form

'P = (f-OI·z-n)OI一n (2.2)

where <.p = i.p(z), n E z+, a(E C) is a given constant, z E C and f = f(z) f: 0
is known.

Proof. Let

i.p = Wa,· (<po = <p) (2.3)

hence

'Pn = Wa+n,

we have then

，`

Wcr+n·Zn + L Wcr+n-k {
r(a)

r(a - k)f(k + 1)
(zn)k

k=l

r(a)n
十 T,'. 4 . 、T,'. 、(zn-l)k-1} = f (2.4)

from (2.1). Since

n

(wn+I· 尸）0 一 1 = I: f(o)
f(a - k)f(k + 1) (wn+I)o 一 1-k(芸）k

k=O
n I'(a)

=Wn+OI. Zn 十 L Wn+o-上丁 (2.5)
k=I
f(a - k)f(k + 1)

and
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n-1
(wn·Z户 l尸=~f(o)

k=O
f(o - k)I'(k + 1)

-(wn)a 一 1-k(z正 1)k

n

=L r(a)
Wn+a 一k(zn-l h-1

k=l
f(o + 1 - k)f(k)

(2.4) gives

(2.6)

(Wn+l . Zn)Cl! 一 1 + n(Wn·zn-l)() 一 1 f (2.7)

that is,
nWn+ 1·Z + nWn·Zn-1 fi-a· (2.8)

This is equivalent to
(wn·zn)1 ii-a-· (2.9)

Thus we have

w (f-a·Z-n)-n (2.10)

or

cp = w。= (f-a·Z-n)a-n,

as a particular solution to the differential equation (2.1).
Conversely, we have

'Pn = (f-o·Z-n)o = Wo+n,

(2.11)

(2.12)

then substituting this into the left hand side of (2.1), we obtain

L. H. s. of (2.1) = WCl'+n·Zn
n

+ LWCl'+n-k·{
f(Cl')

(zn)k +
f(a)n

f(a 一 k)f(k + 1) f(a + 1 - k)f(k)
(zn-1尸｝

k=I

= (wn+l. zn)CI' 一 1 + n(wn·zn-l)CI' 一 1

= (wn+l. Zn 十 nwn . Zn-I)Cl'-1

((f-a·Z丑 )i . Zn + n . f-a . z-n . Zn 一 1) a 一 1

(Ji-a·Z-n·Zn+ f-a·(z-n)i·Zn+ n·f-a·z-1)0 一 1

= (Ji-a,)a 一 1

= f.
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Note 1. Letting n:::: 2 in Theorem 1, we have Theorem A in§1.
Note 2. The treatment described above is better than previous one.

Theorem 2. Homogeneous differential equation of Fuchs type

L['P(z), n1 o] = 0 (z~0) (2.13)

has a solution

ip = K(z-n)o 一 n = Ke 一 2元(o 一 n ) r(o) -0/—.z
f(n)' (2.14)

where n E z+, a rt z- U {O}, z EC, <p = cp(z), and [((-/: 0) is an arbitrary
constant.

Proof. In the same way with the proof of previous theorem, with the aid
of (2.3), (2.5) and (2.6) we obtain

Wn+l·Zn + nwn·z户 l 。
that is,

Wn+l -1·.. = -nz
Wn

from (2.13). Integrating botl~e sides in (2.1.5),we have

(2.15)

Wn = /(z-n' (!{ -:J O)

hence

9· 匹 = K(z-n)Ol'-n

= I(e-i1r(0i-n)庄2尸
f(n)' (2.16)

as a solution to the homogeneous equation (2.13),where a(/. z- U {O}.
Conversely, substituting (2.16) into the left hand side of (2.13), we get

L. I-I. S. of (2.13) = (wn+I·zn)o- 一 1 + n(Wn·Zn-I)o-1

= (wn+l. Zn 十 71.Wn . zn-.1)o- 一 1

= ((Kz-n)1·Zn+ nKz-n·Zn 一 1)o- 一 1

= (O)o- 一 1

= 0.
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Note. Taking n = 2, theorem 2 derives theorem B in§1.

Theorem 3. If 犀 :/=0) exists, then the diffi至ntegrated function

<.p = (f-a·Z-n)a 一n + Ji、酆(Z-n)a 一n

satisfies the differential equation of Fuchs type (2.1), where n E Z七 a ft z-u{o},
z E C, <p = <p(z), f = f(z) is known, and K(/= 0) is an arbitrary constant.

Proof. It is clear by the theorems 1 and 2.

辶 Note. Taking n = 2 in theorem 3, we have theorem C in§1.

§3. The second generalization of Nishimoto's results in§1.

THeorem 4. If fcx(-:J 0) exists, then the nonhomogeneous differintegral

equatio7:- of Fuchs type

L[<p(z), m, n, a]
n

三 I.Pm. Zn+L~福-k. { 叩） (zn)k
k=l

r(a - k)f(k + 1)
r(a:)n

+ -r,/ . ~ '、y-.,/' 丶(zn-1尸} = f (z =/ 0) (3.1)

has a particular sou tion of the form

cp = (f-o·Z-n)o-m (3.2)

where <p = <p(z), m E Z, n E z+, a(E C) is a given constant, z E C and

f = f(z) i= 0 is known.

Proof. Setting

<p = w。 侄0 = c.p) (3.3)

hence

<t?m = Wa+m,
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we have then
n

Wo+m. Zn十L Wo+m-k f(a)
k=I

{r(a-k)f(k+l)(护）k

十
f(a)n （曰

f(a+l-k)f(k) z 尸} = f

from (3.1). By the use of relationships (2.5) and (2.6), (3.4) gi_ves

(3.4)

(wm+l· 护）0 一 1 + n(wm·zn-l)a 一 1 = f,
that is,

Wm+I·Zn + nWm·Zn-I
This is equivalent to

h-Ct•

(wm·Zn)1 fi-a·
Thus we obta.in

W = (f-a·Z-n)-m

or

<.p = w。= (f-a·Z-n)a-m,

as a particular solution to the equation (3.1).

Conversely, we have

if)m = Wa+m = (J泣 . z-n)a,

then substituting this into the left hand side of (3.1), we obtain

L. H. S. of (3.1) = (wm+l·zn)a一 1 + n(Wm·zn-l)a一 1
= ((.f丑 ·Z-n)i·Zn + n·f-a·z-n·z户 1)正 1

= (Ji-a)正 1

= f.
Note 1. Equation (3.1) is a differential equation form~n, a differintegral equation

for n > m > 0 and an integral equation for m ::; 0, respectively.
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Note 2. Letting m = n in theorem 4, we have theorem 1 in§2. That is,

L[c.p(z),n,n,o] = L[c.p(z),n,o] = f for m = n.

Theorem 5. Homogeous difjerintegral equation of Fuchs type

L[cp(z),m,n~a] = 0 (z f; 0) (3.5)

has a solution

K(z-n)cx 一m = Ke刁正 -m) r(a-m+n) zm-n-cx
r(n)

where m E Z, n E Z七 (a - m + n) (/_ z- U {O}, z E C, <p =扣）and K(-/= 0) is
'{) = (3.6)

an arbitrary constant.

Proof. In the same way with the proof of previous theorem, with the aid

of (3.3), (2.5) and (2.6), we obtain

Wm+l . Zn + nWm . zn-1 。
that is,

Wm+l -1
· 一"一.. .. . .. = -nz
Wm

from (3.5). Integrating both sides in (3. 7), we have

(3.7)

Wm = J(z~n, (K i 0)

hence

(f) = w。= J{(z-n)a-m = I(e-i1r(a-m) r伍 -m+ n)
f(n) zm-n-a， (3.8)

where (a - m + n) {j_ z- U {O}.

Conversely, substiuting (3.8) into the left hand side of (3.5), we get

L. H. S. of (3.5) = (wm+I·户+ nwm . zn-1)er 一 1r

= (-Knz-1 + nl(z-1)0 一 1

= (O)cr刁

= 0.
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Note. Letting m = n in theorem 5, we have theorem 2 in§2.

Theorem 6. If犀 i= 0) exists, then the differintegrated function

<p = (f-0/ . z-n)()/一m + K(z-n)Oi-m

satisfies the difjerintegral equation of Fuchs type (3.1), where m E Z, n E z+,
(a - m + n) rt z- U {O}, z E C, cp = <p(z), J = f(z) is known, and K(~0) is
an arbitrary constant.

Proof. It is clear by the theorems 1 and 2.

Note. Letting m = n in theorem 6, we have theorem 3 in§2.
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