TAMKANG JOURNAL OF MATHEMATICS Volume 23, Number 1, Spring 1992

ON THE SOLUTION SETS OF DIFFERENTIAL INCLUSION IN BANACH SPACES

A. ANGURAJ AND K. BALACHANDRAN

Abstract. We prove the set of all classical solutions of the differential inclusion

 $\dot{x}(t) \in A(t, x) + F(t, x, \dot{x})$ $x(t_0) = x_0, \quad \dot{x}(t_0) = y_0$

is a retract of the space C^1 .

1. Introduction.

Let $I \subset R$ be a compact interval; E a Banach space, F a multifunction from $I \times E \times E$ into the subsets of E; A a continuous functions from $I \times E$ into E. Given $t_0 \in I$, $x_0 \in E$, $y_0 \in A(t_0, x_0) + F(t_0, x_0, y_0)$ consider the problem

 $\dot{x} \in A(t, x) + F(t, x, \dot{x})$ $x(t_0) = x_0$ $\dot{x}(t_0) = y_0$ (1)

A functions $\phi: I \to E$ is said to be a classical solution of (1) if $\phi \in C^1$ and $\dot{\phi}(t) \in A(t, \phi(t)) + F(t, \phi(t), \dot{\phi}(t))$ for all $t \in I$, $\phi(t_0) = x_0$, $\dot{\phi}(t_0) = y_0$.

In this paper we prove that under suitable assumptions the set of all classical solutions of (1), $\Gamma(t_0, x_0, y_0, F)$ is a retract of C^1 which depends in a Lipschitzian

Received September 2, 1991.

way on x_0 , y_0 , F. This is also true for the solution set of $\dot{x} \in A(t,x) + F(t,x,\dot{x})$, $x(t_0) = x_0$. In [7] Ricceri discussed the problem without the term A(t,x). Here our assumptions do not imply the compactness of $\Gamma(t_0, x_0, y_0, F)$ not even in C. Our result is different from many other recent works [1-3,5].

2. Preliminaries and Notations.

Let X, Y be two nonempty sets. A multifunction Φ from X into $Y(\Phi: X \to 2^Y)$ is a function from X into the family of all nonempty subsets of Y. When X, Y are two topological spaces, we say that Φ is lower (upper) semicontinous if for every open (closed) set $\Omega \subset Y$, the set $\{x \in X : \Phi(x) \cap \Omega \neq \phi\}$ is open (closed) in X. A single valued function $f: X \to Y$ is said to be a selection of Φ if $f(x) \in \Phi(x)$ for all $x \in X$.

If (Σ, δ) is a metric space, for every $x \in \Sigma$ and nonempty $A, B \subset \Sigma$ we put

$$\delta(x,A) = \inf_{z \in A} \delta(x,z); \ \delta^*(A,B) = \sup_{z \in A} \delta(z,B)$$

$$\delta_H(A,B) = \max\{\delta^*(A,B), \,\delta^*(B,A)\}$$

Let (X, d), (Y, ρ) be two metric spaces. A multifunction $\Phi : X \to 2^Y$ is said to be Lipschitzian if there exists a real number $L \ge 0$ (Lipschitz constant) such that

$$\rho_H(\Phi(x), \Phi(z)) \leq Ld(x, z)$$

for all $x, z \in X$. If L < 1 we say that Φ is a multivalued contraction. Observe that any Lipschitzian multifunction is lower semicontinuous.

If I is a compact real interval and $(E, \|\cdot\|)$ is a real Banach space, we denote by C the space of all continuous functions from I into E, equipped with the norm

$$|| \phi ||_C = \max_{t \in I} || \phi(t) ||$$

We denote by C^1 the space of all continuously (strongly) differentiable functions from I into E, equipped with the norm

$$||\phi||_{C^1} = ||\phi||_C + ||\phi||_C$$

60

where ϕ is the (strong) derivative of ϕ .

A set A in a topological space X is said to be a retract of X if $A \neq \emptyset$ and there exists a continuous function $P: X \to A$ such that P(x) = x for all $x \in A$.

3. Main Result

Now $(E, \|\cdot\|)$ is a real Banach space; d is the metric induced by $\|\cdot\|$. I is a (non-degenerate) compact real interval. Let $\alpha, \beta, \gamma : I \to [0, \infty)$ be continuous functions such that $\beta(t) < 1$, $\forall t \in I$. Denote $\mathcal{L}_{\alpha,\beta,E}$ be the family of all lower semicontinuous multifunctions $F : I \times E \times E \to 2^E$, with closed and convex values such that for every $t \in I, x, y, u, v \in E$ one has

$$d_{H}(F(t, x, y), F(t, u, v)) \leq \alpha(t) || x - u || + \beta(t) || y - v ||$$

Let $A: I \times E \to E$ be a continuous function satisfying for every $x, y \in E, t \in I$,

$$d(A(t,x), A(t,y)) \leq \gamma(t) || x - y ||$$

Let $t_0 \in I, x_0 \in E, F: I \times E \times E \to 2^E, A: I \times E \to E$. Then put

$$\Gamma(t_0, x_0, F) = \{ \phi \in C^1 : \phi(t) \in A(t, \phi(t)) + F(t, \phi(t), \dot{\phi}(t))$$

for all $t \in I, \phi(t_0) = x_0 \}$

Further if $y_0 \in A(t_0, x_0) + F(t_0, x_0, y_0)$ we put

$$\Gamma(t_0, x_0, y_0, F) = \{ \phi \in \Gamma(t_0, x_0, F) : \phi(t_0) = y_0 \}.$$

Before stating our theorem, we recall a lemma which will be applied in the theorem. It follows at once from [1] and [2].

Lemma. Let X be a paracompact topological space; $(Y, \|\cdot\|_Y)$ a Banach space; $\Phi : X \to 2^Y$ a lower semicontinuous multifunction with closed and convex values; $f : X \to Y$ a continuous function; $\beta : X \to [0, \infty)$ a lower semicontinuous function such that $\delta(f(x), \Phi(x)) \leq \beta(x)$ for all $x \in X$, where δ is the metric induced by $\|\cdot\|_Y$. Then for every $\varepsilon > 0$, there exists a continuous selection g of. Φ such that $\|g(x) - f(x)\|_Y \le \beta(x) + \varepsilon$ for all $x \in X$.

Theorem. Let $F \in \mathcal{L}_{\alpha,\beta,E}$. Then for every $t_0 \in I$, $x_0 \in E$, $y_0 \in A(t_0, x_0) + F(t_0, x_0, y_0)$, each of the sets $\Gamma(t_0, x_0, F)$, $\Gamma(t_0, x_0, y_0, F)$ is a retract of the space C^1 . Further if F is a singlevalued function, then the set $\Gamma(t_0, x_0, F)$ is singleton.

Proof. Fix $t_0 \in I$, $x_0 \in E$, $y_0 \in A(t_0, x_0) + F(t_0, x_0, y_0)$ and $L \in (\frac{1}{1-\beta^*}, \infty)$ with $\max_{t \in I} \beta(t) = \beta^* \in [0, 1)$.

For each $\phi \in C$ put

$$||\phi||_{0} = \max_{t \in I} e^{-L[\gamma(t) + \alpha(t)]|t - t_{0}|} ||\phi(t)||$$

Hence $\|\cdot\|_0$ is norm equivalent to $\|\cdot\|_C$.

Next, for every $\Psi \in C$ put

$$\Phi(x_0, \Psi, F) = \{ \phi \in C; \ \phi(t) \in A(t, x_0 + \int_{t_0}^t \Psi(\tau) d\tau) + F(t, x_0 + \int_{t_0}^t \Psi(\tau) d\tau, \Psi(t)) \quad \text{for all } t \in I \}$$

Here $\int_{t_0}^t \Psi(\tau) d\tau$ is Riemann integral.

Put $C_{y_0} = \{ \phi \in C; \phi(t_0) = y_0 \}$ as well as

 $\Phi(x_0, y_o, \Psi, F) = \Phi(x_0, \Psi, F) \cap C_{y_0} \quad \text{for each} \quad \Psi \in C_{y_0}$

From [4], it follows that $\Phi(x_0, \Psi, F) \neq \emptyset$ for all $\Psi \in C$ and that $\Phi(x_0, y_0, \Psi, F) \neq \emptyset$ for all $\Psi \in C_{y_0}$.

We now claim that the multifunctions $\Phi(x_0, \cdot, F)$ and $\Phi(x_0, y_0, \cdot, F)$ are multi-valued contractions with respect to the metric, say ρ induced by $\|\cdot\|_0$ with Lipschitz constant $\frac{1}{L} + \beta^*$.

We prove this only for $\Phi(x_0, y_0, \cdot, F)$ since the proof for $\Phi(x_0, \cdot, F)$ is completely similar.

Fix $\Psi, \omega \in C_{y_0}, \phi \in \Phi(x_0, y_0, \Psi, F)$. Then for every $t \in I$, we have

$$d(\phi(t), A(t, x_0 + \int_{t_0}^t \omega(\tau) d\tau) + F(t, x_0 + \int_t^{t_0} \omega(\tau) d\tau, \omega(t)))$$

$$\leq \gamma(t) \mid \mid \int_{t_0}^t (\Psi(\tau) - \omega(\tau)) d\tau \mid \mid + \alpha(t) \mid \mid \int_{t_0}^t (\Psi(\tau) - \omega(\tau)) d\tau \mid \mid$$

$$+ \beta(t) \mid \mid \Psi(t) - \omega(t) \mid \mid$$

Define a multifunction $H: I \rightarrow 2^E$ by

$$H(t) = \begin{cases} A(t, x_0 + \int_{t_0}^t \omega(\tau) d\tau) + F(t, x_0 + \int_{t_0}^t \omega(\tau) d\tau, \omega(t)) & \text{if } t \neq t_0, \ t \in I \\ \{y_0\} & \text{if } t = t_0 \end{cases}$$

Then clearly H is lower semicontinuous [4]. By Lemma, for every $\varepsilon > 0$, H admits a continuous selection h such that

$$|| h(t) - \phi(t) ||$$

$$\leq \gamma(t) || \int_{t_0}^t (\Psi(\tau) - \omega(\tau)) d\tau || + \alpha(t) || \int_{t_0}^t (\Psi(\tau) - \omega(\tau)) d\tau ||$$

$$+ \beta(t) || \Psi(\tau) - \omega(\tau) || + \varepsilon$$

$$\leq [\gamma(t) + \alpha(t)] || \int_{t_0}^t \Psi(\tau) - \omega(\tau)) d\tau || + \beta(t) || \Psi(\tau) - \omega(\tau) || + \varepsilon$$
(2)

for every $t \in I$. In particular observe that $h \in \Phi(x_0, y_0, \omega, F)$.

Now we evaluate $||h - \phi||_0$. Assume $a < t_0$ and for every $t \in [a, t_0]$, we have

$$e^{-L[\gamma(t)+\alpha(t)](t_{0}-t)} || \int_{t_{0}}^{t} (\Psi(\tau)-\omega(\tau))d\tau ||$$

$$= || \int_{t_{0}}^{t} e^{-L[\gamma(t)+\alpha(t)](\tau-t)} \cdot e^{-L[\gamma(t)+\alpha(t)](t_{0}-\tau)}$$

$$(\Psi(\tau)-\omega(\tau))d\tau ||$$

$$\leq || \Psi-\omega ||_{0} \int_{t}^{t_{0}} e^{-L[\gamma(t)+\alpha(t)](\tau-t)}d\tau$$

$$\leq \frac{1}{L[\gamma(t)+\alpha(t)]} || \Psi-\omega ||_{0}$$

Therefore from (2) we have

$$e^{-L[\gamma(t)+\alpha(t)](t_0-t)} || h(t) - \phi(t) || \leq \left[\frac{1}{L} + \beta(t)\right] || \Psi - \omega ||_0 + \varepsilon$$
$$\leq \left(\frac{1}{L} + \beta^*\right) || \Psi - \omega ||_0 + \varepsilon$$

· · · ·

Analogously if $t_0 < b$ for every $t \in [t_0, b]$, we obtain

$$e^{-L[\gamma(t)+\alpha(t)](t-t_0)} || h(t) - \phi(t) || \le (\frac{1}{L} + \beta^*) || \Psi - \omega ||_0 + \varepsilon$$

Hence,

$$||h - \phi||_0 \le \left(\frac{1}{L} + \beta^*\right)||\Psi - \omega||_0 + \varepsilon$$

Therefore

$$\rho^*(\Phi(x_0, y_0, \Psi, F), \Phi(x_0, y_0, \omega, F)) \le (\frac{1}{L} + \beta^*) || \Psi - \omega ||_0$$

Interchanging the roles of Ψ and ω we get

$$\rho^*(\Phi(x_0, y_0, \omega, F), \Phi(x_0, y_0, \Psi, F)) \le (\frac{1}{L} + \beta^*) || \Psi - \omega ||_0$$

Since $\frac{1}{L} + \beta^* < 1$, $\Phi(x_0, y_0, \cdot, F)$ is multivalued contraction. Similarly we can show that $\Phi(x_0, \cdot, F)$ is also multivalued contraction.

Now put

$$P(x_0, F) = \{ \phi \in C; \phi \in \Phi(x_0, \phi, F) \}$$

as well as

$$P(x_0, y_0, F) = \{ \phi \in C_{y_0}; \ \phi \in \Phi(x_0, y_0, \phi, F) \}$$

Then taking into account that all the sets $\Phi(x_0, \Psi, F)$, $\Phi(x_0, y_0, \Psi, F)$ are convex closed, by Theorem 1 of [6] each of the sets $P(x_0, F)$, $P(x_0, y_0, F)$ is a retract of the space C. In particular to see this for $P(x_0, y_0, F)$, take into account that C_{y_0} being closed and convex, is in turn a retract of C.

Next consider the operator $T: C \to C^1$ defined by $T(\Psi)(t) = \int_{t_0}^t \Psi(\tau) d\tau$ for every $\Psi \in C, t \in I$. Clearly

$$\Gamma(t_0, x_0, F) = \phi^{(x_0)} + T(P(x_0, F))$$
(3)

$$\Gamma(t_0, x_0, y_0, F) = \phi^{(x_0)} + T(P(x_0, y_0; F))$$
(4)

where $\phi^{(x_0)}$ is the constant function on I taking the value x_0 .

64

Let θ_E be the null element of E. Put

$$V_0 = \{ \phi \in C^1 : \phi(t_0) = \theta_E \}$$

Clearly the operator T is a linear homeomorphism from C onto V_0 . Therefore, each of the sets $T(P(x_0, F))$, $T(P(x_0, y_0, F))$ is a retract of V_0 . But V_0 , being closed and convex, is a retract of C^1 and hence each of set $T(P(x_0, F))$, $T(P(x_0, y_0, F))$ is a retract of C^1 . Hence from (3) and (4) $\Gamma(t_0, x_0, F)$ and $\Gamma(t_0, x_0, y_0, F)$ are retracts of C^1 .

Further if F is a single valued function, then from the classical contraction mapping principle of Banach-Caccioppoli, the set $\Gamma(t_0, x_0, F)$ is a singleton.

Hence the proof is completed.

References

- [1] T. P. Aubin and A. Cellina, "Differential Inclusions", Springer-Verlag (1984).
- [2] L. Gorniewicz, "On the solution sets of differential inclusions", J. Math. Anal. Appl., 113 (1986) 235-244.
- [3] C. Himmelberg and F. Van Vleck, "A note on the solution sets of differential inclusions", Rocky Mountain J. Math., 12 (1982) 621-625.
- [4] E. Michael, "Continuous selections I", Ann. of Math., 63 (1956) 361-382.
- [5] N. S. Papageorgiou, "On multivalued evolution equations and differential inclusions in Banach spaces", Comment. Math. Univ. Sancti Pauli, 36 (1987), 21-39.
- [6] B. Ricceri, "Une propriete topologigue de l'ensemble des points fixes d'une contraction multivoque a valeures convexes", Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 81 (1987) 283-286.
- [7] O. N. Ricceri, Classical solutions of the problem $x' \in F(t, x, x')$, $x(t_0) = x_0$, $x'(t_0) = y_0$ in Banach spaces, Funkcial. Ekvac. 34 (1991) 127-141.

Department of Mathematics, Bharathiar University, Coimbatore 641 046, Tamil Nadu India.