FAMKANG JOURNAL OF MATHEMATICS Volume 23, Number 2, Summer 1992

ON GRAPH REPRESENTATION FOR CO-DIAGONAL GROUPS

WU-YEN LEE

Abstract. For a co-diagonal Butler group G with co-representing graph, we examine the conditions under which pure subgroups and torsion-free quotients of G have quasi-co-representing graphs.

1. Introduction

For a rank 1 torsion-free abelian group X, let type(X) denote the isomorphism class of X called a type. For any element g of a finite rank torsion-free group G, we let type_G(g) denote the type($\langle g \rangle_*$), where $\langle g \rangle_*$ is the rank-1 pure subgroup generated by g. If τ is a type, let $G(\tau) = \{x \in G | type_G(x) \geq \tau\}$ and $G^*(\tau) = \Sigma\{G(\sigma) | \sigma > \tau\}$. $G[\tau]$ is defined to be $\cap \{\ker f | f \in \operatorname{Hom}(G, X_{\tau})\}$, where X_{τ} is a subgroup of Q with type $(X_{\tau}) = \tau$. Also, define $G^*[\tau] = \cap \{G[\sigma] | \sigma < \tau\}$. An exact sequence of torsion-free abelian groups $0 \to A \to B \to C \to 0$ is co-balanced if $0 \to A/A[\tau] \to B/B[\tau]$ is pure exact for each type τ .

Butler groups are pure subgroups of finite rank completely decomposable groups. This class of Butler groups plays an important role in the theory of finite-rank torsion-free abelian groups. In this paper we shall be concerned with co-diagonal groups.

Co-diagonal Butler groups are groups which are quasi-isomorphic to $G < A >= (A_1 \oplus \ldots \oplus A_n) / < (1, \ldots, 1) >_*$ for some *n*-tuple $A = (A_1, \ldots, A_n)$ of subgroups of Q. The group G < A > is the dual of $G(A) = \{(a_1, \ldots, a_n) \in$

Received May 1, 1990.

 $A_1 \oplus \ldots \oplus A_n | \Sigma_{i=1}^n a_i = 0$ [5]. This class of co-diagonal groups is presented in [1] and some of their properties can interpreted through graph representation [2].

Let (A_1, \ldots, A_n) be an *n*-tuple of subgroups of Q and T be a connected labelled graph with vertices A_1, \ldots, A_n and each edge ij in T labelled by a type $\tau^{ij} = \text{type}(A^{ij} = A_i + A_j) = \sup\{\text{type}(A_i), \text{type}(A_j)\}.$

The graph T is a co-representing graph for $G = G < A_1, \ldots, A_n >= (A_1 \oplus \ldots \oplus A_n)/X$ with $X = < (1, \ldots, 1) >_*$ if

(1) $0 \to G \xrightarrow{\delta_T} D_T$ is co-balanced exact.

(2) For each type τ , $\delta_T^{\tau}(G/G[\tau]) = G^{\tau} \oplus G^* < \tau >$,

where $D_T = \bigoplus \{A^{ij} | ij \in T\}, \delta_T(x_i + X) = \bigoplus \{x_{ij} | x_{ij} = x_i \text{ if } i < j \text{ and } x_{ij} = -x_i \text{ if } j < i, ij \in T\}$ with $x_i \in A_i, G^{\tau} = \bigoplus \{A^{ij} | \tau^{ij} = \tau, ij \in T\}, G^* < \tau > = \sum_k \delta_T *_{<\tau>} ((A_k + X)/X) \text{ with } \delta_T *_{<\tau>} ((A_k + X)/X) = \delta_T ((A_k + X)/X) \cap D_T *_{<\tau>} \text{ and } T^* < \tau > = \{ij \in T | \tau^{ij} < \tau\}.$

The graph T is a quasi-co-representing graph for a Butler group G if T is a co-representing graph for some $G < A_1, \ldots, A_n >$ quasi-isomorphic to G.

In [2], we have developed a realization theorem for graph which are finite, connected, and with edges labelled by types. Furthermore, for each co-diagonal Butler group G < A >, we can construct its co-representing graph.

In the paper, we are going to examine the conditions under which pure subgroups and torsion-free quotients of groups with co-representing graphs have quasi-co-representing graph. In particular, if G is a co-diagonal Butler group with co-representing graph, then $G(\tau)$, $G[\tau]$, $\langle G^*(\tau) \rangle_*$, $G/G[\tau]$ and $G^*[\tau]/G[\tau]$ have quasi-co-representing graphs for each type τ .

2. Main Results

Suppose that T is a co-representing graph for $G = G < A_1, \ldots, A_n >$, and that S is a subset of the set of edges of T. The equivalence relation on the vertices of T determined by S is defined by $i \approx i$, and for $i \neq j$, $i \approx j$ whenever iand j are connected by a path in $T \setminus S$. Define $M < S > = \{g \in G | \delta_T(g) \in D_S\}$. Note that M < S > is a pure subgroup of G which is isomorphic to $\delta_T(G) \cap D_S$. **Theorem 2.1.** Assume that T is a co-representing graph for $G = G < A_1, \ldots, A_n >, S \subset T$, and V_1, \ldots, V_k is the set of equivalence classes of vertices of T determined by S. Then

(a) $M < S > \cong G < B_1, ..., B_k >$, where $B_i = \cap \{A_j | j \in V_i\}$ if k > 1, and M < S > is 0 if k = 1. (b) $G/M < S > \cong G_1 \oplus ... \oplus G_k$, where $G_i = G < A_j | j \in V_i >$ if $|V_i| > 1$, and $G_i = 0$ if $|V_i| = 1$.

Proof. (a) First, observe that $M < S >= \{g = (a_1, ..., a_n) + X \in G | a_t = a_t, \in B_i, t, t' \in V_i, i = 1, ..., k\}.$

To see this, let $g = (a_1, \ldots, a_n) + X \in G$. Then $\delta_T(g) = \bigoplus \{a_i + (-a_j) | i < j, ij \in T\}$. If $a_t = a_t, \in B_i$ for $t, t' \in V_i$, $i = 1, \ldots, k$, then the *ij*-coordunate $(\delta_T(g))_{ij}$ of $\delta_T(g)$ is 0 for each $ij \in T \setminus S$ since *i* and *j* belong to the same class. Hence, $\delta_T(g) \in D_S$.

Conversely, if $(\delta_T(g))_{ij} = 0$ for each $ij \in T \setminus S$, then $a_i = a_j$ for each $ij \in T \setminus S$. Hence, $a_t = a_t$, for $t, t' \in V_i$, $i = 1, \ldots, k$.

Now define $f: G < B_1, \ldots, B_k > \to M < S >$ by $f((b_1, \ldots, b_k) + X) = (a_1, \ldots, a_n) + X$, where $a_t = b_i$ for $t \in V_i$, $i = 1, \ldots, k$.

It is easy to see that f is epic.

If $f((b_1, \ldots, b_k) + X) = (a_1, \ldots, a_n) + X = 0$, then $a_1 = \ldots = a_n$. Hence, $b_1 = \ldots = b_k$. and $(b_1, \ldots, b_k) + X = 0$.

This proves that f is monic.

Therefore, f is an isomorphism and $G < B_1, \ldots, B_k > \cong M < S >$.

(b) we next show that $G/M < S \geq G_1 \oplus \ldots \oplus G_k$ by defining a function $h: G \to G_1 \oplus \ldots \oplus G_k$, where $h((a_1, \ldots, a_n) + X) = \bigoplus_{i=1}^k \{(a_{i_1}, \ldots, a_{i_m}) + X | i_s \in V_i\}$. Then it is easy to see that h is epic with ker h = M < S >. Hence, (b) is proved.

Examples of Theorem 2.1 are included in the following corollary.

Corollary 2.2. Suppose that T is a co-representing graph for $G = G < A_1, \ldots, A_n > and \tau$ is a type. Then

WU-YEN LEE

(a) G(τ) = M < S(τ) >, where S(τ) = {ij ∈ T | τ^{ij} ≥ τ}.
(b) G[τ] = M < S[τ] >, where S[τ] = [ij ∈ T | τ^{ij} ≰ τ}.
(c) G(τ), G[τ], < G^{*}(τ) >_{*}, G/G[τ] and G^{*}[τ]/G[τ] have quasi-co-representing graphs induced by T.

Proof. Suppose that $g \in G$ and $\operatorname{type}_G(g) \geq \tau$. Then $\operatorname{type}_G(g) = \operatorname{type}_{D_T}(\delta_T(g)) = \inf\{\operatorname{type}(A^{ij})|\Pi_{ij}\delta_T(g) \neq 0\} \geq \tau$. where $\Pi_{ij}: D_T \to A^{ij}$ is the projection of D_T onto A^{ij} , noting that $0 \to G \xrightarrow{\delta_T} D_T$ is co-balanced exact, hence pure exact. Hence, $\delta_T(g) \in \bigoplus\{A^{ij}|ij \in S(\tau)\}$.

Conversely, let $\delta_T(g) \in \bigoplus \{A^{ij} | ij \in S(\tau)\}$ for some $g \in G$. Then $\operatorname{type}_{D_T}(\delta_T(g)) \geq \tau$, since $\operatorname{type}(A^{ij}) \geq \tau$ for each $ij \in S(\tau)$. Hence, $\operatorname{type}_G(g) = \operatorname{type}_{D_T}(\delta_T(g)) \geq \tau$ and $g \in G(\tau)$.

(b) First, note that $g[\tau] = \langle G(\sigma) | \sigma \not\leq \tau \rangle_*$, by Proposition 1.9 in [3]. Suppose that $g \in G$ and $\operatorname{type}_G(g) \not\leq \tau$. Then $\operatorname{type}_G(g) = \operatorname{type}_{D_T}(\delta_T(g)) = \inf\{\operatorname{type}(A^{ij}) | \Pi_{ij} \ \delta_T(g) \neq 0\} \not\leq \tau$. Hence, $\delta_T(g) \in \bigoplus\{A^{ij} | ij \in S[\tau]\}$. Otherwise $\operatorname{type}_{D_T}(\delta_T(g)) \leq \tau$, because if $\operatorname{type}(A^{ij}) \leq \tau$ for some $ij \in T$ with $\Pi_{ij}\delta_t(g) \neq 0$, then $\operatorname{type}_{D_T}(\delta_T(g)) \leq \operatorname{type}(A^{ij}) \leq \tau$.

For eaach $x \in G[\tau]$, there exists $0 \neq m \in Z$ such that $mx = g_1 + \ldots + g_k$ with $type_G(g_i) \not\leq \tau$. Then $\delta_T(mx) \in \bigoplus \{A^{ij} | ij \in S[\tau]\}$, since each $\delta_T(g_i) \in \bigoplus \{A^{ij} | ij \in S[\tau]\}$. It follows that $\delta_T(x) \in \bigoplus \{A^{ij} | ij \in S[\tau]\}$, because $\delta_T(G)$ is pure in D_T . This proves that $\delta_T(G[\tau]) \subset \bigoplus \{A^{ij} | ij \in S[\tau]\}$.

Conversely, if $\delta_T(g) \in \bigoplus \{A^{ij} | ij \in S[\tau]\}$, then $g \in G[\tau]$, since $\delta_T^{\tau}(G/G[\tau]) = G^{\tau} \oplus G^* < \tau > \subset \oplus \{A^{ij} | ij \in T, \tau^{ij} \leq \tau\}$. The reason is that if $g \notin G[\tau]$, then $g + G[\tau] \neq 0$. It follows that $\delta_T^{\tau}(g + G[\tau]) = \delta_T(g) + D_T[\tau] \neq 0$ in $D_T/D_T[\tau] = \oplus \{A^{ij} | ij \in T \tau^{ij} \leq \tau\}$, noting that $0 \to G/G[\tau] \xrightarrow{\delta_T^{\tau}} D_T/D_T[\tau]$ is pure exact. This means that there exists $ij \in T$ with $\tau^{ij} \leq \tau$ such that $(\delta_T(g))_{ij} \neq 0$. Then $\delta_T(g) \notin \oplus \{A^{ij} | ij \in S[\tau]\}$, a contradiction.

(c) By (a), (b) and Theorem 2.1, $G(\tau)$ and $G[\tau]$ have quasi-co-representing graphs. It follows that $\langle G^*(\tau) \rangle_* = G(\tau)[\tau]$ has a quasi-co-representing graph.

To show that $G/G[\tau]$ has quasi-co-representing graph, it is sufficient to prove that if V_1, \ldots, V_k are the equivalence classes of vertices determined by $S[\tau]$, then $|V_i| > 1$ for at most one *i*. In this case, $G/G[\tau] \cong G < A_j | j \in V_i >$ has a quasi-co-representing graph by Theorem 2.1.(b). To see that this is indeed the case, note that $V_1 = \{i | ij \in T \setminus S[\tau] \text{ for some } j\}$ is an equivalence class, since $T < \tau > = \{ij \in T | \tau^{ij} \leq \tau\}$ is connected by Corollary 2.9.(a) in [2]. On the other hand, if $i \notin V_1$, then the equivalence class of *i* is $\{i\}$, since *i* does not lie on an edge of $T \setminus S[\tau]$.

Finally, $G/G[\tau] = G^*[\tau]/G[\tau] \oplus G'$ where $G' \cong G/G^*[\tau]$ and $G^*[\tau]/G[\tau] = (G/G[\tau])$ (τ) by Theorem 1.7. (c) in [3]. Hence, $G^*[\tau]/G[\tau]$ has a quasi-co-representing graph.

Actually, $G^*[\tau]/G[\tau]$ is τ -homogeneous completely decomposable by Theorem 1.7.(c) in [3], which belongs to Ω and has a quasi-co-representing graph by Theorem 2.7 in [2], where Ω is the class of all torsion free abelian groups quasi-isomorphic to Butler groups which are homomorphic images of completely decomposable groups with rank-1 kernels.

References

- W. Lee, "Co-diagonal Butler groups", Chinese Journal of Mathematics 17 (1989), 259-271.
- [2] W. Lee, "Graph representation for co-diagonal Butler groups", to appear.
- [3] D. Arnold and C. Vinsonhaler, "Pure subgroups of finite rank completely decomposable groups ||", Abelian Group Theory, Lecture Notes in Math., Vol. 1006, Springer-Verlag, Berlin and New York (1983), 97-143.
- [4] M. C. R. Butler, "A class of torsion-free abelian groups of finite rank", Proc. London Math. Soc. 15 (1965), 680-698.
- [5] F. Richman, "An extension of the theory of completely decomposable torsion-free abelian groups", Trans. Amer. Math. Soc. 279 (1983), 175-185.

Department of Mathematics, Tamkang University, Taipei, Taiwan 25137.

85