TAMKANG JOURNAL OF MATHEMATICS
Volume 23, Number 2, Summer 1992

SKEW POLYNOMIAL RINGS SATISFYING R-BND PROPERTY

REFAAT M. SALEM

Abstract. In this paper we show that, a prime right Noetherian ring A
satisfies T'(A) = n < oo iff Alz, o] satisfies r-Bnd (n + 1).

O. Introduction

In [6] Robson has found a relation between the Krull dimension (in the sense
of Rentschler, [5]) and the upper bound of the number of generators of right
ideals in polynomial rings over simple right Noetherian rings. Also Stafford in
[8] studied the relation between a ring A and its polynomial ring A[z] if one
of them satisfies »-Bnd property. Here we extend Robson’s result to the Ore
extension over simple right Noetherian rings and study the relation between the
two properties T(A) = n < oo and the r-Bnd(n) of the skew polynomial ring
Alz,o].

I. Definitions and Basic Concepts

All rings here are with identity and all modules are unitary. A ring A is said
to be T(A) = n < o, if every finitely generated torsion right A-module can be
generated by n elements. The ring A (the module M) is said to be r-band(n),
if every right ideal of A (submodule of M4) can be generated by n elements. A
right A-module M is said to be completely faithful, if each nonzero subfactor

module is faithful, it is clear that each module over simple rings is completely
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faithful. Consider the Ore extension ring of A, that is the ring B = Alz,0,6),
where o is an automorphism of A and ¢ is a o-derivation of A, where addition

is component wise and multiplication is given as
(ab)z = zo(ab) + 6(abd) and é(adb) = a(a) 6(b) + ad(b).

The right ideal I of A is called o-ideal if o(I) C I, it is well known that if A is
right Noetherian ring, then o(I) = I. The ideal I is called o-prime ideal of A, if
whenever J, K are o-ideals of A such that JK C I, then J CIorKClI. Ais
called o-prime ring if (0) is a o-prime ideal of A. The ideal I is called o-maximal
of A, if there is no proper o-ideal J such that I C J C A.

II. Preliminary Results and Remarks

1. Let R = A[z,0,6], where A is any ring, o is an automorphism of A and § is
a o-derivation of A. Let S be a multiplicative set of regular elements of A, such
that ¢(S5) C § and § satisfies the right Ore condition. Let Q@ = AS™!, then

i) o and § can be extended in a unique manner to an automorphism ¢’ of
@ and to a o'-derivation ¢’ of Q. |

ii) § is the multiplicative set of regular elements of R, R satisfies the right
Ore condition for S and RS~ = Q[z,d’,6'] ([2], Theorem 7.1.2).

2. If A is a simple right Artinian ring, then R = A[z,0,6] is a principal right
ideal ring, where o is an automorphism of A and é is a o-derivation ([2], Corollary
6.2.2).

3. Suppose n < oo and A is a ring with K(A) > n. If M is a completely faithful
Noetherian right A-module, such that K(M) = n, then M can be generated by
n + 1 elements [7].

4. If A is a simple right Noetherian ring with K(A4) = n, then any right ideal of
A can be generated by n + 1 elements [7].

5. (i) Let A be a ring with right Krull dimension and ¢ € § (the m-set of regular
elements), then K{(A/cA)a} < K(Aa) ([4], Lemma 6.3.9 p.189).

\



SKEW POLYNOMIAL RINGS SATISFYING R-BND PROPERTY 111

(ii) If M4 is finitely generated, then K(M) < K(Aa) ([4], Lemma 6.2.5
p.131).

(iii) If N4 is a submodule of Ma: then K(M) = sup{K(N), K(M/N)} ([4],
Lemma 6.2.4 p.180).

(iv) Let M4 have Krull dimension and also be the sum of submodules each
of which has Krull dimension < @, then K(M) < a ([4], Lemma 6.2.14 p.184).

6. Let I be a nonzero o-ideal of the o-prime right Noetherian ring A, then
INS # ¢, where S is the m-set of regular elements ([1], proposition I.12 p.I.14).

7. The following are equivalent for a ring A, with an automorphism o of A and
a o-derivation é of A.

(i) A is right Noetherian.

(ii) Alz,0,6] is right Noetherian ([3], Theorem 2.2.15).

Lemma 1. Let A be a prime right Goldie ring and R = Alz,0,8], where
o is an automorphism of A and § is a o-derivation. If I is a right ideal of
R = Alz,0,6], then I contains an element g such that I/J = I[/gAlz,0,6] is a

torsion right A-module.

Proof. Since, A is a prime right Goldie ring, then A has a right quotient
ring @ which is simple Artinian. By {remark 1(ii)} the automorphism o of A and
the o-derivation é of A can be extended in a unique manner to ¢’ of Q and a o'-
derivation §’ of @. Consider the Ore extension ring Q[z,o’,§'], then by {remark
1(ii)} Q[z,0',6'] = AS~z,0',8'] = A[z,0,6]S~. Using (remark 2) Q[z,o’,§']
is a principa.l right ideal ring. Let I be a right ideal of R = A[z,0,6], then
Is = IQ[z,0',8'l = {ks™ |k € I, s € §}. Since Is is an ideal in Q[z,0’,§'], then
Is = hAlz,0,6]s, where h € Is. Since, S satisfies the right Ore condition, then
Is = gs~'A[z,0,6]s = gA[z,0,6]s, where g € IA,A[z,0,6]. Let J = gA[z,0,6]
and consider the right A-module M = I/J, this is a torsion right A-module.
Since, I C Is = gA[z,0,6]s = {ks™|k € I,s € S}, then each i € I can be
written as ¢ = gf, where f € A[z,0,6]s. Thus i = gms]’ where m € A[z,0,6]

and sy € §. Accordingly, is; = gm € J = gA[z,0,6] and M = I/J is a torsion
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right A-module.

Lemma 2. Let A be a prime right Noetherian ring which satisfies T(A) =
n < 00, then the Ore extension ring R = A[z,0,6] of A satisfies r-Bnd (n + 1).

Proof. Let I be a nonzero right ideal of R. Since, A is right Noetherian,
then R is right Noetherian by (remark 7) and I = 5_,¢g;R say k¥ > n+ 1. Using
(Lemma 1), there exists a nonzero element g € I such that I/J = I/gR is a
torsion right A-module. Therefore, for each g; € I, there exists r; € S (the m-

set of regular elements) such that g;r; € J. Noe, if we define R-homomorphism,

k k k
¢: Z ® (9:R/gimiR) — ZQ;R/ ZgiriR as
i=1 i=1 i=1

o :(g101 + Hay... 9kak + Hi) — (g101 + ...+ gxax) + H, where
H; = g;ir;R and H = £¥_,g;m; R, then it is easily verified that ¢ is a well defined
onto R-homomorphism. Also since, g;r; € J foreach? =1,...,k, then g;r;R C J
and E‘f:lg,ﬂR CJ,thus ® : 5 ,g;R/Zk ,g:r;R — X5 ,9:R/gR = I/J, is onto.
Consequently, 7 : E’-‘._.leag;R/g;T,-R — I/J, where T = ® o ¢ is also onto.

1

Moreover, if we define R-homomorphism-:

©:%f . @®(R/r;R) — Z(giR/giTiR) as O : (a1 + Hy,...,axH}) — (q1a1 +
Hy,...,gkax+Hy), where H] = r; R, then it is easily shown that © is well defined
onto R-homomorphism. -

Summerizing I/J is the homomorphic image of Ef-‘:l@R/r,-R. Since, A

k
satisfies T(A) = n < o0, and @ A/r;A is finitely generated torsion right A-

i=1

E
module, hence GB A/r;A can be generated by n elements as A-module. There-

i=1
fore, é R/7;R can also be generated by n elements as R-module. Since I/J
is its fc}momorphic image, then it is generated as an R-module by n elements.
Hence, I is generated by n + 1 elements and the Lemma is proved.

The following result shows how can the right (left) Krull dimension [6] play
an important role in determining the upper bound of the number of generators

of the right (left) ideals in Ore extension rings.
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Proposition 3. Let A be a simple right Noetherian ring and K(Ap) = n,
then both A and R = Alz,0,6] satisfies r-Bnd (n + 1).

Proof. Since, A is a simple right Noetherian ring and K(Aa) = n, then
by (remark 4) A satisfies r-Bnd (n + 1). Also, using (remark 7) R is right
Noetherian. Then by the same argument used in (Lemma 1) one can easily
check that any nonzero right ideal I of R contains a nonzero element g and
the right R-submodule J = gR such that I/J is a torsion right A-module. Let
I = %E  a;R, where k > n + 1, since I/J is a torsion right A-module, then for
each a; there exists r; € S such that a;r; € J. Also, as in (Lemma 2) it can
be easily verified that I/J is the homomorphic image of Efﬂe(A/ r;A)[z,0,8).
Since, each r; is regular and K(A) = n, then by {remark 5(i)} K(A/riA) < n
for each ¢ = 1,...,k. Consider the right A-module M = % ,A/r;A, since M
is avﬁnitely generated A-module, then K(M) < n by {remark 5(ii)} and since,

M is the sum of submodules each of Krull dimension < =, then by {remark

k
5(iv)} K(M) < n. Since, M is the homomorphic image of ¢ A/r;A we get

=1

k -
that K(@ A/r;A) < K(M) < n by {remark 5(iii)}. Since A is simple and

1=1

k k
K(& A/r;A) < n, then by (remark 3) @ A/r;A can be generated by n elements
=1 =1

k

as A-module. Conequently, @ A/r;A[z,0,6] can be generated by n elements as
. i=1

R-module. Hence, I/J can be generated by n elements as a homomorphic image

%
of @ A/r;Alz,0,6]. Then I can be generated by n + 1 elements.
1=1
Propossition 4. Let A be a o-prime right Noetherian ring satisfies T(A) =

n < 0o. Then A is o-simple.

Proof. Suppose that A is not o-simple, then it contains a nroper o-ideal
p, take M to be the direct sum of m copies of A/p where m > .. Since A is
a o-prime right Noetherian ring and p is a nonzero o-ideal, then by (remark 6)

pN S # ¢. The regular elements that belong to p annihilate all components of
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= (A/p)™. Thus, M = (A/p)™ is a finitely generated torsion right A-module
which can’t be generated by less than m > n elements which contradicts our

asssumption. Thus A is a o-simple ring.

Lemma 5. Let A be a o-prime right Noetherian ring such that A[z,o]
satisfies r-Bnd(n), then A satisfies T(A) = n < co and A is o-simple.

Proof. Consider a finitely generated torsion right A-module M = X7 ,a;A4,
m > n. So, for each a; there exists r; € S (the m-set of regular elements) such
that a;r; = 0. Let a; be an A-homomorphism: A — a;A, since a;7; = 0 then
r;A C kera; for each i = 1,...,m and we have an onto A-homomorphism:
AJr;A — AJker a; ~ a;A. Now, consider the A-homomorphism ¢ : @7, A/ker
a; = LT, a;A = M defined by ¢ : (b +ker az,...,bm +keran) — XL, a:b;.¢
is well defined, since if (b; + ker a1,...,bm + ker ar,) = 0, then each b; €
ker a;(i.e. a;b; = 0) hence, £™,a;b; = 0 and it is clear that ¢ is onto. Let
& : 97" ,A/r;A — @7 Al/ker a; be an A-homomorphism defined by @ : (b1 +
1A, ...,bm + rmA) — (b1 + keray,...,by + ker ay,) it clear that @ is a
well defined and onto A-homomorphism. So, M is a homomorphic image of
@7, A/r;A. Define an A-homomorphism p : @7, A/rA — O Afo™ F1(r;)A
by i : (147114, ..., b;+TmA) — (6™ (b1+714),...,0(bm+TmA)) = (6™ (b1)+
o™(r14),...,0(bm)+0(rm)A) pis well defined since p(bi+714,...,bn+rnd) =
0 iff b; € 734, i = 1,...,m which is equivalent to o™ **1(b;) = o™ **1(r;)a’ €
o™=*1r; A, where a’' € A. Thus, 0 = (by + 114,...,bm + TmA) — (0,...,0)
also, u is onto. Hence, @™, A/r;A ~ @7, A/o™ *F1(r;)A = N. Give N an
Alz,o]-module structure by defining Nz = 0. Let I be a nonzero right ideal of
Alz,o] given by I = z™A[z,0] + riz™ Alz,0]+ ...+ (r1...Tm-1)zA[z,0].
Define an Alz,o]-homomorphism  : I — N as follows Q : (z™fi(z) +
rz™ M fo(z)+... 4711 tmo12fm(2)) — (f2(0)+ Hy, f2(0)+ Ha, ..., fm(0) +
H,) where H; = o™ *+1(r;)A. Q is a well defined since if g(z) € I, then g can
be written as g(z) = = a( ) fryz™ 1(a(() )+za(2))+. cFr1. o Tprz(og 4.
g™ ( ) 1)+ terms of higher degrees, where cr( ) is the coefficient of 27 in the

polynomla,l fi(z). Thus g(z) = xm{ag )+am(r )cv1 -, A a™ (1) s :0™(Pim-i)
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o™ Y+ iz m=1{o{® 4 gm=1(r, T T T l)a(m Y.
(r1...-Tm)zog . But g(z) = 0 means that a( ) € o™r1(A), a ) e a(m‘l)(rg)A,
( ) = 0 which gives that f;(0) = ao) € Hy, f2(0) = aff) € Hyy.ooy fm(0)
gm) = 0 i.e. Qg(z) = 0. That Q is an A[z,o]-module homomorphism
follows directly if we notice that Q(g(z)a) = na and Q(g(z)z) = nz = 0 where
a € A and n = Q(g(z)). Also, it is evident that {2 is onto. Therefore, N is
a homomorphic image of I as A[z,c]-module. Since, A[z,o] satisfies r-Bnd(n),
then I can be generated by n elements. Consequently, V is generated as A[z,0]-
module by n elements. But since, Nz = 0, the same n elements will generate
N as an A-module. Thus M, as a homomorphic image of N, is generated by
n elements. Consequently, A satisfies T(A) = n < oo and by (Lemma 4) A is
o-simple.
Now if we put § = 0 in (Lemma 2) then it follows, using the above proposi-
tion that

Theorem 6. If A is a prime right Noetherian ring, then the following

conditions are equivalent:
1) A satisfies T(A) =n < o0
2) Alz, 0] satisfies r-Bnd(n = 1).

Proposition 7. Let A be a ring such that Alz,o] satisfies r-Bnd(n), then
T(A/p) = n for each o-prime ideal p of A.

Proof. Since Az, o] satisfies 7-Bnd(n), then A[z, o] is right Noetherian. So,
by (remark 7) A is right Noetherian. Since p is a o-prime ideal, then A/pis a o'-
prime ring, where o' is an automorphism of A/p induced by o and A/p[z,0'] ~
Alz,0]/plz,0]. Since, Alz, o] satisfies r-Bnd(n), then A[z,o]/p[z, o] satisfies 7-
Bnd(n). Hence, A/p[z,0’'] satisfies 7-Bnd(n). Using (Lemma 5) A/p satisfies
T(A/p) =n < oo.

Corollary 8. Let A be a ring such that A[z,o] satisfies r-Bnd(n), then all

o-prime ideal of A are o-mazimal.
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Proof. This follows directly from propositions 4 and 7.

I would like to express my gratitude to Professors J. M. Goursaud and M.
H. Fahmy, for their helpful suggestions which has improved the results of this

paper.
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