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LIFTING AND PROJECTING BETWEEN RANDERS
AND RIEMANNIAN SPACES

A A. TAMIM

§1. Introduction.

Let M, be an n-dimensional differentiable manifold and T'M,, its tangent
bundle, which is a 2n-dimensional differentiable manifold. The lifting process of
tensor fields and connections from the base manifold M, to its tangent bundle
T My has been studied by many authors ([10], [11], ..., etc.). Although great at-
tention has been paid to this process, the process of raising the dimension of the
base manifold by one has attracted few mathematicians. However, many prob-
lems in-relativity, mechanics, ..., etc., depend to a great extent on this notion.
One of the most interesting works in this direction is that of A. Lichnerowicz [4].
In his study he has introduced a notion of projecting (resp. lifting) Lagrangian
functions defined on M4, (resp. M,) onto M, (resp. to My41).

The purpose of the present paper is to introduce a notion of lifting and
projecting vector fields from one space to another with dimensions different by
one. Having done so, the mutual relations of the geometric objects (metric ten-
sors, geodesics, connections, curvature tensors, Jacobi fieldss, ..., etc.) on both
manifolds, one of them is Finsler and the other is Riemannian, are established.

In §2, we give a brief survey for the notions and results to be used latter on.
We follow the approach of Lichnerowicz [4] in:

1) Lifting a Randers space (My, L) to a Riemannian space (Mp41,£) such that
the projection on M, of extremals of £ are extremals of L.

2) Projecting the Riemannian space (M,41,£) noto the space (M, L) such that
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34 A. A. TAMIM-

every extremals of £, under certain condition, is projected on an extremal of L.

§3 is devoted to the relation between connection coefficients of the two spaces
(Mpy1,£) and (My,° L).

The study of the lifting process is the object of §4. A necessary condition for
the lifting of a Jacobi field defined in (My,° L) to be a Jacobi field in (Mn41,£)
is derived. The well known Morse index theorem is then applied to our obtained

results.

§5 is concerned with the study of projection process. A necessary condition
for the projection of a Jacobi field defined in (Mn41,£) to be a Jacobi field in
(M,,° L) is given.

In the last section, §6, we conclude our study with two significant examples.

The author wishes to express his heartly thanks and his sincere gratitude to
professor J. Klein at Grenoble University for many discussions he had with him
during his stay in Egypt and by mail and also for his suggestions. The author
wished to express also his sincere gratitude to professor B. T. Hassan for his

valuable discussion and suggestions.

§2. Preliminaries.

By a differentiable manifold M, we will always mean a C* connected man-
ifold of finite dimension n covered by a system of coordinate neighborhoods
{U;2'} where U denotes a neighborhood and 2! denote the local coordinates in
U, with Latin indices 1, j, k, ... taking on values in the range 1,2,...,n. All the
geometric objects we are interested with are assumed to be smooth. For every

bundle F — N, we will always denote E, by the fibre over z in N.

Let V be a Riemannian (Levi-Civita) connection on My, by a Jacobi field

we mean a vector field J along a geodesic ¢ in M, such that:

D*J/dt* + R(V,J)V = 0
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where V = dc/dt, R is the Riemannian curvature tensor and D/dt is the
covariant derivative operator associated with the Riemannian connection.

By a Randers space we mean a Finsler space (M, L) with a fundamental
function L(z,%) =° L(z,%) +° B(z,2) where °L(z,2) = Wl), gij is a
Riemannian metric tensor and °B(z,4) = bi(z*)i*.

For more details on Randers space we refer to [2], [5] and [9].

Appealing to the same hypothesis as in [4], in the case of a charged particle
in M,; a global potential B does exist such that the trajectories of this particle
can be defined as the extremals of the integral associated with the function
L(z,%) given above. It is therefore possible to interpret the trajectories of the
charged particle in My, as the projection of geodesics in the Riemannian manifold
of dimension n+4 1 such that Goo = 0in the adapted coordinates “i.e. the natural
coordinates (z°, ) in which the metric tensor G is independent of the variable z°
and the trajectories of the vector field £ which generates the global 1-parmeter
group of the local transformations of the manifold has the form & = 0 and
g =1,

Let L2(a%,2%) = Gop(2*)i®2P, where L is homogeneous function of de-
gree 1 in ¢ and G,g are the components of a metric tensor on M+, which is
independent of the variable 2° in the adapted coordinates, with Greek indices
«, 3,... taking on values in the range 0,1,2,...,n.

We shall assume that §66L# 0%). As doL= 0, then we have, using Euler-
Lagrange equations, d(90£)/dt = 0. Thus

6L = h (1)or 6L = 2rL. (2)
But since

L2 = Goo(2°)? + 2G.oi i°%' + Gy;i'd?, with Goo # 0

1) We will always use the summation convention, i.e. repeated indices

imply summation.

2) 0o L=0L[02%, 0, £=0L[0%,...,0, ;&= 9 Ljoi*0i®
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we get

LY = (Gooi® + Goit')}/Goo + (Gij — GoiGoj/Goo)i'd . (3)

Therefore, equation (2) can be written in the form
8L = 2hE = 2(Goo2® + Goid?). (4)

As the extremals of £ are charaterized by the condition d; £= h, and noting
that Goo # 0, therefore, by solving equation (1) for 2° we get £° = (2,27, k),
where ¢ is a homogeneous function of degree 1 in 7 and depends on h.

Using equation (4), equation (3) can be written as:
£¥ = h2£?%)Goo + @7

where

@? = gij:i:i:i'j and Gij—GoiGoj/Gom

Hence

@ = (1-h*/Geo)L?,

and then

@ = £/1-h?/Goo. (5)

From homogenety of £, we have
9, £ = £ — hd°, along an extremal of £. (6)

Using equation (4), the variable ¢° can be expressed as a function of both £ and
(z¢,27) as :

#° = (B - G Cos (7)

Thus in equation (6), the quantity ¥, £ can be expressed by a function *L of

the variable (z*,47,h) as:

“L(z*,&9,h) = £(z%,37,¢(z*,27,h)) — he(at,37,h). (8)



LIFTING AND PROJECTING 37

Also, we have

ak L = a,-c£+86.€8,-c¢—hak¢.

Using equation (1), we have along an extremal of £, that:
9, "L = 9. L.
Now let

t ~
g = / Lt = /.&B Os L dz®, where AD is an extremal of £,

to

= [ . (9. £dz* + hda® =/ 9; *L dz* + h(z°(B) — z°(A)),
Jen @ )= | o (+°(B) - 2°(4))

where ab is an arc in M,,.

Thus the extremals of £ such that d;£ = h project on exteremals of

131
J =/ 9, *Ldz* .—_/ *Ldt.
é-b to

Therefore, the projection of extremals of [L(z,z)dt which correspond to the

value h on M, are extremals of the integral

/ *L(z*, &7, h)dt - (9)

where h has a chosen value.

In conclusion, we have for any homogeneous function £ (z%,2%) of degree
1 with respect to £® such that ds5£# 0, the extremals on M 41 of the integral
[£(z,#)dt which correspond to the value h given by 0, £= h, will be projected
on M, via the extremals of the integral (9), where h has the same chosen value
and ~L is given by (6).

Moreover, using equations (5) and (7), cquation (8) can be rewritten in the

form

“L(z',#9,h) = /(1 = h?/Goo)gijt's + h(Goil Goo)t' (10)

Now, comparing this function with the initial function L of the Randers space,

we notice that the quadratic form gija':"i'j is multiplied by a factor (1 — h?/Goo)
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which depends in general on the parameter h and z! by the intermediation of
Goo; which is not the case for L. We can avoid this difficulty by choosen Goo =

constant, and by defining a new constant p which modify the numerical value of

Goo if it is necessary, by
fh = /1~ h?[Goos

In this case, the extremals of L are also the extremals of

V1= [Gool(z,8) = /(1 = h?/Goo)gijids + phbii'. (11)

Identifying equation (11) with *L(2% 47, h), we see that the symbol g;; stands

for the same quantitiés and also Go; = uGoobi: Also, we have:
Gos = constant, Gos = pGoodi and Gy = gi5+ ,u2G°°bibj.
The Riemannian metric sought can be written as:

do? = £2(a%,dz®) = Gap(z’)dz* dz”®
= gijdatda? + Goo(dz® + pb;dat)?. (12)

Now, for simplicity, we take Goo = 1 and h = 1/\/5, then p.= 1.
Therefore, we get

1) Goo = 1, Glgs = by, Gy = g5 + bidj,

Y = *L/v/2,i.e. L and *L have the same extremals,

iii) do? = g dat dz? + (dz® + bida®)? |
= ds% 4 (de f bda)?

Or |

£ = °L 4

where

°L = gyi'id and B(at,d%) = ba(ai)i® = 8°4+°8. (13)

It is clear that, the inverse metric (G*?) of the metric tensor G = (Gag) on

M is given by:

B = 148, ™ = 0. ad GY = g9, (14)
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where
b2 = b; b

Now, it is important to compute the vatiation of z° along a trajectory in
M,. The calculation can be made in the general case for a geodesic of £2
corresponding to the value h.

From equations (5) and (7), we have

3° = (h)/Goo)r/gi;2i37 /(1 = h?/Goo) — (Goi/Goo)i'.

But as

Goi = H’Goobi and ph = L= h2/G°0 ’
then .
& = (1/,UfGoo) g,JaﬁzJ = /J'bii:i'
Consequently |

de® = (1/1Goo)ds® — ub; dzt. (15)

Hence, for Goo = 1 and h = 1/4/2, we have

da® = ds® — b;dat. (16)

, ty t .
g = / ds® — / b;dz' + c, (17)
to to

where ¢ denotes an arbitrary parameter.

Integrating, we get

Choosing the constant ¢ along every trajectory in M, we can evaluate the
function 2°(t) from equation (17). The expressions for z°(t) and zi(t) give a
parametric representation of a geodesic of (13) iii).

Therefore, we have

Theorem 1. [4]. The trajectories in My can be obtained as follows: given a
constant ¢, we consider a manifold M, 41 homeomorphic to M, X R and endowed

with the Riemannian metric (13) i), where 2° is the abscisa of a point on
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R. The considered trajectories are the projections on My of geodesics in the
Riemannian manifold Mp41.

Conversly, if for any given point of the trajectory, we associate the point of
M1 defined by (17) whose projection on My, is the given point, then this point

describes a geodesic in M4 satisfying the preceding conditions.

Let ¢ be a geodesic in M,. The geodesic in My 4 obtained using the method
mentioned above will be denoted by ¢, and called the canonical lifting of ¢ to
M1 If ¢(t) = (27(2)), then c,(t) = (2°(2),2*(t))-

We have to point out that the canonical lifting is taken over the submanifold

of TM, 41 defined locally by 0s £= 1/\/5 As L= \/W and h = 1/\5, we
get B =° L. Thus the canonical lifting of ¢(¢) defined by the n-functions z*(t)
is such that £°(¢) =° L(z%(t), 2*(t)) — bi(2¥(t))&*(t). On the other hand, we can
assume that ¢ = s° with ds°? = g;;dz*dzi. Therefore °L =1 and £° = 1 - b;&".

The sections z° = constant will be denoted by W,,. These are differentiable
manifolds of dimension n which are locally diffeomorphic to M.

In the rest of this section, we relate the geodesics of both *L and °L.

Lemma 1. A Randers space (M,,L) and a Riemannian space (My,° L),
where [ =° L +° 8, have the same geodesics if, and only if, the 1-form b;dz® is

closed.
Proof. From the definition of a Randers space, we have
Liz @) = *L{z,2) + “B{22)
thus
PL(L) = Pk(oL) + (ajbk — 8kb,-):bj.
Therefore
Pi(L) = Pe(°L) if, and only if, d(bj(z*)da’) = 0,

Where Py is the Euler-Lagrange operator, i.e.

Pi(L) = d(d,L)/dt — d)L.
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The extremals of both *L and L =° L +° 3, are the projections on M, of
exyremals of £ which satisfy the condition 0; £= 1/\/§

If the 1-form b;dz’ is closed, then the fundamental functions °L and L both
have the same extremals (cf. lemma 1), and so the fundamental functions *L

and °L both have the same extremals.

§3. Connection coefficients of the space (My41,£).

Let qéﬁ be the connection coefficients of the Riemannian connection on
Mn+1.
We can get by direct computation that:

: k ok -
a; = {ij} + A5, af = by + (bin b + bpiny b;)b",
g%, =0 = q%, a§ = ¢fo = 9"bpny, and (18)
a; = bymb®,
where {'R.} are the Christoffel symbols of the second kind with respect to the

iJ
initial Riemannian space (M,,° L),

bi; = Okb; — {j'}c}br,
bk = %(bjk + bk;)
b = %(ajbk — Okb;)
and A = g™ (bjnibj + biaj)bi)-

It is clear that:

Lemma 2. If the 1-form b;da* is closed, then the connection coefficients of

the Riemannian connection on M, 4, are given by

45 = {,;‘}, 0 = bij (19)

and the other components vanish.
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§4. The lifting.

Let us denote by V' the Riemannian connection on M,y and V the Rie-
mannian connection on (M,,° L).

Let ¢ be a geodesic in My, and ¢, be its canonical lift to My41. Given
any vector field X = X'0; along ¢, its canonical lift along ¢, is defined by
X, = X%y = X°8, + X'0;, where X° =° L(X) — w(X); w = b;dz*. We may
write X, = X, + X where X, e X 8. ‘ -

We shall denote by X,Y,... the vector fields along ¢ in My, and X,,Y,,...
their liftings along c,.

It is clear that: the lifting of the sum of two vector fields along C is equal

to the sum of their lifting along c,.

That is:
(X+Y), = X, +7Y,. (a)
We shall establish the following formulas which are to be needed in the -
sequel.
Since

[X,,Y,) = [X,Y]4 (X -Y° ~Y - X°)0,

where X - Y° denotes the Lie derivative of the function Y° with respect to X.

But as:
[X. Y], = [X,Y]o +[X,Y],
we have
[Xe, Y] = [X, Y]+ [X,Y] (6)
where |
[X,Y] = (X.Y°-Y.X°)0, - [X,Y]o.
Now, |
Vi, ¥Yp = V¥ £V ¥
As,
VY, = 0, ViY, = (X.¥Y°)8, and VY = VxY 4 b;;X'Y?0,
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then
Vi Ye = VxY + X'(0Y° + b(i5Y?)- (20)

Also
(V}(Y)9 = ny+(VXY)O.

Therefore the relation between V' Y, and the lifting of VxY is given by
Vi, Yo = (VxY) + C(X,Y), (c)

where

C(X,Y) = (X.Y° +bujX'Y))do — (VxY)o.

Now, let D'/dt and D/dt be the covariant derivative operators associated
with the Riemannian connections V/ on M,4, and V on M, respectively. Let
X be a vector field along ¢ and X, be its canonical lift along c,. From equation

(20), we have

D'X,/dt = DX/dt+ (dX°/dt+ b(j)E*X7)de.

As,
dX°[dt = —[9;b:)a X" + b; dX*/di],
thus | |
DX, = DX/‘”‘(bidXi/dHbr{z-g}a':"Xj)ao.
But

(DX/dt), = DX/dt+ (DX/dt)o,
therefore, we have
D'X,/dt = (DX/dt), —° L(DX/dt)ds. (d)

Let us denote by R' (respectively R) the curvature tensor of the connection
V' (respectively V).

From formulas (a), (b), (c) and the definition of the curvature, we have
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Proposition 1.
R'(X,,Y)Z, = (R(X,Y)Z),+ A(X,Y)Z
where
AX,Y)Z = {C(Y,VxZ)+ V,C(X,Z) - (X]Y)}+C([X,Y],2Z)

and (X/Y) means the same terms repeated with X and Y interchanged.

Using formula (a) and assuming that the scalar 1-form b;dz' is closed, then

we get, by direct calculation that:
AXY)Z = *rbs,

where
v = °L(VxVyZ) =° L(VyVx2) =° L(Vix,)Z).

Thus the relation between R'(X,,Y,)Z, and the lifting of R(X,Y")Z is given by
R'(X,,Y,)Z, = (R(X,Y)Z),+ ;0o.
Now, using formula (d), we get

DX,/dt* = (D*X/di*), + * %, 8.,
where

e = ~° L(D* X [dt?).
Therefore, using formula (a), we get
D"X,/dt* + R'(V,, X,)V, = (D*X/dt® + R(V,X)V), + 1 0.,
where

P o= %, 4 %%, V = de¢/dt and V, " is its canonical lift.
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Thus, we have

Theorem 2. If the 1-form b;dz* is closed, then the lifting of a Jacob: field

J along a geodesic ¢ in M, is a Jacobi field along the canonical lift ¢, in Mn41.

A point p of a geodesic ¢, corresponding to the parameter value t = b, is said
to be cojugate [6] to the point ¢, corresponding to the parameter value ¢t = a,
a < b, along c if there exists a non zero Jacobi field J along ¢ which vanishes for
t=aandt=h

The multiplicity of the point p as a conjugate point to g is equal to the

dimension of the vector space consisting of all such Jacobi fields.

Proposition 2. If the 1-form b;dz* is closed, then the lifting of a conjugate

point of ¢ will be a conjugate point of c,.

Proof. If the 1-form b;dz® is closed, then, using theorem 2, the lift of a
Jacobi field along a geodesic ¢ in My, is a Jacobi field along the canonical lift ¢,

in M,41. By the definition of conjugate points, the result follows.

Therefore, we have

Theorem 3. If the 1-form b;dz* is closed, then every geodesic ¢ of (My,,° L)

and its canonical lift ¢, of (Mn+1,£) have the same indez.

§5. The projecting.

For any point z of M,4;. the tangent space of My41 at z is written as
the direct sum TzMp41 = TzR & TzW,. Therefore, any tangent vector Z to
M, 41 at z is written in a unique manner as Z = 2o+ Zp, where Z, = Z°0, and
Zp = Z0;.

Let X be any vector field on M, 41, then X can be written uniquely in the
form:

X = X0 + X°0,.

In general X* and X° are functions of 2 and 2°. If X*depends on z* alone (i.e.
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X' is independent of z°), then, clesrly X'9; is a vector field on M,. In this case,
we say that X is projectable and its projection on Mn is Xy = X* '0;. In the
following, unless otherwise stated, all vecto1 fields on Mn+1 whlch we W1]1 deal
with are assumed to be projectable vector fields. B

We shall denote by X,Y, Z, ... the vector fields on M4, and their projec-
tions on M,, by X,,Yy,2Z,,.. '

It is clear that: the projection of the sum of two vector filds is equal to the
sum of their projections.

The bracket two vector fields on M, 4, can be decomposed into
(X,¥] = [X,¥], + [(&¥], (1)
where
(Y = ¥ - By = KXl

That is; the projection of the bracket is equal to the bracket of the projections.
Let V' (respectively V) be the Riemannian connection on M,.; (respec-
tively (Mn,° L)). '
The covariant derivative of a vector field Y in the direction of a vector X

can be decomposed into
(Vi¥)p = V% + *CX,Y) (22)

where ,
*C(.‘Xr, 1/') - (qé{‘JXOS/] + qfo‘x'i)/O + A:CJ_XlYJ)ak-

It is clear that:
1) ALY ) = X)) ‘
2) if the 1-form b;d2" is closed, then (22) reduces to

(ViY)p = VY. (23)

Let R’ (respectively R) be the curvature tensor of the connection V' (re-

spectively V). Thus, we have

(R YV = BE: V)8, +"AX.¥)Z (24)
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wher
*A(X,Y)Z =[R:, XYIZ° + R”‘OX ¥eze

ijo

+ R XY Z* + R X°YIZ°

2. R’JkX YIZF 4+ {(0;A% + 4a)s)
4 Atk{ } 5 QA X YJZk

— (i /J)]ahv

and (means the'same terms repeated with 7 and j interchanged.

Remark. We have to point out that if the 1-form b;dz* is closed, then

“A(X,Y)Z =0, and therefore the projection of a flat space will be a flat space.

Let ¢, be the canonical lift in M,4; of the geodesic ¢ in M,. Let D'/dt
and D/dt be the covariant derivative operator associated with the Riemannian
connections V' on M,y; and V on M, respectively. If X is a vector field along

Co, then its covariant derivative along ¢, is D' X/dt and its projection is given by
(D'X/dt), = (dX"/dt+ qkza*XP)0s.

Therefore, by using (23), we have

Lemma 3. If the 1-form b;dz' is closed, then the covariant derivative
associated with the connection V of the projection X, along ¢ of a vector field X
along c, 1s equal to the projection of the covariant derivative associated with the
connection V' of the vector field X .

That is to say; : _ :
(D'X}dt), = DX, /dt (25)
From this we can see that:

If the 1-form bida® is closed, then the projection of a parallel vector field
along c, with respect to V' is also a parallel vector field along c' with respect to
V.

['rom equations (24), (25) and the precedent remark, we have: If the 1-form

b;dz* is closed, then

(D®X/d* +R(V,X)V), = D*X,/dt* + R(V,, X,)V,, (26)
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where

V = dc,/dt is the velocity vector field along By
Thus, we have

Theorem 4. If the 1-form b;da* is closed, then the projection of a Jacobi

field along the canonical lift ¢, will be a Jacobi field along c.

Using theorem 4, a similar result to theorem 3, for projection of geodesics,

can be obtained.

§6. Examples.

Example 1. Let L = /(2% + y*) + y& + 2y be a Lagrangian function on
M, = R%
Here, the scalar 1-form b;da! is exact and is equal to d(zy). The extremals of the

given Randers space are straight lines, while the extremals of the Riemannian

space with lagrangian L= /32 + 92 + (¢ + y@ + 2y)? are parabolas which be
projected as straigt lines on the (2,y) plane. '
For, it s° is the arc length defined by °L (the Euclidean space), then the extremals

of L are given by

B = B4+ eosd, ;
{y = Yo+ s°sing. (1)

To determine z = 2.°, we integrate dz + ady + ydx = ds® which, with (1),gives
z = zo— (8°%/2)sin2¢ — s°(zosing + yo cos ¢ — 1).

Thus the extremals of £ satisfying 8.L/dz = h are parabolas in vertical planes

which have vertical axis.

Example 2. Let L = /(2% 4+ 9?) + y& — 2y be a lagrangian function on
M, = I,

The extremals of the given Randers space are circles with radii 1/2.
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For simplicity we take s° as a parameter such that ds°? = dz? 4 dy®. Then, the

Euler-Lagrange equations are

d(dz/ds® + y)/ds® + dy/ds® = 0,
d(dy/ds® — z)[ds® — da/ds® = 0.

By integration, we get

{:L' = 2o+ (1/2) cos(2s° + ¢), (1)
Y = Yo+ (1/2)sin(2s° + ¢).

The extremals of £ = 1/°L? + 32 on R® are given by (1) and
dz/ds® + yda [ds® — zdy/ds® = 1,

where z and y are given by equation (1) and z = 2°.

Therelore,
ydz [ds® — ady/ds® = —(1/2 4 2o c0s(2s° + ¢) + yo sin(2s° + ¢))

which gives

dz/ds® = 3/2+ 2,(2s° + @) + Yo sin(2s° + ¢).

By integration, we get
. ]. . o 1 0 3 o
z = Zo+ 5% sin(2s° + ¢) — Ve cos(2s° + ¢) + (-2-)3 (2)

Equations (1) and (2) define the extremals of L.

As a special case, if the circle’s center is the origin, i.e. 2, = yo = 0, then
2 = .2 +(3/2)s".

The extremals of £ are,in this case, helices.
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