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ON THE SOLUTION SETS OF DIFFERENTIAL INCLUSION
IN BANACH SPACES

A. ANGURAJ AND K. BALACHANDRAN

Abstract. We prove the set of all classical solutions of the differential
inclusion

t(t) € A(t,z) + F(t,z,2)
z(to) = 2o, &(to) = o

is a retract of the space C1.

1. Introduction.

Let I C R be a compact interval; E a Banach space, F' a multifunction from
I'x E x E into the subsets of E; A a continuous functions from I x E into E.
Givento € I, a9 € E, yp € A(to,z0) + F(to,20,%0) consider the problem

z € A(t,z) + F(t,z,%)
z(to) = o | (1)
(to) = o

A functions ¢ : I — E is said to be a classical solution of (1)if ¢ € C! and
B(2) € A(t, 6(2)) + F(t, ¢(t), §(t)) for all ¢ € I, $(to) = 20, d(t0) = yo.

In this paper we prove that under suitable assumptions the set of all classical

solutions of (1), I'(1y, %0, Yo, I') is a retract of C! which depends in a Lipschitzian
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way on Zg, Yo, F. This is also true for the solution set of ¢ € A(t,z)+ F(t,z,%),.
2(to) = @o. In [7] Ricceri discussed the problem without the term A(¢,z). Here-
our assumptions do not imply the compactness of I'(¢o, o, %0, F') not even in C.

Our result is different from many other recent works [1-3,5].

2. Preliminaries and Notations.

Let X,Y be two nonempty sets. A multifunction ® from X into Y (& : X —
2Y) is a function from X into the family of all nonempty subsets of Y. When
X,Y are two topological spaces, we say that ® is lower (upper) semicontinous
if for every open (closed) set @ C Y, the set {z € X : ®(z) N Q # ¢} is open
(closed) in X. A single valued function f: X — Y is said to be a selection of &
if f(z) € ®(z) for all z € X.

If (3,6) is a metric space, for every 2 € £ and nonempty A, B C ¥ we put

6(z,A) = inf §(z,2); 6"(A,B) = sup é(z,B)
z€ A : zc A

6ir(A, B) = max{§*(A, B), §*(B, A)}.

Let (X,d), (Y,p) be two metric spaces. A multifunction ® : X — 2Y is said
to be Lipschitzian if there exists a real number L > 0 (Lipschitz constant) such
that

[)]-[(‘I)(:L'), (I)(z)) < L(l($7 Z)

for all z,2 € X. If L < 1 we say that ® is a multivalued contraction. Observe
that any Lipschitzian multifunction is lower semicontinuous.
If I'is a compact real interval and (E,||-||) is a real Banach space, we denote

by C the space of all continuous functions from I into E, equipped with the norm

¢ 1lc = max ] 4() ]

We dentoe by C? the space of all continuously (strongly) differentiable functions

from I into I, equipped with the norm

Héller = 11@lle + 11lo
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where ¢ is the (strong) derivative of .
A set A in a topological space X is said to be a retract of X if A # 0 and

there exists a continuous function P : X — A such that P(z) =z for all z € A.

3. Main Result

Now (E,]|| -||) is a real Banach space; d is the metric induced by || - || I is
a (non-degenerate) compact real interval. Let o, 3,7 : [ = [0,00) be continuous
functions such that B(t) < 1, Vt € I. Denote L, g, be the family of all lower
semicontinuous multifunctions F : I X E x E — 2F, with closed and convex

values such that for every t € I, z,y,u,v € IV one has
dr(F(t,z,y), F(t,w,v)) < a)|lz—u|[+6()[ly—v]]

Let A:I X I — I be a continuous function satisfying for every z,y € F,t € I,

d(A(t,2),A(t,y)) < (@) [z -yl
Letig € L, z6€ B FilIXKEXE =28 A:I% E— E, Then put

Iﬂ(tO,-’vO’ F) = {¢ & Cl Cb(t) = A(t3 d)(t)) * F(ta¢(i)’¢(t))
for all t € I,¢(to) = zo}

Further if yo € A(to,20) + F(to,20,%0) We put
| F(thwO)y07 F) = {¢ = F(t07$07F) . ¢(t0) = yO}

Before stating our theorem, we recall a lemma which will be applied in the

theorem. It follows at once [rom [1] and [2].

Lemma. Let X be a paracompact topological space; (Y,|| - ||y) e Banach
space; & : X — 2V a lower semicontinuous mullifunction with closed and convez
values; f: X — Y a continuous [function; f: X — [0,00) a lower semicontinu-
ous function such that 6( f(z), ®(2)) < B(z) for all z € X, where § is the metric
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induced by || - ||y. Then for every € > 0, there exists a continuous selection g of.

© such that ||g(z) — f(z)||y < B(z)+¢ forallz € X.

Theorem. Let F € L, 35. Then for everyty € I, zg € E, yo € A(to,z0)+
F(to,z0,y0), each of the sets T'(to,z0, F), I'(to,zo, %0, F) is @ retract of the space

Ct. Further if F is a singlevalued function, then the set F(to,zo, F) 18 smgleton

Proof. Fix t, E I,z € E, yo € A(t0,10)+F(to,xo,yo) and L E (=7 ﬁ,,oo)
with max.er B(t) = g* €[0,1).

For each ¢ € C put
il mpmertniSEualEblT  GHR)

Hence || - [|o is norm equivalent to || - ||¢

Next, for every ¥ € C put

: : ,
P(z0, V¥, F) ={¢ € C; ¢(t) € A(t, =0 +/ ¥ (7)dr)

to

t
+ F(t,z0 + / U(7)dr,¥(t)) forall t € I}
to

Here ft 7)dr is Riemann integral.

Put C.yo ={¢ € C; ¢(to) = yo} as.well as
P (20,90, ¥, I) i ® (o, W:F)ncyo for each ¥ € Cyo

From [4], it follows that ®(2q, ¥, F) # § for all ¥ € C and that ®(zo,yo, ¥, F) #
B forall ¥ € C,, | .

We now claim that the multifunctions ®(29,-, F) and ®(20,yo,-, F) are
multi-valued contractions with respect to the metric, say p induced by || - ||o
with LlpSChlL? constant + + §*.

We prove this only F01 ®(z0,¥0,-,I") since the proof for ®(zo,-, F) is com-

pletely similar.
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Fix V,w € Cy,, ¢ € ®(z0, 1o, ¥, F'). Then for every t € I, we have

(l(¢(t),A(t,xo+[ w(‘r)dT)-}—F(t,mo-{-/tow(r)dr,w(t)))
<O | (¥(r) = w(r))dr || +a(0) | / (¥(r) - w(r))dr ||

+A() 1 ¥(t) —w(t) ||
Define a multifunction H : I — 2F by

() = {A(t,xo + [ w(T)dr) + F(t,z0 + [ w(r)dr,w(t)) ift#to, tel
, ?/0} , ift=1p
Then clearly H is lower semicontinuous [4]. By Lemma, for every ¢ > 0, H

admits a continuous selection A such that
1) - 60 | |
A1 [ 90 = oo [l +0(0) 1| [ (¥(r) = wfpar |
AN e e
SO+ [ ¥l 1480 190 - [ 4e @

for every ¢ € I. In particular observe that A € (2o, yo,w, F).

Now we evaluate Ilh — &|lo. Assume a < ty and for every t € [a,%p], we have
_ t
= HO+eOI=0 || [(y(r) ~ w(ry)ar |
lo

I
— ” e-—.L[’Y(l)'f'O'(t)](T—t) . (__._L['Y(t)'*'a(t)](to""')

to

(¥(7) = w(r))dr ||
A 4
<NEe=wllo / o e~ Lh(®+a((r=1) g,
t

< ¥ —-w
Liy(t) + a(1)] I l
Therefore from (2) we have

e~ EHO+alONto=0 || ypy — g(p) 1< [% +B()] || ¥ —w||o +e

ST HB) Y=o +e
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Analogously if to < b for every t € [tp,b], we obtain
ED+NC) || (e) - §(2) 1< (7 + B7) 1] ¥ = o +e
Hence, . ‘
1B =@1lo< ( +8) 1 ¥ —wllo+e

Therefore

p"(8(20,30, ¥, F), 8(z0,30,, F)) < (7 + B || ¥~ w [[o
Interchanging the roles of ¥ and w we get

(@ (20, 10,0, F), 8(20, 30, %, F)) < (7 +67) || € = w I

Since % + B* < 1, ®(z0,y0,-, F) is multivalued contraction. Similarly we can
show that ®(zo,-, F') is also multivalued contraction.

Now put - |
P(20,F) = {$€C; ¢ € 80,4, F))

as well as
P(z0,%0,F) = {¢ € Cyp; ¢ € B(20, %4, F)}

Then taking into account that all the sets ®(zo, ¥, F), (20,0, ¥, F) are
convex closed, by Theorem 1 of [6] each of the sets P(zo, F), P(z0,y0, F) is a
retract of the space C. In particular to see this for P(zy, yo, F), take into account
that Cy, being closed and convex, is in turn a retract of C.

Next consider the operator T : C — C! defined by T(¥)(?) = ftto U(r)dr
for every ¥ € C, t € I. Clearly

T(t0,20, F) = ¢{=0 4 T(P(z0, F)) - (3)
‘T(to,0,¥0, F). = ¢\%°) + T(P(z0,y0; F)) (4)

where ¢(“5°) is the constant function on 7 taking the value z,.
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Let 8 be the null element of F. Put
Vo = {¢ c -Cl 3 ¢(t0) = HE}

Clearly the operator T is a linear homeomorphism from C onto V;. Therefore,
each of the sets T(P(zo, F)), T(P(zo0,%0,I")) is a retract of Vo. But Vg, be-
ing closed and convex, is a retract of C' and hence each of set T(P(zo, F)),
T(P(zo,y0,+)) is a retract of C'. Hence from (3) and (4) T'(ty,zo, F) and
I'(t0, 20, Yo, F) are retracts of C*. | '
Further if F is a single valued funtion, then from the classical contraction
mapping principle of Banach-Caccioppoli, the set T'(to,zo, F) is a singleton.

"Hence the proof is completed.
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