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A TEST OF INDEPENDENCE BASED ON THE
(r,s)-DIRECTED DIVERGENCE

D. MORALES, L. PARDO, M. SALICRU AND M. L. MENENDEZ

Abstract. (r,s)-Directed divergence statistics quantifies the divergence
between a joint probability measure and the product of its marginal prob-
abilities on the basis of contingency tables. Asymptotic properties of
these statistics are investigated either considering random sampling or
stratified random sampling with proportional allocation and indepen-
dence among strata. To finish some tests of hypotheses of independence
are presentéd.

1. Introduction

Let (X,Y) be a random variable of the discrete type taking on pairs of
values (z;,y;), ¢ = 1,...',M, and j =1,2,...,K. We denote

Pxy = (pij)i=1,..M = (P(X =2:,Y =y;))i=1,.M

j=17"~;K j=1,...,K
the joint probability mass function of (X,Y) and by Px = (pi.)i=1,..,m and Py =
(p,j)j=1,,_,,K the corresponding marginal probability distributions, respectively,

. " i M
e pi. =30 pijand pj = Y, pij.

Kullback and Leibler (1951) first introduced a measure of information con-
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cerning to Pxy and Px * Py = (pi,p.j)i;1,...,M s a8

J=1yeeey

M K
D(PXY ” PX * Py) = ZZP,'J‘ 10g I')” - (1)
i=1 j=1 Pi.P.j

Renyi (1961) first presented a generalization of (1), as

M K
D(Pxy || Px  Py) = (r = 1) log[ 3 S pli(pips) ™|, r 1, 7 >0 (2)

1=1 j=1

Another well known generalization of (1) is given by

M K
Di(Pxy || Px * Py) = (s = D)X Ypiilmrs -1 (3

=1 j=1

The following limits are easy to check
lim D(Pxy || Px * Py) = lim D(Pxy || Px * Pr) = D(Pxy || Px + Py)
Sharma and Mittal (1975) studied the following two generalizations

Df(PXY ” PX * Py) =(8 — 1)_1 [exp [(s o l)D(PXY || PX * Py)] - 1] S 75 1

4)
| M K s—1
Di(Pxy || Px * Py) =(s — 1)~} [[Z > piipipy) )T -1 - 1]
i=1 j=1

r#1,s#1, r>0(5)

Again, we can easily verify the following limits:

y_*ni D:(Pxy || Px * Py) = DX(Pxy || Px * Py)
.:sh—Iﬁ Di(PXY || P_.,; ¥ Py) = D(PXY ” PX * Py)

when r = s in (5) we have

D;(Pxy || Px * Py) = D3(Pxy || Px * Py)
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In this paper we analyze the properties of the analogue estimate of D7(Pxy||
Px % Py) in a random sampling as well as its application to testing statistical
hypotheses. Taking limits the results obtained are also valid for the divergences
D3(Pxy||Px * Pr), DX(Pxy||Px * Py) and D(Pxy||Px * Py).

2. Asymptotic distribution of D:(ny||f’x * Py)

Consider a sample of n members drawn at random with replacement from
the population. We denote by p;; = nij/n, p;. = ni./n, p.; = n.j/n the sample
estimators of p;;, p;. and pj;, where n;; is the number of observations of the
value (z;,9;) (: = 1,...,M, j = 1...,K) in the sample, n;. = Zfil n;; and
g = ZM n;;. The (r,s)-directed divergence in the sample may be quatified

1=1
as follows:
. R ) M K .
Di(Pey || Bx+ By) = (s= 1) [[0 #56:6.) 717 - 1]
=1 j:]_

£, 81, ¢>0.
the other divergence measures in the sample are given by
lim Di(Pxy || Px * Py) = D}(Pxy || Px * Py)
lim D}(Pxy || Px * Py) = Di(Pxy || Px * Py)

yﬂpi(ﬁxy || Px = Py) = }LH%D;(PXYHPX*PY) = D(Pxy || Px * Py)

When the sample is drawn at random and with replacement from the pop-
ulation, the random vector (np;1,...,Ppk) has a multinomial distribution with
parameters (n; p11,- .. ,PMK)-

The asymptotic distribution of D:(Pxx||Px * Py) in the random sampling

is given in the following theorem:

Theorem 1. If we consider the analogue estimate Dﬁ(PX/y”f’X + Py)
obtained by replacing p;;, pi. and p.; by the observed frequencies p;j, p;. and p j,
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then
A B . B ‘L
n? [D2(Pxy || Px * Py) - Di(Pxy || Px * Py)] 2N (0,07,)
where
M K )
ZZPUB h(pu,- - PMK)* — [Z Epua hi(p1s- -, PMK)]
=1 j=1 i=1 j=1
and
H@ip )T {rp,, Ypip )T
i=1 j=1
a s -7 ! p:r 1—1‘ 1 - g }»_p—.r
0 he(P11s.- -, PMK) = ( )EJ 1 PP P+ ) Liz1 PP
Pij pi- } r#1,r>0
exp[(s —1)TM, oK pijlog - Bif ][logp =
\ re=l

Proof. Bickel and Doksum (1977, pp. 135) have shown that if aih(:cl,

z;) exist and is continuous for all 4 = 1,...,/, then the asymptotic distribution

*3

of T, = h(p1,...,H;) in a random samplmg is given by

n? [Ty — h(py, ..., m)] 2 N(0,0%)

where

o —sz[—(pla ,pl)] —[Zpt_'(plv ,Pl)]2

The derivatives are calculated treating p;,...,p; as “independent variables” not

linked by p1 + p2 + ...+ p; = 1. If we consider the function

h(p11,...,pmMr) = Di(Pxy || Px * Py)

we obtain the enunciated result, r # 1 and s # 1. By continuity of the variance

we obtain the ennunciated result for r > 0 and s € (—00,00).
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Theorem 2. If Pxy = Px * Py, then

2nD:(Pxy || Px * Py) L 2
- n?;oX(M—l)(K—l)

Proof. Consider the function ¢(z) = z". A Taylor’s expansion of ¢(x)
around the point 1 for z = (p;;)/(pi.D.;) yields

[p" vt Sl p"J— 1]r+ [P"" —1]°[r(r - 1) + €ijn)

" : P
v=1,...,M,j=1,...,K, where ¢; j » n-;.»oO as n — 0o.

Multiplying both sides of the last expression by p; p; and suming over i =
1,....M,;3=1,...,K, we get

M
ZZPu 5:.6.4) 7 =1+ 5 r(r—nZZ[ pj - 0'5i;

=1 =1 im1j=1 P
o ZZ[ le _1] Pzpjez]n—l"'zn
1_11 1 Pi.D.;

=1
Using the binomial expansion of [1 +zn] Ry substracting 1 and multiplying
2nD,.(PXy ” PX * Py)

by .T—Z%-l—’ we obtain = P; P ]] +
( ) ¥ =1 j=1 P
Z Z(Pm pifj)" Eijn + 3E—1) l)nxneg, where ¢!, o
T(T - 1) =1 =1 Pi.P.j 1‘(1" = 1) o
Note that
.2 [ s “_"J_]2
T,=mn Z E [Pu Pi.P.J‘] Z Z m X(M 1)(K-1)

i=1 j=1 i=1 j=1

which is the well known limit distribution of the classical statistic to test inde-
pendence in contingency tables.
As nzy = 7(r — 1)T, + 3Tyeijn, then nz, converges in law to sr(r —

1)fo_1)( k-1) and nT.e;, n%o 0. So the result follows.
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Now we suppose that the population associated with the bidimensional
random variable (X,Y) is finite, N elements, and it can divided into L non-
overlapping subpopulations, called strata as homogeneous as possible. Let N;
be the number of individuals into the jth stratum (so that Ele N; = N)and
let p;;; be the probability that a randomly selected member belongs to the Ith
stratum and takes on the value (z;,9;),i=1,...,.M,j=1,...,k, I =1,...,L.
Thus

M K Nl M K L
Do Pt = 3 YD pige =1
i=1 j=1 t=1 j=1 l=1

Let p;;. be the probability that a randomly selected number in the whole popu-
lation takes on the value (zi,y;), pij. = 211;1 pigi=1,...,Mand j=1,...,K,
Pia = 25{:1 pi;1 the marginal probability of the value z; in the /th stratum and
Pl = EzM.—_1 p;;1 the marginal probability of the value y; in the Ith stratum. The

(r,s)-directed divergence in this context is given by

**D:(Pxy || Px * Py)

M K s—1
:(3‘1)_1{[221[;1%:] [ZPH ’T[ZP;z]I r-1-1)

r # 1, s#1, 7>0
The other divergence measures in the stratified sampling are giving by

lim *'D:(Pxy || Px * Py) = **D}(Pxy || Px * Py)
11_iIIi “D:.(PXY ” PX * Py) = “D;(PXY H PX %* Py)

lim *Dr(Pxy || Px *Py) = lim **Di(Pxy || Px * Py) =*' D(Px.y || Px * Py)

Now we suppose that a stratified sample of size n is drawn at random from
the population independently in different strata. We hereafter suppose that the
sample is choosen by proportional allocation in each stratum. Assume also that
a sample of size n; is drawn independently at random with replacement from
the Ith stratum where n;/n = N;/N. If p;;x denotes the relative frequency
of the values (z;,y;) into the lth stratum (and hence E wh E; _1 Pijk = m/n),
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Pig = 23’{: (Pigrand Pt = Zfi 1 Pijk, the (r,s)-directed divergence in the sample
may be quantified by ’th.(f’Xy[lf’X + Py). In this context we establish the
following theorem.

Theorem 3.

n}[#D3(Bxy || Px * By) — “Di(Pxy || Px * Py)] s N (0, 0%)

where
o = EZ 2dijpij. — z ZZ dzJPtJl
i=1 j=1 = i=1 j=1
and
M K
= [ o 0.2 s ) ) (s (s )
i=1 j=1
'Tdi' = r l1—7 r T
ol ﬁ +(1—T)EJ-1pupz 1 +(1_T) Er-lngp p} }, T?é 1
k exp{(s -1) 21_1 EK y logp }[log . S 1] , r=1

.D.j. i.P.j.

Proof. First, we prove the result for r # 1, s # 1. Consider the vector
a = (aik; 3 = Lyoss M; =l i = 1,...,L) with aprrL(l = by s » o]
excluded and the function

gr(a) = (s- 1)'1{ [Z[Z aiji]” [[Z Z ainll Z Eahﬂ]] K

h=1 I=1 h=1I=1

(i,7) € A= {(z,J)/(z,])# (M,K),i=1,...,.M,j=1,...,K}
K-1 L M

> [EL: aiitl] 1=, aint]] "

(i,j)eA =1 j=1 I=11i=1

M-1 L K s=1

1SS a1} r 41, 041

i=1 I=1 j=1
Let

B,o= (Biji,i =1,...,M;j=1,...,K; 1 = 1,..., L) with pmra(l = 1,..., L)
excluded, and
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P.=@ir,i=1,....M;j=1,....K; l = 1,...,L) with ppri(l = | -
excluded.
Let us also define

~

b (ﬁ,‘jl, i=1,...,M; j=1,...,K; l=1,...,L)

and
3 &= (p,'jz, i=l,...,M; j=1,...,K; l=1,...,L).

If we consider the Taylor’s expansion of gﬁ(ﬁ*) in a neigbourhood of P,, we
obtain that

n%[g2(P) — g2(P)] = n? [ Di(Bxy || Bx = Py) — **D;(Pxy || Px * Py)]

and

have asymptotically the same p.d.f..
The random vectors
[nhraty .. smPpMm], 1=1,...,L

are independent and multiomial distributed with parameters

N N
i sy i, B Tl
[ N{Puz, NIPMkl]

Applying the M K-dimensional Central Limit Theorem, we obtain

1.7, N n N
n? [[n_,p”’ = Flplll],...,[n_lPMKl = EPMKI]] n%oN(O,E(I))
£ [—
where i
N
Z(l) = [Ep(h,.1'1)1(6(1'1,]'1)(1'2,.7'2) - Ep(ig,jz)l)] ;i:razg::ll,,’,]}g

and
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8iy i) (imda) = LI (81 = 42,51 = j2) and 8(iy j1)(iz,4p) = O otherwise
As n/n; = N/N, and n}/? = n}/2(N;/N)!/%, we have
¢ 1N % " -
X} =n3 [E] [(Pr11 — pr11)s - - - » (PMkt — PMKI)] - N(O ().
l=1,...0
- Therefore, the asymptotic probability distribution function of the linear
function b} X, where

dg,;(P) dg;(P)
bi = e , l=1,...,L
! [ op1u 3PMK1]

is normal with mean zero and variance bX(1)b;.

As X;,X5,...,X, are independent vectors,

L L M K

Soibixt =t 355 2By

=1 =1 i=1 3=1
has a normal asymptotic probability distribution function with mean zero and

variance 2
1
= ¥ > NbE(l) by
=1

Now we calculate **v? explicitly. As

[Z EP'J (pi.p.i.)"~ r] ~ {’"Pu Ypip i)

i=1 J—l

dg-.(P) _ 1
iy  r-—1

+(1—T)ZJ.D,JP,r e T)Zp,,p TD; T "}
=1

=1

we obtain the expression of **v? for r # 1.

Now, by contynuity of **v we obtain the enunciated result.

Remark 1. (a) Applying Jensen’s inequality to the convex function y(z) =
z?, we obtain **v? < v?. Equality holds if and only if L = 1 or

g3 (P
Y2 e

1-1_1 1
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does not depend on ! (I =1,...,L).
(b) As the random variables

M K
2n ’tD;’;(IsXy || Px * Py) and nzz

i=1 j=1

1
Di..P.j.

(i5. — pi..p.j.)°

converge in law to the same distribution under the hypothesis of independence

and

!0|l-l

Y' = n?[(P11. — p1.p1.);-- -, (BMK. —pM..p.K.)] Kot N o, z —x)]
If Pxy = Px % Py and Px = P,, Py = P, with P; and P; known, then

Ty = nY'CY = 20" D}(Pxy || Px * Py) = Zﬁhxl

where f3;’s are the eigenvalues of the matrix CX*, being

i 1 * N
C = diagyx x MK [p. ] i=1,...,M , I Z KE(I)

=1,
i..P.j." j=1,..,.K Jeq

and the x?’s are independent (see Mardia et al, 1979, pp. 68).

3. Tests of Independence

Let X and Y be two random variables with joint distribution function
F(z,y), and let Fx and Fy be the marginal distribution function of X and
Y, respectively. In this section we study some tests of the hypotheses of inde-
| pendence, namely, Hy : F(z,y) = Fx(z)Fy(y) for all (z,y) € R?, against the
alternative Hy : F(z,y) # Fx(z)Fy(y) for some (z,y).

We suppose that we have n observations on (X,Y’). Let us divide the space
of values assumed by X (the real line) into M mutually intervals I1,...,Ips. Sim-
ilarly, the space of values of Y is divided into K disjoints intervals Ji,...,Jk.
Let p;; be the observed frequency of cell (¢,5), and let p;; = P((X,Y) €
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I;xJ;) = P(X € I; and Y € Jj), where s = 1,...,M and j = 1,..., K.
Then the random vector (np11,.-.,nPmk) has a multinomial distribution with
parameters (n;p11,...,Pmk)- The hypothesis to be tested is Hp : pij = pi.p.j
i=1,2,...,M,j=1,...,K,where p;, = P(X € ;) and pj = P(Y € J;)-

We consider the statistics given in theorem 2

on D3(Bxy || Px * Py)

T

T1 =

If H, is true, then T} will be small. Thus a large value of 71 indicates data

less compatible with the null hypothesis. Hence for large n a level a test is given

Y

2 2 J1 >3
®(P11,-- -, = 1 2> X(M-1)(K-1),
(Pua PMK) { 0 otherwise :

The theorem 1 can be used to evaluate the asymptotic power of the previous
test when (p11,...,PmK) is not equal to (p1.p.1,- .- ,PM.P.k)-

A second possibility appears when the hypothetical probabilities p;. and
p.; specifying the marginal distributions may be known, in which case we are
required to examine whether the probabilities p;; [= P(X = z;,Y = y;)] could
be constructed by the law

Pij = Pi.P.;j

Let X and Y be two random variables with joint distribution function
F(z,y), and let Fx and Fy be the known marginal distribution of X and Y
respectively. A test of hypothesis to test Ho : F(z,y) = Fx(z)Fy(y) for
all (z,y) € R? against the alternative H; : F(z,y) # Fx(z) Fy(y) for some
(z,y) € R? can be constructed

If we have n observations on (X,Y) obtained by random sampling, we con-

sider the statistics A
‘ 2n D:(Pxy || Px * Py)
T

If Hy is true, then T, is asymptotically chi-square distributed with MK — 1

13 =

degrees of freedom. Hence for large n, one must reject Ho at a level a if T >

2
XMK~-1,a°
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On the other hand, if we have n observations on (X,Y) obtained by stratified
random sampling with proportional allocation, we consider the statistics 73 given
in remark 1(b). If Ho is true, then T3 will be small. Thus a large value of T
indicates data less compatible with the null hypothesis. Hence for large n, when

I3 = t, one must reject by at level a if
MK
P[Y Bxi>t] < a
h=1

where (’s are given in remark 1(b). This probability can be computed using
the methods given by Kotz et al (1967).
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