ISOMETRIC IMMERSION OF MINIMAL SPHERICAL SUBMANIFOLD VIA THE SECOND STANDARD IMMERSION OF THE SPHERE*

XIN-MIN ZHANG

Abstract

Let M^{n} be a n-dimensional compact connected minimal submanifold of the unit sphere S^{n+p} (1). In this paper we study the isometric immersion of M^{n} into $S M(n+p+1)$ via the second standard immersion of $S^{n+p}(1)$. We obtain some integral inequalities in terms of the spectrum of the Laplace operator of M^{n}, and find some restrictions on such immersions.

1. Introduction and Preliminaries

Let $\phi: M^{n} \rightarrow R^{m}$ be an isometric immersion of a compact connected n dimensional Riemannian manifold M^{n} into a Euclidean m-space. Denote the spectrum of the Laplace-Beltrami operator Δ acting on differentiable functions in $C^{\infty}(M)$ by

$$
\operatorname{Spec}(M)=\left\{0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{k}<\cdots \uparrow \infty\right\}
$$

If we extend triangle to R^{m}-valued functions on M^{n} in a natural fashion, then we have the following spectral decomposition of ϕ (in L^{2}-sense)

$$
\phi=\phi_{0}+\sum_{t=1}^{\infty} \phi_{t},
$$

Received December 10, 1991.
*1980 Mathematics Subject Classification (1985 Revision), Primary 52C40

$$
\Delta \phi_{t}=\lambda_{t} \phi_{t} ; \quad \phi_{t}: M^{n} \rightarrow R^{m},
$$

where ϕ_{0} is the center of mass of M in R^{m}. If there are exactly k-nonzero $\phi_{t}^{\prime} s(t \geq$ 0) in the decomposition of ϕ, then we say that M^{n} is a k-type submanifold of R^{m}. Moreover, if $\phi_{t}=0$ for all $t>q$, and $t<p,(1 \leq p \leq q)$ then M^{n} is called a k-type submanifold of R^{m} with order $[p, q]$, and the corresponding eigenvalues are called the k-type eigenvalues of M^{n}. If $p=q$, we simply say that M^{n} has order p. In this case, by a result of Takahashi [10], M^{n} is a minimal submanifold of a hypersphere $S^{m-1}(r)$ in R^{m} with $r^{2}=\frac{n}{\lambda_{p}}$. For more detail concerning submanifolds of finite type, see [4].

Let $S^{m}(1)$ be the unit sphere in R^{m+1} with canonical inner product $<,>$. If we take each x in $S^{m}(1)$ as an $1 \times(m+1)$ row matrix, the second standard immersion f of $S^{m}(1)$ is given by

$$
\begin{aligned}
& f: S^{m}(1) \rightarrow S M(m+1) \\
& f(x)=x^{t} x \quad \forall x \in S^{m}(1)
\end{aligned}
$$

where x^{t} is the transpose of x, and $S M(m+1)$ is the set of all $(m+1) \times(m+1)$ symmetric matrices over real numbers with a Riemannian metric g which is given by

$$
g(P, Q)=\frac{1}{2} \operatorname{tr}(P \cdot Q) \quad \forall P, Q \in S M(m+1)
$$

The second fundamental form σ of f satisfies the following condition:

$$
\begin{aligned}
g(\sigma(X, Y), \sigma(V, W))= & 2\langle X, Y\rangle\langle V, W\rangle+\langle X, V\rangle\langle Y, W\rangle \\
& +\langle X, W\rangle\langle Y, V\rangle
\end{aligned}
$$

If $\psi: M^{n} \rightarrow S^{n+p}(1)$ is a monimal immersion and $f: S^{n+p}(1) \rightarrow S M(n+$ $p+1)$ is the second standard immersion of $S^{n+p}(1)$, then $\phi=f \circ \psi$ gives an isometric immersion of M^{n} into $S M(n+p+1)$. Suppose that the immersion ψ is full, i.e., $\psi\left(M^{n}\right)$ is not contained in any great hypersphere of $S^{n+p}(1)$. A. Ros [8] has proved that ϕ is of 2-type if and only if M^{n} is Einstein and $T=k\langle$,$\rangle ,$ where T is a tenson field restricted on the normal bundle of ψ and \langle,$\rangle is$ the canonical inner product on $S^{n+p}(1)$. It is known that ([8]) $f\left(S^{n+p}(1)\right)$ is
contained in a hypersphere $S^{N}(r)$ of $S M(n+p+1)$ with center $\frac{1}{n+p+1} I$ and radius $r=\left[\frac{n+p}{2(n+p+1)}\right]^{\frac{1}{2}}$ as a minimal submanifold, and $\phi\left(M^{n}\right)$ is mass symmetric in $S^{N}(r)$, i.e., $\phi_{0}=\frac{1}{n+p+1} I$, where I is the $(n+p+1) \times(n+p+1)$ identity matrix. In this paper, we shall study some geometric inequalities involving these k-type eigenvalues of $M^{n},|h|^{2}$, and the scalar curvature of M^{n}, and find some restrictions on the manifold M^{n}, in order to have the isometric immersion of M^{n} into $S M(n+p+1)$.

2. Eigenvalue Inequalities

Let M^{n} be a n-dimensional compact connected minimal submanifold of the unit sphere $S^{n+p}(1)$, and f, ψ, ϕ, g, h and σ be defined as in the introduction.

Lemma. 1. (Ros [8])
(1) $g\left(\phi-\phi_{0}, \phi-\phi_{0}\right)=\frac{n+p}{2(n+p+1)}$;
(2) $g(\phi, \Delta \phi)=n$;
(3) $g(\Delta \phi, \Delta \phi)=2 n(n+1)$;
(4) $g\left(\Delta^{2} \phi, \Delta \phi\right)=4 n(n+1)^{2}+4|h|^{2}$.

Lemma 2. Let M^{n} be a full-immersed minimal submanifold of $S^{n+p}(\mathbb{1})$ with second fundamental form h, \bar{H} be the mean curvature vector field of M^{n} in $S M(n+p+1)$ via the second standard immersion of $S^{n+p}(1)$. Then,
(1) $|\bar{H}|^{2}=\frac{2(n+1)}{n}$,
and (2) $|\triangle \bar{H}|^{2} \leq \frac{8(n+1)^{3}}{n}+\frac{8(n+1)}{n^{2}}|h|^{2}+\frac{8}{n^{2}}|h|^{4}$, with equality holds iff at most two of $\left(h_{i j}^{\alpha}\right)$ are nonzero which can be transformed simultaneously by an orthogonal matrix into a scalsr multiples of \widetilde{A} and \widetilde{B} respectively, where

$$
\tilde{A}=\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
& 0 & \\
0
\end{array}\right) ; \quad \tilde{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
& 0 & 0
\end{array}\right) .
$$

Proof. (1) can be obtained from Lemma 1 (3).

To prove (2), let us recall that (c.f.[8])

$$
\Delta^{2} \phi=2(n+1) \Delta \phi+2 \sum_{i, j, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} \alpha\left(\xi_{\alpha}, \xi_{\beta}\right)-2 \sum_{i, j, k, \alpha} h_{i j}^{\alpha} h_{i j}^{\alpha} \sigma\left(E_{j}, E_{k}\right)
$$

where $E_{i}, E_{j}, E_{k}, \ldots, ;$ are tangent vectors to M^{n}, and $\xi_{\alpha}, \xi_{\beta}, \xi_{g} a m m a, \ldots$, are normal vectors to $M^{n} ; i, j, k=1,2, \ldots, n$; and $\alpha, \beta, \gamma=n+1, \ldots, n+p$. Let $H_{\alpha}=\left(h_{i j}^{\alpha}\right)$. By a direct computation we have

$$
|\Delta \bar{H}|^{2}=\frac{1}{n^{2}} g\left(\Delta^{2} \phi, \Delta^{2} \phi\right)
$$

and

$$
\begin{aligned}
g\left(\Delta^{2} \phi, \Delta^{2} \phi\right)= & g\left(\Delta^{2} \phi, 2(n+1) \Delta \phi+2 \sum_{i, j, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} \sigma\left(\xi_{\alpha}, \xi_{\beta}\right)\right. \\
& \left.-2 \sum_{i, j, k, \alpha} h_{i j}^{\alpha} h_{i j}^{\alpha} \sigma\left(E_{j}, E_{j}\right)\right) \\
= & g\left(\Delta^{2} \phi, 2(n+1) \Delta \phi\right)+g\left(\Delta^{2} \phi, 2 \sum_{i, j, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} \sigma\left(\xi_{\alpha}, \xi_{\beta}\right)\right) \\
& -g\left(\Delta^{2} \phi, 2 \sum_{i, j, k, \alpha} h_{i j}^{\alpha} h_{i k}^{\alpha} \sigma\left(E_{j}, E_{k}\right)\right) \\
= & \underbrace{2(n+1) g\left(\Delta^{2} \phi, \Delta \phi\right)}_{I}+\underbrace{2 \sum_{i, j, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} g\left(\Delta^{2} \phi, \sigma\left(\xi_{\alpha}, \xi_{\beta}\right)\right)}_{I I I} \\
& -2 \underbrace{\sum_{i, j, k, \alpha} h_{i j}^{\alpha} h_{i k}^{\alpha} g\left(\Delta^{2} \phi, \sigma\left(E_{j}, E_{k}\right)\right)}_{I I} .
\end{aligned}
$$

Here

$$
\begin{aligned}
I= & 2(n+1)\left[4 n(n+1)^{2}+4|h|^{2}\right] \quad \text { by Lemma 1 (4) }, \\
I I= & 2 \sum_{i, j, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} g\left(2(n+1) \Delta \phi+2 \sum_{s, t, \gamma, \tau} h_{s t}^{\gamma} h_{s t}^{\tau} \sigma\left(\xi_{\gamma}, \xi_{\tau}\right)\right. \\
& \left.-2 \sum_{s, t, u, \gamma} h_{s t}^{\gamma} h_{s u}^{\gamma} \sigma\left(E_{t}, E_{u}\right), \sigma\left(\xi_{\alpha}, \xi_{\beta}\right)\right) \\
= & 4(n+1) \sum_{i, j, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} g\left(-\sum_{i} \sigma\left(E_{i}, E_{i}\right), \sigma\left(\xi_{\alpha}, \xi_{\beta}\right)\right) \\
& +4 \sum_{i, j, s, t, \alpha, \beta, \gamma, \tau} h_{i j}^{\alpha} h_{i j}^{\beta} h_{s t}^{\gamma} h_{s t}^{\tau} g\left(\sigma\left(\xi_{\gamma}, \xi_{\tau}\right), \sigma\left(\xi_{\alpha}, \xi_{\beta}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -4 \sum_{i, j, s, t, u, \alpha, \beta, \gamma} h_{i j}^{\alpha} h_{i j}^{\beta} h_{s t}^{\gamma} h_{s u}^{\gamma} g\left(\sigma\left(E_{t}, E_{u}\right), \sigma\left(\xi_{\alpha,} \xi_{\beta}\right)\right) \\
= & 4(n+1) \sum_{i, j, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta}\left(-2 n \delta_{\alpha}^{\beta}\right) \\
& +4 \sum_{i, j, s, t, \alpha, \beta, \gamma, \tau} h_{i j}^{\alpha} h_{i j}^{\beta} h_{s t}^{\gamma} h_{s t}^{\tau}\left(2 \delta_{\gamma}^{\tau} \delta_{\alpha}^{\beta}+\delta_{\gamma}^{\alpha} \delta_{\tau}^{\beta}+\delta_{\tau}^{\alpha} \delta_{\gamma}^{\beta}\right) \\
& -4 \sum_{i, j, s, t, u, \alpha, \beta, \gamma} h_{i j}^{\alpha} h_{i j}^{\beta} h_{s t}^{\gamma} h_{s u}^{\gamma}\left(2 \delta_{t}^{u} \delta_{\alpha}^{\beta}\right) \\
= & -8 n(n+1)|h|^{2}+8|h|^{4}+4 \sum_{i, j, s, t, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} h_{s t}^{\alpha} h_{s t}^{\beta} \\
& +4 \sum_{i, j, s, t, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} h_{s t}^{\alpha} h_{s t}^{\beta}-8|h|^{4} \\
= & -8 n(n+1)|h|^{2}+8 \sum_{i, j, s, t, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} h_{s t}^{\alpha} h_{s t}^{\beta} .
\end{aligned}
$$

By a similar calculation we also have

$$
I I I=8 n(n+1)|h|^{2}+8 \sum_{i, j, k, s, \alpha, \beta} h_{i j}^{\alpha} h_{i k}^{\alpha} h_{s j}^{\beta} h_{s k}^{\beta} .
$$

Therefore,

$$
\begin{aligned}
g\left(\triangle^{2} \phi, \Delta^{2} \phi\right)= & I+I I+I I I \\
= & 2(n+1)\left[4 n(n+1)^{2}+4|h|^{2}\right] \\
& +8\left[\sum_{i, j, s, t, \alpha, \beta} h_{i j}^{\alpha} h_{i j}^{\beta} h_{s t}^{\alpha} h_{s t}^{\beta}+\sum_{i, j, k, s, \alpha, \beta} h_{i j}^{\alpha} h_{i k}^{\alpha} h_{s j}^{\beta} h_{s k}^{\beta}\right] \\
= & 2(n+1)\left[4 n(n+1)^{2}+4|h|^{2}\right] \\
& +8\left[\sum_{\alpha, \beta} \operatorname{Tr}\left(H_{\alpha} H_{\beta}\right)^{2}+\sum_{\alpha, \beta} \operatorname{Tr} r\left(H_{\alpha} H_{\beta} H_{\beta} H_{\alpha}\right)\right] \\
= & 2(n+1)\left[4 n(n+1)^{2}+4|h|^{2}\right] \\
& +8\left[\sum_{\alpha, \beta} T r\left(H_{\alpha} H_{\beta}\right)^{2}+\sum_{\alpha, \beta} T r\left(H_{\alpha}^{2} H_{\beta}^{2}\right)\right] \\
\leq & 8 n(n+1)^{3}+8(n+1)|h|^{2}+8 \sum_{\alpha, \beta} T r H_{\alpha} r H_{\beta}^{2} \\
= & 8 n(n+1)^{3}+8(n+1)|h|^{2}+8|h|^{4}
\end{aligned}
$$

the inequality above and rest of the proof are due to the following lemma 3 which is a slight modification of a lemma in [5].
Q.E.D.

Lemma 3. Let A and B be symmetric $(n \times n)$-matrices. Then

$$
\operatorname{Tr}(A B+B A)^{2} \leq 2 \operatorname{Tr} A^{2} \cdot \operatorname{Tr} B^{2}
$$

and the equality holds for nonzero matrices A and B if only if A and B can be transformed simultaneously by an orthogonal matrix into scalar multiples of \tilde{A} and \widetilde{B} respectively, where

$$
\tilde{A}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
& 0 & \\
& 0
\end{array}\right), \quad \widetilde{B}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
& 0 & \\
& 0
\end{array}\right) .
$$

Moreover, if A_{1}, A_{2}, and A_{3} are $(n \times n)$-symmetric matrices and satisfy

$$
\operatorname{Tr}\left(A_{\alpha} A_{\beta}+A_{\beta} A \alpha\right)^{2}=2 \operatorname{Tr} A_{\alpha}^{2} A_{\beta}^{2} \quad 1 \leq \alpha, \beta \leq 3
$$

then at least one of the $A_{\alpha}^{\prime} s$ must be zero.
Proof. We may assume that B is diagonal and denote the diagonal entries in B by $b_{1}, b_{2}, \ldots, b_{n}$. Then we have

$$
\begin{align*}
\operatorname{Tr}(A B+B A)^{2} & =\sum_{i, j=1}^{n} a_{i j}^{2}\left(b_{i}+b_{j}\right)^{2} \leq 2 \sum_{i, j=1}^{n} a_{i j}^{2}\left(b_{i}^{2}+b_{j}^{2}\right) \\
& \leq 2 \sum_{i, j=1}^{n} a_{i j}^{2} \sum_{k=1}^{n} b_{k}^{2}=2 \operatorname{Tr} A^{2} \operatorname{Tr} B^{2} \tag{*}
\end{align*}
$$

Now, suppose that A and B are nonzero matrices and the equality holds. Then all equalities hold in (*). From the second equality in (*), it followss that

$$
b_{i}=b_{j} \quad \text { if } \quad a_{i j} \neq 0, \quad 1 \leq i, j \leq n
$$

Without loss of generality, we may assume that $a_{12} \neq 0$, then $b_{1}=b_{2}$. From the third equality, we obtain that $b_{3}=b_{4}=\ldots=b_{n}=0$. Since $B \neq 0$, it
implies that $b_{1}=b_{2} \neq 0$, and it is easy to see that $a_{11}=a_{12}=a_{21}=a_{22} \neq 0$ and $a_{i j}=0$ otherwise. If A_{1}, A_{2}, A_{3} are three $(n \times n)$-symmetric matrices satisfy the equality in (*), the argument above tell us that one of the them can be transformed to a scalar multiple of \widetilde{A} as well as to a scalar multiple od \widetilde{B}, but \widetilde{A} and \widetilde{B} are not orthogonally equivalent, that one be zero.
Q.E.D.

Theorem 1. Let M^{n} be a full-immersed compact connected monomal submanifold of $S^{n+p}(1)$. Then

$$
\begin{aligned}
4 \int_{M} \rho d v \leq & \left\{4 n(n+1)^{2}+n\left(\lambda_{1} \lambda_{2}+\lambda_{2} \lambda_{3}+\lambda_{1} \lambda_{3}\right)\right. \\
& \left.-2 n(n+1)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)-\frac{\lambda_{1} \lambda_{2} \lambda_{3}}{2(n+p N 1)}+4 n(n-1)\right\} v i l(M)
\end{aligned}
$$

with equality holds if and only if either
(1) M^{n} is 2-type in $S M(n+p+1)$ with order $[1,2]$, or $[1,3]$, or $[2,3]$,
(2) M^{n} is 3-type in $S M(n+p+1)$ with order $[1,3]$,
where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are the first three nonzero eignvalues in $\operatorname{Spec}(M)$, and ρ is the scalar curvature of M^{n}.

Proof. Let

$$
\begin{aligned}
& \Omega_{1}=\int_{M} g(\Delta \phi, \phi) d v-\lambda_{1} \int_{M} g\left(\phi-\phi_{0}, \phi-\phi_{0}\right) d v ; \\
& \Omega_{2}=\int_{M} g(\Delta \phi, \Delta \phi) d v-\lambda_{1} \int_{M} g(\Delta \phi, \phi) d v ; \\
& \Omega_{3}=\int_{M} g\left(\Delta^{2} \phi, \Delta \phi\right) d v-\lambda_{1} \int_{M} g(\Delta \phi, \Delta \phi) d v ; \\
& a_{i}=\int_{M} g\left(\phi_{i}, \phi_{i}\right) d v \quad i=1,2, \ldots, .
\end{aligned}
$$

By the orthogonality of the decomposition of ϕ, we know that

$$
g\left(\phi_{i}, \phi_{j}\right)=0 \quad \text { if } \quad i \neq j .
$$

Therefore

$$
\begin{aligned}
& \Omega_{1}=\sum_{t=2}^{\infty}\left(\lambda_{t}-\lambda_{1}\right) a_{t} \\
& \Omega_{2}=\sum_{t=2}^{\infty} \lambda_{t}\left(\lambda_{t}-\lambda_{1}\right) a_{t} \\
& \Omega_{3}=\sum_{t=2}^{\infty} \lambda_{t}^{2}\left(\lambda_{t}-\lambda_{1}\right) a_{t}
\end{aligned}
$$

Hence,

$$
\Omega_{3}-\left(\lambda_{2}+\lambda_{3}\right) \Omega_{2}+\lambda_{2} \lambda_{3} \Omega_{1}=\sum_{t=4}^{\infty} \Pi_{i=1}^{3}\left(\lambda_{t}-\lambda_{i}\right) \geq 0
$$

The theorem follows from Lemma 1 and the relation $\rho=n(n-1)-|h|^{2}$ for spherical minimal submanifold.
Q.E.D.

Remark. (1) A similar inequality involving only λ_{1}, λ_{2} was given by Ros ([8]). WHen $n=2$, it was proved in [2].
(2) M^{n} can not be 1-type in $S M(n+p+1)$ via ϕ, we shall give the proof in next section.

In the case of 3-type, we have the following.
Theorem 2. If M^{n} is a full-immersed compact connected minimal submanifold of $S^{n+p}(1)$, and has only three nonzero eigenvalues $\lambda_{p_{1}}, \lambda_{p_{2}}$ and $\lambda_{p_{3}}$ $\left(1 \leq p_{1} \leq p_{2} \leq p_{3}\right)$ in $\operatorname{Spec}(M)$. Then
(1)

$$
\begin{aligned}
4 \int_{M} \rho d v= & \left\{4 n(n+1)^{2}+n\left(\lambda_{p_{1}} \lambda_{p_{2}}+\lambda_{p_{2}} \lambda_{p_{3}}+\lambda_{p_{3}} \lambda_{p_{1}}\right)\right. \\
& -2 n(n+1)\left(\lambda_{p_{1}}+\lambda_{p_{2}}+\lambda_{p_{3}}\right)-\frac{\lambda_{p_{1}} \lambda_{p_{2}} \lambda_{p_{3}}}{2(n+p+1)} \\
& +4 n(n-1)\} \operatorname{vol}(M)
\end{aligned}
$$

and
(2)

$$
\left(\lambda_{p_{1}}+\lambda_{p_{3}}\right)-\frac{\lambda_{p_{1}} \lambda_{p_{3}}(n+1)}{2 n(n+p+1)} \geq 2(n+1) \geq \max \left\{\begin{array}{c}
\left(\lambda_{p_{1}}+\lambda_{p_{2}}-\frac{\lambda_{p_{1}} \lambda_{p_{2}}(n+1)}{2 n(n+p+1)} ;\right. \\
\left(\lambda_{p_{2}}+\lambda_{p_{3}}\right)-\frac{\lambda_{p_{2}} \lambda_{p_{3}}(n+1)}{2 n(n+p+1)}
\end{array}\right\}
$$

Proof. Only need to explain (2), that is a direct result by solving $a_{p_{i}}^{\prime} s$ $i=1,2,3$. From the proof of Theorem 1, it can obtained

$$
\begin{align*}
& a_{p_{1}}=\frac{\operatorname{vol}(M)}{\left(\lambda_{p_{1}}-\lambda_{p_{2}}\right)\left(\lambda_{p_{1}}-\lambda_{p_{3}}\right)}\left\{\frac{\lambda_{p_{2}} \lambda_{p_{3}}(n+p)}{2(n+p+1)}+\left[2(n+1)-\left(\lambda_{p_{2}}+\lambda_{p_{3}}\right)\right] n\right\} ; \\
& a_{p_{2}}=\frac{\operatorname{vol}(M)}{\left(\lambda_{p_{2}}-\lambda_{p_{1}}\right)\left(\lambda_{p_{2}}-\lambda_{p_{3}}\right)}\left\{\frac{\lambda_{p_{1}} \lambda_{p_{3}}(n+p)}{2(n+p+1)}+\left[2(n+1)-\left(\lambda_{p_{1}}+\lambda_{p_{3}}\right)\right] n\right\} ; \\
& a_{p_{3}}=\frac{\operatorname{vol}(M)}{\left(\lambda_{p_{3}}-\lambda_{p_{1}}\right)\left(\lambda_{p_{3}}-\lambda_{p_{2}}\right)}\left\{\frac{\lambda_{p_{1}} \lambda_{p_{2}}(n+p)}{2(n+p+1)}+\left[2(n+1)-\left(\lambda_{p_{1}}+\lambda_{p_{2}}\right)\right] n\right\} .
\end{align*}
$$

All $a_{p_{i}}^{\prime} s \geq 0, i=1,2,3$.
Theorem 3. Let M^{n} be a full-immersed compact connected minimal submanifold of $S^{n+p}(1)$ with second fundamental form h. Then

$$
\int_{M}|h|^{2}\left\{\frac{8}{n^{2}}|h|^{2}-\left[4 \sum_{i=1}^{4} \lambda_{i}-\frac{8(n+1)}{n^{2}}\right]\right\} \geq \Gamma \cdot \operatorname{vol}(M)
$$

where

$$
\begin{aligned}
\Gamma= & n \sum_{1 \leq i<j<k \leq 4} \lambda_{i} \lambda_{j} \lambda_{k}+4 n(n+1)^{2} \sum_{i=1}^{4} \lambda_{i}-2 n(n+1) \sum_{1 \leq i<j \leq 4} \lambda_{i} \lambda_{j} \\
& -\frac{n+p}{2(n+p+1)} \Pi_{i=1}^{4} \lambda_{i}-\frac{8(n+1)\left(2 n^{2}+2 n+1\right)}{n^{2}} .
\end{aligned}
$$

Corollary 1. If $\Gamma \geq 0$, then

$$
|h|^{2}<\frac{n^{2}}{2} \sum_{i=1}^{4} \lambda_{i}-(n+1) \text { implies }|h|=0
$$

i.e., M^{n} is totally geodesic in $S^{n+p}(1)$.

Proof. Let $\Omega_{1}, \Omega_{2}, \Omega_{3}$ be the same as in the proof of Theorem 1. Let

$$
\Omega_{4}=\int_{M} g\left(\Delta^{2} \phi, \Delta^{2} \phi\right) d v-\lambda_{1} \int_{M} g\left(\Delta^{2} \phi, \Delta \phi\right) d v
$$

and

$$
\begin{aligned}
\Omega_{4}^{*}= & \frac{8}{n^{2}} \int_{M}|h|^{4} d v+\frac{8(n+1)}{n^{2}} \int_{M}|h|^{2} d v+\frac{8(n+1)^{3}}{n} \operatorname{vol}(M) \\
& -\lambda_{1} \int_{M} g\left(\triangle^{2}, \Delta \phi\right) d v \\
= & \frac{8}{n^{2}} \int_{M}|h|^{4} d v+\left[\frac{8(n+1)}{n^{2}}-4 \lambda_{1}\right] \int_{M}|h|^{2} d v \\
& +\left[\frac{8(n+1)^{3}}{n}-4 n(n+1)^{2} \lambda_{1}\right] \operatorname{vol}(M)
\end{aligned}
$$

By a similar argument as we have used in the proof Theorem 1, we obtain that

$$
\begin{aligned}
& \Omega_{4}^{*}-\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right) \Omega_{3}+\left(\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4}\right) \Omega_{2}-\lambda_{2} \lambda_{3} \lambda_{4} \Omega_{1} \\
\geq & \Omega_{4}-\left(\lambda_{2}+\lambda_{3}+\lambda_{4}\right) \Omega_{3}+\left(\lambda_{2} \lambda_{3}+\lambda_{2} \lambda_{4}+\lambda_{3} \lambda_{4}\right) \Omega_{2}-\lambda_{2} \lambda_{3} \lambda_{4} \Omega_{1} \\
= & \sum_{t=5}^{\infty}\left(\lambda_{t}-\lambda_{4}\right)\left(\lambda_{t}-\lambda_{3}\right)\left(\lambda_{t}-\lambda_{2}\right)\left(\lambda_{t}-\lambda_{1}\right) a_{t} \geq 0
\end{aligned}
$$

Combine Lemma 1 and Lemma 2, by a long but direct computation, the theorem follows.
Q.E.D.

Remark. The corollary gives a pinch theorem of Simons type ([9]) in terms of the spectrum of M^{n}, this shows a relation between the study of $\operatorname{Spec}\left(M^{n}\right)$ and pinch condition on $|h|^{2}$.

3. Some Restrictions

In section 2, we always assume that M^{n} is full-immersed into $S^{n+p}(1)$, for such minimal submanifolds we have the following result.

Theorem 4. If M^{n} is a full-immersed compact connected minimal submanifold of $S^{n+p}(1)$. Then M^{n} can not be immersed into any hypersphere of $S M(n+p+1)$ as a minimal submanifold via the standard immersion of $S^{n+p}(1)$.

Proof. It is equivalent to show that M^{n} can not be 1-type submanifold of $S M(n+p+1)$ under the isometric immersion ϕ (defined in section 1). Suppose
M^{n} is of 1 -type under ϕ with order k, then the Lemma 1 produces the following equalites:

$$
\begin{aligned}
a_{k} & =\frac{n+p}{2(n+p+1)} \cdot \operatorname{vol}(M) \\
\lambda_{k} a_{k} & =n \cdot \operatorname{vol}(M) \\
\lambda_{k}^{2} a_{k} & =2 n(n+1) \cdot \operatorname{vol}(M) \\
\lambda_{k}^{3} a_{k} & =4 n(n+1)^{2} \cdot \operatorname{vol}(M)+4 \int_{M}|h|^{2} d v
\end{aligned}
$$

It implies that $p=0$ and $|h|^{2}=0$. Q.E.D.

After the first version of this paper was written, Prof. Dimitric kindly informed me that a much more general result 1-type submanifolds of $S M(n+$ $p+1$) was proved in his paper [6], and he also pointed out that a necessary condition for theorem 5 was missed in the original manuscript of this paper, I would like to express my thanks to him.

When $S^{n} \rightarrow S^{n+p}$ as a totally geodesic submanifold, it is known that S^{n} will be of 1-type in $S M(n+p+1)$ via the second standard immersion of s^{n+p} ([6]). However, S^{n} could be isometrically immersed into S^{n+p} as a minimal submanifold many different ways. Suggested by the classical Bernstein conjecture, S. S. Chern proposed the following "spherical Bernstein conjecture" in the international congress of mathematics at Nice: "If $S^{n-1}(1)$ is imbedded as a minimal hypersurface of $S^{n}(1)$, then it is an equator." The spherical Bernstein conjecture was disproved by W. Y, Hsiang in the dimension $n=4,5,6,7,8,10,12$ and 14, he constructed infinitely many counterexamples in each of the above dimensions ([7]), later Tomtier gave counterexamples in even dimensions ([11]). For those full immersed hypersphers of sphers, according to theorem 4 they can not be of 1-type via the second immersion of the sphers. In addition, we also have the following general restrictions:

Theorem 5. If $S^{n}(1)$ isometrically full immersed into $S^{n+1}(1)$ as a mass symmetric submanifold, then it can not be of finite-type in $S M(n+2)$ with order $[p, q](p \geq 2)$ via the second standard immersion of $S^{n+1}(1)$.

Proof. Let $f: S^{n+1}(1) \rightarrow S M(n+2)$ be the second standard immersion of $S^{n+1}(1)$, and $S^{N}(r)$ be the hypersphere of $S M(n+2)$ in which $f\left(S^{n+1}(1)\right)$ is minimal, then by Takahashi ([10])

$$
r^{2}=\frac{n+1}{\lambda_{2}\left(S^{n+1}(1)\right)}=\frac{n+1}{2(n+2)} .
$$

Suppose $\psi: S^{n}(1) \rightarrow S^{n+1}(1)$ is an isometric full immersion such that

$$
\phi=f \circ \psi: S^{n}(1) \rightarrow S^{N}(r) \subset S M(n+2)
$$

is of finite type with order $[p, q]$, then $\dot{\phi}\left(S^{n}(1)\right)$ is mass symmetric in $S^{N}(r)$, by a. well known result in [4],

$$
\left.\lambda_{2} S^{n}(1)\right) \leq \frac{n}{r^{2}}
$$

That is

$$
\begin{aligned}
2(n+1) & \leq \frac{2 n(n+2)}{n+2} ; \\
(n+2)(n+1) & \leq n(n+2) \\
n+1 & \leq n .
\end{aligned}
$$

This is a contradication.
Q.E.D.

By a similar argument, we have
Corollary 2. If $S^{n}(1)$ isometrically full immersed into $S^{m}(1)(m>n)$ as a mass symmetric submanifold, then it can not be of finite type with order $[p, q]$ $(p \geq k \geq 2)$ in the $k^{\text {th }}$ eigenspace of $S^{m}(1)$ via the $k^{\text {th }}$ standard immersion of $S^{m}(1)$.

Proof. Observe that $\lambda_{k}\left(S^{n}(1)\right)=k(k+n-1)$, and $S^{m}(1)$ is a minimal submanifold of some hypersphere $S^{N}(r)$ in R^{N+1} by its $k^{\text {th }}$ standard immersion into R^{N+1}, rest of the argument identical with that of THeorem 5.
Q.E.D.

Remark. Asimilar version of Theorem 5 for $R P^{n}$ can be found in [4].
Let $\phi: \bar{M}^{m} \rightarrow R^{N+1}$ be an isometric immersion of a compact connected Riemannian manifold of 1-type, and $S^{N}(r)$ be the hypersphere of R^{N+1} in which
\bar{M}^{m} is minimal. Suppose $\Delta \phi=\lambda_{i} \phi$, where Δ is the Laplace-Beltrami operator on $C^{\infty}(\bar{M})$ and λ_{i} is the $i^{\text {th }}$ eigenvalue of Δ, then

$$
r^{2}=\lambda_{i}(\bar{M})
$$

and $\phi\left(\bar{M}^{m}\right)$ is mass symmetric in $S^{N}(r)$, up to a congruence we may assume that $S^{N}(r)$ is centered at the origin of R^{N+1}. Denote such 1-type submanifold by (\bar{M}^{m}, λ_{i}).

By Wallach [12], if $\bar{M}=\frac{G}{H}$ is a homogeneous Riemannian manifold with a G-invariant metric where G is a compact connected Lie group and the isotropy representation of the closed subgoup H is irreducible, then \bar{M} is a such submanifold of 1-type. For instance, $\left(S^{m}, m\right),\left(S^{m}, 2(m+1)\right),\left(R P^{m}, 2(m+1)\right)$, (C $C P^{m}, 2(m+2)$), etc..

Let M^{n} be a submanifold of $\left(\bar{M}^{m}, \lambda_{i}\right)$ then M^{n} is mass symmetric in \bar{M}^{m} if and only if it is mass symmetric in $S^{N}(r)$. It is known that all the minimal submanifolds of ($S^{m}(1), 2(m+1)$), and all the Kaehler submanifolds of (CP $P^{m}, 2(m+2)$) are mass symmetric submanifolds. Theorem 5 inspires the following general result

Theorem 6. Let M^{n} be an n-dimensional submanifold of $\left(\bar{M}^{m}, \lambda_{i}\right)$, it satisfies

$$
\begin{aligned}
\operatorname{Ric}\left(M^{n}\right) & \geq(n-1) k g \\
k & \geq \frac{1}{m} \lambda_{i}(\bar{M})
\end{aligned}
$$

where g is the Riemannian metric on $M^{n}, k>0$ is a constanr.
Then M^{n} can not be isometrically immersed into \bar{M}^{m} as a mass symmetric submanifold unless $M^{n}=S^{n}\left(\frac{1}{\sqrt{k}}\right), \lambda_{i}\left(\bar{M}^{m}\right)=m k$. In particular, if $\bar{M}^{m}=$ $S^{m}\left(\frac{1}{\sqrt{k}}\right), S^{n}\left(\frac{1}{\sqrt{k}}\right)$ is the only mass symmetric submanifold (up to a congruence) of \bar{M}^{m} with $\operatorname{Ric}\left(M^{n}\right) \geq(n-1) k g$.

Proof. If M^{n} is a mass symmetric submanifold of $\left(\bar{M}^{m}, \lambda_{i}\right)$ and $S^{N}(r)$ is the sphere in which \bar{M}^{m} is minimal, then by B. Y. Chen [4]

$$
\lambda_{1}\left(M^{n}\right) \leq \frac{n}{r^{2}}
$$

where $r^{2}=\frac{m}{\lambda_{i}\left(\overline{M^{m}}\right)}$ (Takahashi [8]) that is

$$
\lambda_{1}(M) \leq \frac{n \lambda_{i}\left(\bar{M}^{m}\right)}{m}
$$

But from a result of Lichnerowicz (see [3])

$$
\lambda_{1}\left(M^{n}\right) \geq n k
$$

it follows that

$$
\begin{aligned}
\frac{n}{m} \lambda_{i}\left(\bar{M}^{m}\right) & \geq n k \\
k & \leq \frac{1}{m} \lambda_{i}\left(\bar{M}^{m}\right)
\end{aligned}
$$

By the hypothese, the this is possible only if $m k=\lambda_{i}\left(\bar{M}^{m}\right)$ and $\lambda_{1}(M)=n k$. Therefore M^{n} must be $S^{n}\left(\frac{1}{\sqrt{k}}\right)$ by obata [3].
Q.E.D.

References

[1] Barros, M. and Ghen, B. Y., "Spherical submanifolds which are of 2-type via the second standard immersion of the sphere," Nagoya Math. J. Vol. 108 (1987), 77-91.
[2] Barros, M. and Urbano, F., "Spectral geometry Of Minimal Surface In THe Sphere," Tôhoku Math. Journ. 39 (1987), 575-588.
[3] Chavel, I., "Eigenvalues in Riemannian Geometry," Academic Press. 1984.
[4] Chen, B. Y., "Total Mean Curvature and Submanifolds of Finite Type," World Scientific 1984.
[5] Chern, S. S., Do Carmo, M. and Kobayashi, S., "Minimal submanifolds of a sphere with second fundamental form of constant length," Fundamental analysis and related field. Springer-Verlag, 1970.
[6] Dimitric, I., "Quadric representation of a submanifols," Proc. AMS., Vol. 114, No. 1 (1992) 201-215
[7] Hsiang, W. H., "Minimal cones and the spherical Bernstein problem I," Ann. of Math., 118 (1983), 61-73. II, Invent. Math. 74 (1983), 351-369.
[8] Ros, A., "Eigenvalue inequalities for minimal submanifolds and P-manifolds," Math. Z. 187 (1984) 393-404.
[9] Simons, J., "Miniaml varieties in the Riemannian manifolds," Ann. of Math. 88 (1968) 62-105.
[10] Takahashi, T., "Homogeneous Kaehler submanifolds in complex projective spaces," Japan J. Math. 4 (1978) 171-219.
 183-185.
[12] Wallach, N. R., "Minimal immersions of symmetric space into sphere, in symmetric spaces," Dekker, 1972, pp. 1-40.

Department of Mathematics and Statistics, University of South Alabama, Mobile, Al 36688, U.S.A.

