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LIFTING AND PROJECTING BETWEEN RANDERS

AND RIEMANNIAN SPACES

A.A. TAMIM

§1. Introduction.

Let Mn be an n-dimensional differentiable manifold and TMn its tangent
bundle, which is a 2n-dimensional differentiable manifold. The lifting process of

tensor fields and connections from the base manifold A1n to its tangent bundle
TA1五 has been studied by many authors ([10], [11], ... , etc.). Although great at-
tention ha~been paid to this process, the process of raising the dimension of the
base manifold by one has attracted few mathematicians. However, many prob

lems in relativity, mechanics, ... , etc., depend to a great extent on this notion.
One of the most interesting works in this direction is that of A. Lichnerowicz [4].

In his study he has introduced a notion of projecting (resp. lifting) Lagrangian

functions defined on Mn+I (resp. A1n) onto 111n (resp. to Mn+1),
The purpose of the present paper is to introduce a notion of lifting and

projecting vector fields from one space to another with dimensions different by
one. Having clone so, the mutual relations of the geometric objects (metric ten
sors, geodesics, connections, curvature tensors, Jacobi fieldss, ... , etc.) on both

manifolds, one of them is Finsler and the other is Riemannian, are established.

In§2, we give a brief survey for the notions and results to be used latter on.
Vve follow the approach of L這merowicz [4] in:

1) Lifting a Randers space (111n,L) to a Riemannian space (Mn+1,£) such that
the projection on A1n of extremals of£are extremals·of L.

2) Projecting the Riemannian space (111n+1,£) noto the space (Mn,L) such that
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34 A. A. TAMIM

every extremals of£, under certain condition, is projected on an extremal of L.

§3 is devoted to the relation between connection coefficients of the two spaces

(111社1 ,£) a.nd (111n , 0 L).

The study of the lifting process is the object of§4. A necessary condition for

the lifting of a Jacobi field defined in (111n,0 L) to be a Jacobi field in (Mn+1,£)
is derived. The well known Morse index theorem is then applied to our obtained

results.

§5 is concerned with the study of projection process. A necessary condition

for the projection of a Jacobi field defined in (111n+1,£) to be a Jacobi field in

(111n,0 L) is given.

In the last section, §6, we conclude our study with two significant examples.

The author wishes to express his heartly thanks and his sincere gratitude to
professor J. Klein at Grenoble University for many discussions he had with him

<luring his stay in Egypt a.ncl by mail and also for his suggestions. The author
wished to express a.lso his sincere gratitude to professor B. T. Hassan for his

valuable discussion and suggestions.

§2. Prelin1inaries.

Dy a differentiable manifold .fiiln we will always mean a C00 connected man
ifol<l of finite dirnensioi1 n covered by a system of coordinate neighborhoods

{U;:可 where U denotes a neighborhood and :硏 denote the local coordinates in

U, with La.tin indices i,j, k, ... ta炻 ng on va.lues in the range 1,2, ... ,n. All the

geometric objects we are interested with are assumed to be smooth. For every

bundle E — N, we will a.lways denote Ex by the fibre over x in N.

Let V be a Rierna.nnia.n (Levi-Civita.) connection on Mn, by a Jacobi field

we mean a. vector field J a.long a geodesic c in .lvln such that:

护J/dt2 + R(V, J)\I = 0
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de/dt R is the R' ．
， iernanrnan curvature tensor and D/dt is the

covariant derivative operator associated with the Riemanman connect10n.
By a Randers space we mean a Finsler space (A1n, L) with a fundamental

function L(x淦）=0 L(x,x) +0 f](x淦）where 0L(x,x) = J元石可戸訒 ，9ii is a
Riemannian metric tensor and O /3(x, x) = bi(xk)矼
For more details on Randers space we refer to [2), (5) and (9).

Appealing to the same hypothesis a.s in (4), in the ca.se of a charged particle

in .Nln; a global potential B does exist such tha.t the trajectories of this particle

where V =

with the function

L(x,x) given above. It is therefore possible to interpret the trajectories of the
charged particle. in Mn as the projection of geodesics 111 the Riemanman manifold
of如nension n + l such that G。。= O in the adapted coordinates "i.e·. the natural

coordinates (x0,町 in which the metric tensor G is independent of the variable x0

associatedof the integralextremalstheasdefinedbecan

and the trajectories of the vector field~which generates the global 1-parmeter
manifold has the form~i and。of thelocal transformations

to= 1".
Let£2伊 ，紓 ）

of thegroup

of de-.£is homogeneous functionwhereG。武 护 ）終 註 ，
which isgree 1 in i and G。f3 are the components of a. metric tensor on Mn+l

independent of the variable x0 in the adapted coordinates, with Greek indices

a, {3, ... taking on values in the range 0, 1, 2, ... , n.
We sha.11 assume that {)66.£钅02). As 80.£= 0, then we have, using Euler-

(2)2h.£.

La.grange equations, d(fJo.£)/dt = 0. Thus

(1) or 86£2h86£

But since

with G。0 -I 0G。0位0)2 + 2G。ii:0±i+G。i: i祀 ，.£2

1) \Ve will always use the summation co11ve11t1on, 1.e. repeated indices

imply summation.
2) 臥£= Df/Dxc•, D。f= {J[j{Ji:'', ... ,008[= 护 £;a亡Oi13
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we get
£2 = (G。0X0 + G。ixi)2/G。o + (Gii - G。iG。i/G。0):i:ii;j. (3)

Therefore, equation (2) ca.n be written in the form

80£2 == 2h£== 2(G是;o + G。記 ）． (4)

As the extremals of£are charaterized by the condition 8江= h, and noting
that G。0 -:J 0, therefore, by solving equation (1) for 护 we get 矽 =¢(x丐 xi, h),

where¢is a homogeneous function of degree 1 in 缸 and depends on h.

Using equation (4), equation (3) ca.n be written as:

£2 = h2 .£勺G。0 + @2

where

@2 = g注由 and Gij - G。ic。i/G。o,

Hence
@2 = (1 - 汩G。0)£2'

and then

@ =£j1 - 町G。O• (5)

From homogenety of£, we have

护8;.£=£- 雇 0, along an extremal of£. (6)

Using equation (4), the variable 笠 can be expressed a.s a function of both£and

(xi, :i:i) a.s :

±0 = (h.£- G。i.1:")/G。o· (7)

Thus in equation (6), the quantity 拉8k .£ca.n be expressed by a function *L of

the variable (x丐 缸 ，h) as:

* L(:忙，祀 ，h) £(Xi, Xj 1 </>(xi, i), h)) - h</>(Xi, xi, h). (8)
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Also, we have
8k * L = 8k£+ 8。£8讜- ho哼·

Using equation (1), we have along an extrema.I of£, that:

。k *L = 8戶·

Now let

I= f£cit=丨~B 媯£dx汽 where AB is an extremal of£,

＝丨~(Ok£dxk + h dx0) =丨~Ok• L clxk + h(x0(B) - x0(A)),
AB

where ab is an arc in A1n.
Thus the extrema1s of£such that 8。£= h project on exteremals of

J = lo ak *Ld护＝「 •Ldt.
to

Therefore, the projection of extrema1s of J£(x, x)dt which correspond to the

value h on 111n are extrema.ls of the integral

丨 事L(面 ，缸 ，h)dt (9)

where h has a. chosen value.
In conclusion, we have for any homogeneous function£(xi, x0) of degree

1 with respect to 終 such that fJ聶耳 0, the extrema.ls on Mn+l of the integral

J£(i, x)dt which correspond to the value h given by fJ。£= h, will be projected
on J..111 via the extremals of the integral (9), where h has the same chosen value

a.nd·L is given by (b).

Moreover, using equations (.5) and (7), equation (8) can be rewntten m the

form
·L(xi,i:1,h) =《(1 - 忙/Goo)9iji;i:也+ h(G。dG。0)i:i. (10)

Now, comparing this function with the initial function L of the Randers space,

we notice that the quadratic form 9ijX甲 is multiplied by a factor (1 - 町G。o)
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which depends in general on the parameter h and x1 by the intermediation of

G。0; which is not the case for L. \Ve can a.void this difficulty by choosen G。。=
constant, and by defining a new constant J.l which modify the numerical value of

38

G。。if it is necessary, by

/1-町G。0.1th

In this case, the extremals of L are also the extremals of

《(1 - (11)l召 /Goo)9ijX五;i +µhb記叩 －町 G。0L(x淦）

Identifying equation (11) with * L(研，缸，h), we see that the symbol gij stands

for the sarr1e c1uanti ties··and·also G。i =·/lG。。bi, Also, we have

9ij 十正 G。O bibj•GiJa.n d/LG。幽G。tconstant,Goo

The Rierna.nnia.n.rnetric sought can be written as:

(12)

G。。伊 ）dxa dx。

= gij d正 dxi + G。o (clx O + fLbi dx憤

Now, for simplicity, we take G'。。= 1 and h = l/渥 ，then ft = l.

.£2匡 ，d笠）d(72

Therefore, we get

i) G。。= 1, G。i = bi, 崮 = 9ij + bi化 ，
ii) L = *LI渥 ，i.e. L a.nd * L have the same.extrema.ls,

iii)記 =g刀 d硏 clxJ + (clx0 + b.icl硏）2
= dso2 + (心0 + bi缸）2

，' . :, ; .
；
, ,丶＇.. 、
or

o L2 +~2
＇
，＇r．＇..'

£

where

％ （正 ）:i;Q{3(xi,x0')'= (13)

It is clear that, the inverse metric (G0勺 of the metric tensor G = (G。f3) on
A1n+l is given by:

Xo +o /3.a.ndgijiii1o L2

(14)tJ
g'Giia.nd-ulcoi1 + u2,coo
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where
b2 = bi bi.

Now, it is importa.nt to compute the vatiation of x0 along a trajectory in
Mn. The calculation can be made in the general case for a geodesic of£2

corresponding to the value h.

From equations (5) and (7), we have

护 = (h/G。。̀ 旳 妒伊/(1 - 尼/G。o)-:-.(G。i/G。o)缸

But as

G。i =µG。幽 andµh =叩 －町 G。0'

then
护 = (1/J.tG。o)~- 尹 ＼

Consequently
dx0 (1/ J-LG。o)ds0 - /Lbi dxi. (15)

Hence, for G。。= 1 a.nd h = l/渥 ，we have

心0 = ds0 - bi di i. (16)

Integrating, we get

护` = t ds0 -t b,dx'+ c, (17)

where t denotes an arbitrary parameter.
Choosing the constant c a.long every trajectory in Mn, we can evaluate the

function x0(t) from equation (17). The expressions for x0(t) and x\t) give a

para.metric representa.tion of a. geodesic of (13) iii).

Therefore, we have

Theoren1 1. [4]. The trajectories in li1n can be obtained as follows: given a

constant c, we consider a·,nanifold li1n+l homeomorphic to li1n X R and endowed
with the Ricmannian metric (13) iii), where x0 is the abscisa of a point on
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R. The considered trajectories are the projections on Mn of geodesics in the

Riemannian manifold Mn+I·
Conversly, if for any given point of the trajectory, we associate the point of

Mn+ 1 defined by (17) whose projection on J.1n is the given point, then this point

describes a geodesic in J.1n+I satisfying the preceding condiiions.

Let c be a geodesic in J.,fn. The geodesic in .!11n+I obtained using the method

mentioned above will be denoted by Ce and called the canonical lifting of c to

Mn+l·If c(t) =伊 (t)), then ce(t) = (x0(t), xi(t)).
We have to point out that the canonical lifting is. taken over the subrnanifold

of TMn+I defined locally by a。£= 1/渥 . As£= V°节了預 and h = l/渥，we
get f3 ::::0 L. Thus the canonical lifting of c(t) defined by the n-functions xi(t)
is such that :i:0(t) ::::0 L(xi(t),:i:i(t))- bi(xk(t)):i:1(t). On the other hand, we can

assume that t :::: s0 with ds02 = 9iidxi伊 Therefore O L = 1 and 护= 1..:.... b記 ．

The sections x0 = constant will be denoted by Wn. These are differentiable

manifolds of dimension n which are locally diffeomorphic to Mn,
In the rest of this sectjon, we relate the geodesics of both * L and OL.

Lemma 1. A Randers space (J.1n,L) and a Riemannian space (Mn,0.L),

where L ::::0 L +0 /3, have the same geodesics if, and only 祐 the l-form bidxi is

closed.

Proof. From the definition of a !landers space, we have

L(x,x) = 0 L(x,x) + 0/3(x,x)

thus
凡 (L) Pk(0 L) + (fJibk - fJkbi)xi.

Therefore

Pk(L) = Pk(0 L) if, and only if, d(bj(xi)dxj) = 0,

\Vhere Pk is the Euler-La.grange opera.tor, i.e.

Pk(L) = d(8kL)/dt - 8kL.
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The extremals of both * L and L =0 L +0 趴 are the projections on Mn of

exyremals of£which. satisfy the condition 8。£= 1/v2.
If the 1-form b汩 is closed, then the fundamental functions OL and L both

have the same extremals (cf. lemma 1), and so the fundamental functions *L

and O L both have the same extremals.

§3. Connection coefficients of the space (Mn+l, £).

Let q~/3 be the connection coefficients of the R"1emanman connect10n on

M社 l·

V\Te can get by direct computation that:

媯 = {i: } + A~i,. qfi = b(ij) + (blihl bi 十 祈ih] 朽）bh,

q~。= 0 = q。:a'
q。＼ ＝扉 ib\

媯 ＝呤 = ghkb[hjJ, and (18)

J(where { .. } are the Christoffel symbols of the second kind with respect to the
1,J

initial Riemannia.n space (.Nln,0 L),

r
bij = 8邑- {jk }br,

1
b(jk) = -(bjk + bkj)

2
1

回 =2(&j姒－。卣 ）

and 才 hk)ij = g (b[hi]bj + b[hjjbi .

It is clear that:

Lem1na 2. If the 1-form 如l:忙 is closed, then the connection coefficients of

the Riemamiicm connection on J\lln+ 1 are given lJy

嫣 = { ~'-
l) }'

and the other components vanish.

qfj = b'IJ' (19)
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§4. The lifting.

Let us denote by V'the Riemannian connection on Mn+I and'v the Rie

ma.nnian connection on (~1n,0 L).
Let c be a geodesic in l\1n, and Ce be its canonical lift to Mn+I·Given

any vector field X = Xi。i along c, its canonical lift along Ce is defined by
Xe= X痍 ==X08。+ xi扒 ，where X0 ==0 L(X) - w~X); w = bidxi. We may

write)(e = X。+ X where X。= X0o。.
We shall denote by .X, Y, ... the vector fields along c in Mn, and Xe,~心. . .

their liftings along Ce·
It is clear that: the lifting of the sum of two vector fields along C is equal

to the sum of their lifting along Ce.

That is:

(X + Y)e = Xe+ Y(]. (a)

We shall establish the following formulas which are to be needed in the

sequel.
Si11ce

[.Xe, Ye] = [X, Y] + (X·Y0 - Y·X0)8。

where X·Y0 denotes the Lie derivative of the function Y0 with respect to X.

But as:
[X, Y]e = [X, }' )。+ [X, Y],

we have

[X。, Ye] [X, Y]e + [X, Y] (b)

where
[X, Y]' (.}{.Y0 - Y.X0)8。- [X, Y]。.

Now,
v7'yx(} e v7'.x-Ye + v7\。呤

As,

v'\o呤 0, \7\)'~。 (X.Y0)8。 and'9\ Y 巧Y + b{ij)x平O。
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then
v.'xe玲 = VxY + X國Y0 + b(ij)Y叮 ． (20)

Also
('vXY)e VxY + (VxY)。．

Therefore the relation between Vx~Ye and the lifting of VXy is given by

v'~x-QYe = (巧Y)e + C(X, Y), (C)

where
C(X, Y) = (X.Y0 + b(i謎~iyi)fJ。- ('vxY)。.

Now, let D'/dt and D/dt be the covariant derivative operators associated

with the Riemannian connections'v'on Mn+I and'v on Mn respectively. Let
X be- a vector field along c and X12 be its canonical lift along c12. From equation

(20), we have

D'X12/dt = DX/dt + (dX0 /dt + b包 ）引xi)a。.

As,
dX0 /clt －［厄 ）．研 xi +bid.Xi/dt],

thus
D'X12/dt = DX/dt- (bidXi/dt + br{i:}xiXi)o。.

But
(DX/dt)e DX/dt + (DX/dt)。'

therefore, we have

D'Xe/dt = (DX/dt)e -0 L(DX/clt)8。. (d)

Let us denote by R'(respectively R) the curvature tensor of the connection

'v'(respectively'v).
From formulas (a), (b), (c) and the definition of the curvature, we have
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Proposition 1.

R'(Xe, Y{])Z。= (R(X, Y)Z){]旦(X,Y)Z

where

A()~「, Y)Z = {C(Y, Vx Z) + V~C( ..Y, Z) - (X/Y)} + C_([X, Y), Z)

and (X/Y) means the same terms repeated 画th X and Y interchanged.

Using formula (a) and assuming that the scalar I-form bidxi is closed, then

we get, by direct calculation that:

A(X, Y)Z = *r 8。'

where
*r = 0L(VxVyZ)-0 L(\7內x Z) -0 L(V[x,YJZ).

Thus the relation between R'(Xe,Ye)Ze and the lifting of R(X,Y)Z is given by

R'()汽 ，Yu広 = (R(X, Y)Z)e +這

Now, using formula (d), we get

D'2X12/dt2 = (D2X/dt2)e+**r 8。'

where

**r = -0 L(D2 X/記 ）．

Therefore, using formula (a), we get

D'2 ..,yel clt2 + R'(Ve, ..,ye)Ve = (D2 X/clt2 + R(V, X)V)e + r 8。'

where

r = *r + **r, V = dc/dt and \I ..l! 1s 1ts ca.nomcal lift.
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Thus, we have

Theorem 2. If the l-form bidxi is closed, then the lifting of a Jacobi field

J along a geodesic c in A1n is a Jacobi field along the canonical lift Ce in Mn+I·

A point p of a geodesic c, corresponding to the parameter value t = b, is said
to be cojugate 圍 to the point q, corresponding to the parameter value t = a,

a < b, along c if there exists a non zero Jacobi field J along c which vanishes for

t = a and t = b.
The multiplicity of the point p as a conjugate point to q is equal to the

dimension of the vector space consisting of all such Jacobi fields.

Proposition 2. If the l-form biclxi is closed, then the lifting of a conjugate

point of c will be a conjugate point of Ce.

Proof. If the 1-form 如丘 is closed, then, using theorem 2, the lift of a

Jacobi field along a geodesic c in Mn is a Jacobi field along the canonical lift Ce

in A1n+l·By the definition of conjugate points, the result follows.

Therefore, we have

Theorem 3. If the l-form 如lx i is closed, then every geodesic c of (Mn, 0 L)

and its canonical lift Ce of (l\lln+1, £) have the same index.

§5. The projecting.

For any i)oint z of l\1n+I·the tangent space of lvln+I at z is written as

the direct sum Tzl\1n+I = TzR 印呤 ltVn.'Therefore, any tangent vector Z to

l\1n+ 1 at z is written in a unique manner as Z = Z。+ Zp, where Z。= z0a。and

為 = zi扒 ．
Let X be any vector field on l\1n+I, then X can be written uniquely in the

form:
X = Xi8i + X08。.

In general Xi and X.0 a.re functions of 面 and x0. If Xi depends on xi alone (i.e.
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xi is independent of x0), then, clesrly xi扒 is a vector field on .A1n. In fr is case .

we say that X is projectable and its proje~tion on Mn. is Xp = Xioi. In the
following, 0unless otherwise stated,·all vector fields on. Mn+I which'we will deal

with are assumed to be projectable vector·fields.
We shall denote by X, Y, Z, ... the vector fields on Mn+l, and their p'rojec

tions on lvln by Xp, Yp, Zp, ....
It is clear that: the projection of the sum of two vector filds is equal to the

sum of their projections:
The bracket two vector fields on Mn+i can be decomposed into

[X,Y] [X, Y]。+ [X, Y]p (21)

where

[.X, Y]P = X工- Yi工 = [Xp, Yp].

That is; the projection of the bracket is equal to the bracket of the projections.
Let V'(respectively V) b 1e t 1e Riema.11.nian connect10n on Mn+l (respec-

tively (liJn,0 L)).
The covariant derivative of a vector field Y in the direction of a vector X

can be decomposed into

(\7昰Y)p Vxv玲 十 *C(:X, Y) (22)

where
*C(X,Y) 闖xoyj + qt。x·iyo + A:jx叩）ak.

It is clear that:
1) *C(.X, Y) = *C(Y, X),
2) if the I-form 如L硏 is closed, then (22) reduces to

(V~Y)p = Vxv玲 (23)

Let R'(respectively R) be the curvature tensor of the connection v7'(re
spectively V). Thus, we·have

(R'(X, Y)Z)p R(Xp, Yp)Zp + * A(X, Y)Z (24)
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wher
*A(X, Y)Z =[R~]0Xiyi Z0 + R悶oxiyo zo

+R悶凶 yo zk + R~立。_xoyizo

+ R~~Fyoyi zk + {(&jA7k + q立呤 ）

十品 { h } + q[kAJr)X叩zk,. JT
－（山 ）]fJ扣

and (means the'same.terms repeated with·i and j interchanged.

Remark. VVe have to point out that if the 1-form 如回 is closed, then
*A(X, Y)Z = 0, and the這ore the projection of a flat space will be a flat space.

Let c12 be the canonical lift in 1'.1n+l of the geodesic c in Mn:. Let D'/dt
and D/dt ,be the covariant derivative operator associated with the·Riemannian

connections V'on Mn+l and'v on Mn respectively. If X is a vector field along
ce, then its covariant derivative a.long Ce is D'~X/dt and its projection is given by

(D'X/dt)p = (dX勺cit+ q~/Ji:0X門&h.

Therefore, by using (23), we have

Le1nma 3. If the 1-form 如lxi . Izs c .osed, then the covariant. derivative
associated 画th the connection V of the projection XP al'Jng c of a vector fieldX
along c12 is equal to the projection of the covariant derivative associated 画th the
connection V'of the vector field X.
That is to say;

(D'X/clt)p DXp/dt. (25)

From this we can see that:

If the I -form 如l正 is closed, then the pmjection of a parallel vector field
along ce wilh respect to v''is also a parallel vector field along c·wdh respect to
v'.

From equations (24), (25) and the precedent remark, we have: If the 1-form
bidxi is closed, then

(D'2X/dt2 +·.R~(V,X)V)p D2 Xp/dt2 + R(Vp, Xp)Vp, (26)
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where

V = 叭/dt is the vcloci ty vector field along c12.

Thus, we have

Theoren1 4. If the 1-form biclxi is closed, then the projection of a Jacobi

field along the canonical lift Ce 面ll be a Jacobi field along c.

Using theorem 4, a similar result to theorem 3, for proje.ction of geodesics,

ca.n be obta..ined.

§6. E_xan1ples.

Example 1. Let L = / (正 + 护) + yx + xi; be a Lagrangian function on

lvln = R2.
Here, the scalar 1-form 如丘 is exact a.nd is equal to d(xy). The extremals of the

given Ra.n<lers space are straight lines, while the extrema.ls of the Riemanuian

space with la.grangian£= /±2 + 护+ (z + yi + xi;)2 are parabolas which be

projected a.s stra.igt lines on the (x, y) plane.

For, it s0 is the a.re length de伽ed by O L (the Euclidean space), then the extremals

of l a.re given by
{ X = X0 + s'COS 叭
y = y。+ 80、i11¢.

(1)

To determine z = x0, we in tegra.te dz + xdy + ydx = ds0 which, with (1),gives

z = z。- (s02 /2) sin 2¢- s0(:c。sin</>+y。cos <I> - l).

Thus the extrema.ls of£sa.tisfying D.£/Dz = h arc parabolas in vertical planes

which have vertical a.xis.

Example 2. Let L

Nln = R2.

J(丑+护) + y:i: - 刀be a. la.grang洄 function on

The extrernals of the given Randers space a.re circles with radii 1/2.
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For simplicity we take s0 as a. parameter such that ds02 = dx2 + dy2. Then, the

Euler-Lagrange equations are

cl(dx/ds0+y)/cls0+dy/ds0 = 0,

cl(dy/ds0 - x)/ds0·- clx/ds0 = 0.

By integratio,n, we get

{ x = Xo + (!/2)cos(2s0 + </>),
y = y。+ (1 /2) sin(2s O + <I>). (1)

The extrema.ls of£= J0£2 +酐 on 祀 are given by (1) and

dz/ds0 + ydx/ds0 一 記dy/ds0 = l,

where x and y are given by equation (1) and z = x0.

Therefore,

ydx/ds0 - xcly/ds0 -(l/2+x。cos(2s0 + </>) + y。sin(2s0 + </>))

which gives

dz/ cls0 3/2 + x0(2s0 +¢) + y。sin(2s0 +¢).

Ily integration, we get

·1 1 3
z = z。+ -x。sin(2s0 + </>) - -y。cos(2s0 + </>) + (-)s0 (2)

2 2 2

Equations (1) and (2) define the cxtremals of 1'.

As a special case, if the circle's center is the origin, i.e. x0 = y。= 0, then

z = z。+ (3/2)s0.

The extrema.ls of£a.re;.in. this case, helices.
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