ISOMETRIC IMMERSION OF MINIMAL SPHERICAL SUBMANIFOLD VIA THE SECOND STANDARD IMMERSION OF THE SPHERE*

XIN-MIN ZHANG

Abstract. Let M^n be a *n*-dimensional compact connected minimal submanifold of the unit sphere $S^{n+p}(1)$. In this paper we study the isometric immersion of M^n into SM(n+p+1) via the second standard immersion of $S^{n+p}(1)$. We obtain some integral inequalities in terms of the spectrum of the Laplace operator of M^n , and find some restrictions on such immersions.

1. Introduction and Preliminaries

Let $\phi: M^n \to R^m$ be an isometric immersion of a compact connected *n*dimensional Riemannian manifold M^n into a Euclidean *m*-space. Denote the spectrum of the Laplace-Beltrami operator Δ acting on differentiable functions in $C^{\infty}(M)$ by

$$Spec(M) = \{0 = \lambda_0 < \lambda_1 < \dots < \lambda_k < \dots \uparrow \infty\}$$

If we extend *triangle* to \mathbb{R}^m -valued functions on M^n in a natural fashion, then we have the following spectral decomposition of ϕ (in L^2 -sense)

$$\phi = \phi_0 + \sum_{t=1}^{\infty} \phi_t,$$

Received December 10, 1991.

*1980 Mathematics Subject Classification (1985 Revision), Primary 52C40

$$\Delta \phi_t = \lambda_t \phi_t; \qquad \phi_t : M^n \to R^m,$$

where ϕ_0 is the center of mass of M in \mathbb{R}^m . If there are exactly k-nonzero $\phi'_t s(t \ge 0)$ in the decomposition of ϕ , then we say that M^n is a k-type submanifold of \mathbb{R}^m . Moreover, if $\phi_t = 0$ for all t > q, and t < p, $(1 \le p \le q)$ then M^n is called a k-type submanifold of \mathbb{R}^m with order [p,q], and the corresponding eigenvalues are called the k-type eigenvalues of M^n . If p = q, we simply say that M^n has order p. In this case, by a result of Takahashi [10], M^n is a minimal submanifold of a hypersphere $S^{m-1}(r)$ in \mathbb{R}^m with $r^2 = \frac{n}{\lambda_p}$. For more detail concerning submanifolds of finite type, see [4].

Let $S^{m}(1)$ be the unit sphere in \mathbb{R}^{m+1} with canonical inner product \langle , \rangle . If we take each x in $S^{m}(1)$ as an $1 \times (m+1)$ row matrix, the second standard immersion f of $S^{m}(1)$ is given by

$$f : S^{m}(1) \to SM(m+1)$$
$$f(x) = x^{t}x \quad \forall x \in S^{m}(1)$$

where x^t is the transpose of x, and SM(m+1) is the set of all $(m+1) \times (m+1)$ symmetric matrices over real numbers with a Riemannian metric g which is given by

$$g(P,Q) = \frac{1}{2}tr(P \cdot Q) \quad \forall P,Q \in SM(m+1).$$

The second fundamental form σ of f satisfies the following condition:

$$\begin{split} g(\sigma(X,Y),\sigma(V,W)) \ &= 2 < X, Y > < V, W > + < X, V > < Y, W > \\ &+ < X, W > < Y, V >, \end{split}$$

If $\psi: M^n \to S^{n+p}(1)$ is a monimal immersion and $f: S^{n+p}(1) \to SM(n+p+1)$ is the second standard immersion of $S^{n+p}(1)$, then $\phi = f \circ \psi$ gives an isometric immersion of M^n into SM(n+p+1). Suppose that the immersion ψ is full, i.e., $\psi(M^n)$ is not contained in any great hypersphere of $S^{n+p}(1)$. A. Ros [8] has proved that ϕ is of 2-type if and only if M^n is Einstein and T = k <, >, where T is a tenson field restricted on the normal bundle of ψ and <, > is the canonical inner product on $S^{n+p}(1)$. It is known that ([8]) $f(S^{n+p}(1))$ is

contained in a hypersphere $S^{N}(r)$ of SM(n + p + 1) with center $\frac{1}{n+p+1}I$ and radius $r = \left[\frac{n+p}{2(n+p+1)}\right]^{\frac{1}{2}}$ as a minimal submanifold, and $\phi(M^{n})$ is mass symmetric in $S^{N}(r)$, i.e., $\phi_{0} = \frac{1}{n+p+1}I$, where I is the $(n + p + 1) \times (n + p + 1)$ identity matrix. In this paper, we shall study some geometric inequalities involving these k - type eigenvalues of M^{n} , $|h|^{2}$, and the scalar curvature of M^{n} , and find some restrictions on the manifold M^{n} , in order to have the isometric immersion of M^{n} into SM(n + p + 1).

2. Eigenvalue Inequalities

Let M^n be a *n*-dimensional compact connected minimal submanifold of the unit sphere $S^{n+p}(1)$, and f, ψ, ϕ, g, h and σ be defined as in the introduction.

Lemma 1. (Ros [8])
(1)
$$g(\phi - \phi_0, \phi - \phi_0) = \frac{n+p}{2(n+p+1)};$$

(2) $g(\phi, \Delta \phi) = n;$
(3) $g(\Delta \phi, \Delta \phi) = 2n(n+1);$
(4) $g(\Delta^2 \phi, \Delta \phi) = 4n(n+1)^2 + 4|h|^2$

Lemma 2. Let M^n be a full-immersed minimal submanifold of $S^{n+p}(1)$ with second fundamental form h, \overline{H} be the mean curvature vector field of M^n in SM(n+p+1) via the second standard immersion of $S^{n+p}(1)$. Then,

(1) $|\overline{H}|^2 = \frac{2(n+1)}{n}$, and (2) $|\Delta \overline{H}|^2 \leq \frac{8(n+1)^3}{n} + \frac{8(n+1)}{n^2} |h|^2 + \frac{8}{n^2} |h|^4$, with equality holds iff at most two of (h_{ij}^{α}) are nonzero which can be transformed simultaneously by an orthogonal matrix into a scalar multiples of \widetilde{A} and \widetilde{B} respectively, where

$$\widetilde{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 \end{pmatrix}; \qquad \widetilde{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Proof. (1) can be obtained from Lemma 1 (3).

To prove (2), let us recall that (c.f.[8])

$$\Delta^2 \phi = 2(n+1)\Delta \phi + 2\sum_{i,j,\alpha,\beta} h_{ij}^{\alpha} h_{ij}^{\beta} \alpha(\xi_{\alpha},\xi_{\beta}) - 2\sum_{i,j,k,\alpha} h_{ij}^{\alpha} h_{ij}^{\alpha} \sigma(E_j,E_k)$$

where E_i, E_j, E_k, \ldots ; are tangent vectors to M^n , and $\xi_{\alpha}, \xi_{\beta}, \xi_g amma, \ldots$; are normal vectors to M^n ; $i, j, k = 1, 2, \ldots, n$; and $\alpha, \beta, \gamma = n + 1, \ldots, n + p$. Let $H_{\alpha} = (h_{ij}^{\alpha})$. By a direct computation we have

$$|\bigtriangleup \overline{H}|^2 = \frac{1}{n^2}g(\bigtriangleup^2\phi,\bigtriangleup^2\phi),$$

and

$$\begin{split} g(\Delta^2 \phi, \Delta^2 \phi) = g(\Delta^2 \phi, 2(n+1)\Delta \phi + 2\sum_{i,j,\alpha,\beta} h_{ij}^{\alpha} h_{ij}^{\beta} \sigma(\xi_{\alpha}, \xi_{\beta}) \\ &- 2\sum_{i,j,k,\alpha,} h_{ij}^{\alpha} h_{ij}^{\alpha} \sigma(E_j, E_j)) \\ = g(\Delta^2 \phi, 2(n+1)\Delta \phi) + g(\Delta^2 \phi, 2\sum_{i,j,\alpha,\beta} h_{ij}^{\alpha} h_{ij}^{\beta} \sigma(\xi_{\alpha}, \xi_{\beta})) \\ &- g(\Delta^2 \phi, 2\sum_{i,j,k,\alpha} h_{ij}^{\alpha} h_{ik}^{\alpha} \sigma(E_j, E_k)) \\ = \underbrace{2(n+1)g(\Delta^2 \phi, \Delta \phi)}_{I} + 2\sum_{i,j,\alpha,\beta} h_{ij}^{\alpha} h_{ij}^{\beta} g(\Delta^2 \phi, \sigma(\xi_{\alpha}, \xi_{\beta})) \\ &- 2\sum_{i,j,k,\alpha} h_{ij}^{\alpha} h_{ik}^{\alpha} g(\Delta^2 \phi, \sigma(E_j, E_k)). \end{split}$$

Here

$$\begin{split} I =& 2(n+1)[4n(n+1)^2 + 4 \mid h \mid^2] \quad \text{by Lemma 1 (4),} \\ II =& 2\sum_{i,j,\alpha,\beta} h_{ij}^{\alpha} h_{ij}^{\beta} g(2(n+1)\Delta\phi + 2\sum_{s,t,\gamma,\tau} h_{st}^{\gamma} h_{st}^{\tau} \sigma(\xi_{\gamma},\xi_{\tau}) \\ &- 2\sum_{s,t,u,\gamma} h_{st}^{\gamma} h_{su}^{\gamma} \sigma(E_t,E_u), \sigma(\xi_{\alpha},\xi_{\beta})) \\ =& 4(n+1)\sum_{i,j,\alpha,\beta} h_{ij}^{\alpha} h_{ij}^{\beta} g(-\sum_i \sigma(E_i,E_i),\sigma(\xi_{\alpha},\xi_{\beta})) \\ &+ 4\sum_{i,j,s,t,\alpha,\beta,\gamma,\tau} h_{ij}^{\alpha} h_{ij}^{\beta} h_{st}^{\gamma} h_{st}^{\tau} g(\sigma(\xi_{\gamma},\xi_{\tau}),\sigma(\xi_{\alpha},\xi_{\beta})) \end{split}$$

148

$$\begin{aligned} &-4\sum_{i,j,s,t,u,\alpha,\beta,\gamma}h_{ij}^{\alpha}h_{ij}^{\beta}h_{st}^{\gamma}h_{su}^{\gamma}g(\sigma(E_{t},E_{u}),\sigma(\xi_{\alpha},\xi_{\beta})) \\ &=4(n+1)\sum_{i,j,\alpha,\beta}h_{ij}^{\alpha}h_{ij}^{\beta}(-2n\delta_{\alpha}^{\beta}) \\ &+4\sum_{i,j,s,t,\alpha,\beta,\gamma,\tau}h_{ij}^{\alpha}h_{ij}^{\beta}h_{st}^{\gamma}h_{st}^{\tau}(2\delta_{\gamma}^{\tau}\delta_{\alpha}^{\beta}+\delta_{\gamma}^{\alpha}\delta_{\tau}^{\beta}+\delta_{\tau}^{\alpha}\delta_{\gamma}^{\beta}) \\ &-4\sum_{i,j,s,t,u,\alpha,\beta,\gamma}h_{ij}^{\alpha}h_{ij}^{\beta}h_{st}^{\gamma}h_{su}^{\gamma}(2\delta_{t}^{u}\delta_{\alpha}^{\beta}) \\ &=-8n(n+1)\mid h\mid^{2}+8\mid h\mid^{4}+4\sum_{i,j,s,t,\alpha,\beta}h_{ij}^{\alpha}h_{ij}^{\beta}h_{st}^{\alpha}h_{st}^{\beta} \\ &+4\sum_{i,j,s,t,\alpha,\beta}h_{ij}^{\alpha}h_{ij}^{\beta}h_{st}^{\alpha}h_{st}^{\beta}-8\mid h\mid^{4} \\ &=-8n(n+1)\mid h\mid^{2}+8\sum_{i,j,s,t,\alpha,\beta}h_{ij}^{\alpha}h_{ij}^{\beta}h_{st}^{\alpha}h_{st}^{\beta}. \end{aligned}$$

By a similar calculation we also have

$$III = 8n(n+1) |h|^{2} + 8 \sum_{i,j,k,s,\alpha,\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} h_{sj}^{\beta} h_{sk}^{\beta}.$$

Therefore,

F

$$\begin{split} g(\Delta^2 \phi, \Delta^2 \phi) =& I + II + III \\ =& 2(n+1)[4n(n+1)^2 + 4 \mid h \mid^2] \\ &+ 8[\sum_{i,j,s,t,\alpha,\beta} h_{ij}^{\alpha} h_{ij}^{\beta} h_{st}^{\alpha} h_{st}^{\beta} + \sum_{i,j,k,s,\alpha,\beta} h_{ij}^{\alpha} h_{ik}^{\alpha} h_{sj}^{\beta} h_{sk}^{\beta}] \\ =& 2(n+1)[4n(n+1)^2 + 4 \mid h \mid^2] \\ &+ 8[\sum_{\alpha,\beta} Tr(H_{\alpha}H_{\beta})^2 + \sum_{\alpha,\beta} Tr(H_{\alpha}H_{\beta}H_{\beta}H_{\alpha})] \\ =& 2(n+1)[4n(n+1)^2 + 4 \mid h \mid^2] \\ &+ 8[\sum_{\alpha,\beta} Tr(H_{\alpha}H_{\beta})^2 + \sum_{\alpha,\beta} Tr(H_{\alpha}^2H_{\beta}^2)] \\ &\leq 8n(n+1)^3 + 8(n+1) \mid h \mid^2 + 8 \sum_{\alpha,\beta} TrH_{\alpha}rH_{\beta}^2 \\ &= 8n(n+1)^3 + 8(n+1) \mid h \mid^2 + 8 \mid h \mid^4 \end{split}$$

XIN-MIN ZHANG

the inequality above and rest of the proof are due to the following lemma 3 which is a slight modification of a lemma in [5].

Q.E.D.

Lemma 3. Let A and B be symmetric $(n \times n)$ -matrices. Then

$$Tr(AB + BA)^2 \leq 2TrA^2 \cdot TrB^2$$

and the equality holds for nonzero matrices A and B if only if A and B can be transformed simultaneously by an orthogonal matrix into scalar multiples of \tilde{A} and \tilde{B} respectively, where

$$\widetilde{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad \widetilde{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Moreover, if A_1 , A_2 , and A_3 are $(n \times n)$ -symmetric matrices and satisfy

$$Tr(A_{\alpha}A_{\beta} + A_{\beta}A\alpha)^2 = 2TrA_{\alpha}^2A_{\beta}^2 \qquad 1 \le \alpha, \ \beta \le 3,$$

then at least one of the $A'_{\alpha}s$ must be zero.

Proof. We may assume that B is diagonal and denote the diagonal entries in B by b_1, b_2, \ldots, b_n . Then we have

$$Tr(AB + BA)^{2} = \sum_{i,j=1}^{n} a_{ij}^{2} (b_{i} + b_{j})^{2} \leq 2 \sum_{i,j=1}^{n} a_{ij}^{2} (b_{i}^{2} + b_{j}^{2})$$
$$\leq 2 \sum_{i,j=1}^{n} a_{ij}^{2} \sum_{k=1}^{n} b_{k}^{2} = 2TrA^{2}TrB^{2}. \qquad (*)$$

Now, suppose that A and B are nonzero matrices and the equality holds. Then all equalities hold in (*). From the second equality in (*), it followss that

$$b_i = b_j$$
 if $a_{ij} \neq 0$, $1 \leq i, j \leq n$.

Without loss of generality, we may assume that $a_{12} \neq 0$, then $b_1 = b_2$. From the third equality, we obtain that $b_3 = b_4 = \ldots = b_n = 0$. Since $B \neq 0$, it

implies that $b_1 = b_2 \neq 0$, and it is easy to see that $a_{11} = a_{12} = a_{21} = a_{22} \neq 0$ and $a_{ij} = 0$ otherwise. If A_1 , A_2 , A_3 are three $(n \times n)$ -symmetric matrices satisfy the equality in (*), the argument above tell us that one of the them can be transformed to a scalar multiple of \widetilde{A} as well as to a scalar multiple od \widetilde{B} , but \widetilde{A} and \widetilde{B} are not orthogonally equivalent, that one be zero. Q.E.D.

Theorem 1. Let M^n be a full-immersed compact connected monomal submanifold of $S^{n+p}(1)$. Then

$$4\int_{M}\rho dv \leq \{4n(n+1)^{2} + n(\lambda_{1}\lambda_{2} + \lambda_{2}\lambda_{3} + \lambda_{1}\lambda_{3}) \\ - 2n(n+1)(\lambda_{1} + \lambda_{2} + \lambda_{3}) - \frac{\lambda_{1}\lambda_{2}\lambda_{3}}{2(n+pN1)} + 4n(n-1)\}vil(M),$$

with equality holds if and only if either

- (1) M^n is 2-type in SM(n + p + 1) with order [1,2], or [1,3], or [2,3],
- (2) M^n is 3-type in SM(n+p+1) with order [1,3],

where λ_1 , λ_2 , λ_3 are the first three nonzero eignvalues in Spec(M), and ρ is the scalar curvature of M^n .

Proof. Let

$$\Omega_{1} = \int_{M} g(\Delta \phi, \phi) dv - \lambda_{1} \int_{M} g(\phi - \phi_{0}, \phi - \phi_{0}) dv;$$

$$\Omega_{2} = \int_{M} g(\Delta \phi, \Delta \phi) dv - \lambda_{1} \int_{M} g(\Delta \phi, \phi) dv;$$

$$\Omega_{3} = \int_{M} g(\Delta^{2} \phi, \Delta \phi) dv - \lambda_{1} \int_{M} g(\Delta \phi, \Delta \phi) dv;$$

$$a_{i} = \int_{M} g(\phi_{i}, \phi_{i}) dv \qquad i = 1, 2, \dots, .$$

By the orthogonality of the decomposition of ϕ , we know that

$$g(\phi_i, \phi_j) = 0$$
 if $i \neq j$.

Therefore

$$\Omega_1 = \sum_{t=2}^{\infty} (\lambda_t - \lambda_1) a_t;$$

$$\Omega_2 = \sum_{t=2}^{\infty} \lambda_t (\lambda_t - \lambda_1) a_t;$$

$$\Omega_3 = \sum_{t=2}^{\infty} \lambda_t^2 (\lambda_t - \lambda_1) a_t.$$

Hence,

$$\Omega_3 - (\lambda_2 + \lambda_3)\Omega_2 + \lambda_2 \lambda_3 \Omega_1 = \sum_{t=4}^{\infty} \prod_{i=1}^{3} (\lambda_t - \lambda_i) \geq 0.$$

The theorem follows from Lemma 1 and the relation $\rho = n(n-1) - |h|^2$ for spherical minimal submanifold. Q.E.D.

Remark. (1) A similar inequality involving only λ_1 , λ_2 was given by Ros ([8]). WHen n = 2, it was proved in [2].

(2) M^n can not be 1-type in SM(n+p+1) via ϕ , we shall give the proof in next section.

In the case of 3-type, we have the following.

Theorem 2. If M^n is a full-immersed compact connected minimal submanifold of $S^{n+p}(1)$, and has only three nonzero eigenvalues λ_{p_1} , λ_{p_2} and λ_{p_3} $(1 \le p_1 \le p_2 \le p_3)$ in Spec(M). Then

(1)
$$4 \int_{M} \rho dv = \{4n(n+1)^{2} + n(\lambda_{p_{1}}\lambda_{p_{2}} + \lambda_{p_{2}}\lambda_{p_{3}} + \lambda_{p_{3}}\lambda_{p_{1}}) \\ - 2n(n+1)(\lambda_{p_{1}} + \lambda_{p_{2}} + \lambda_{p_{3}}) - \frac{\lambda_{p_{1}}\lambda_{p_{2}}\lambda_{p_{3}}}{2(n+p+1)} \\ + 4n(n-1)\}vol(M),$$

and

(2)

$$(\lambda_{p_1} + \lambda_{p_3}) - \frac{\lambda_{p_1}\lambda_{p_3}(n+1)}{2n(n+p+1)} \ge 2(n+1) \ge \max \left\{ \begin{array}{l} (\lambda_{p_1} + \lambda_{p_2} - \frac{\lambda_{p_1}\lambda_{p_2}(n+1)}{2n(n+p+1)}; \\ (\lambda_{p_2} + \lambda_{p_3}) - \frac{\lambda_{p_2}\lambda_{p_3}(n+1)}{2n(n+p+1)}. \end{array} \right\}$$

152

Proof. Only need to explain (2), that is a direct result by solving $a'_{p_i}s$ i = 1, 2, 3. From the proof of Theorem 1, it can obtained

$$\begin{aligned} a_{p_1} &= \frac{vol(M)}{(\lambda_{p_1} - \lambda_{p_2})(\lambda_{p_1} - \lambda_{p_3})} \{ \frac{\lambda_{p_2}\lambda_{p_3}(n+p)}{2(n+p+1)} + [2(n+1) - (\lambda_{p_2} + \lambda_{p_3})]n\}; \\ a_{p_2} &= \frac{vol(M)}{(\lambda_{p_2} - \lambda_{p_1})(\lambda_{p_2} - \lambda_{p_3})} \{ \frac{\lambda_{p_1}\lambda_{p_3}(n+p)}{2(n+p+1)} + [2(n+1) - (\lambda_{p_1} + \lambda_{p_3})]n\}; \\ a_{p_3} &= \frac{vol(M)}{(\lambda_{p_3} - \lambda_{p_1})(\lambda_{p_3} - \lambda_{p_2})} \{ \frac{\lambda_{p_1}\lambda_{p_2}(n+p)}{2(n+p+1)} + [2(n+1) - (\lambda_{p_1} + \lambda_{p_2})]n\}. \end{aligned}$$

All $a'_{p_i} s \ge 0, i = 1, 2, 3.$

Theorem 3. Let M^n be a full-immersed compact connected minimal submanifold of $S^{n+p}(1)$ with second fundamental form h. Then

$$\int_{M} |h|^{2} \left\{ \frac{8}{n^{2}} |h|^{2} - \left[4 \sum_{i=1}^{4} \lambda_{i} - \frac{8(n+1)}{n^{2}}\right] \right\} \geq \Gamma \cdot vol(M)$$

where

$$\Gamma = n \sum_{1 \le i < j < k \le 4} \lambda_i \lambda_j \lambda_k + 4n(n+1)^2 \sum_{i=1}^4 \lambda_i - 2n(n+1) \sum_{1 \le i < j \le 4} \lambda_i \lambda_j - \frac{n+p}{2(n+p+1)} \prod_{i=1}^4 \lambda_i - \frac{8(n+1)(2n^2+2n+1)}{n^2}.$$

Corollary 1. If $\Gamma \geq 0$, then

$$|h|^2 < \frac{n^2}{2} \sum_{i=1}^4 \lambda_i - (n+1) \text{ implies } |h| = 0$$

i.e., M^n is totally geodesic in $S^{n+p}(1)$.

Proof. Let $\Omega_1, \Omega_2, \Omega_3$ be the same as in the proof of Theorem 1. Let

$$\Omega_4 = \int_M g(\triangle^2 \phi, \triangle^2 \phi) dv - \lambda_1 \int_M g(\triangle^2 \phi, \triangle \phi) dv$$

Q.E.D.

and

$$\begin{split} \Omega_4^* &= \frac{8}{n^2} \int_M |h|^4 dv + \frac{8(n+1)}{n^2} \int_M |h|^2 dv + \frac{8(n+1)^3}{n} vol(M) \\ &- \lambda_1 \int_M g(\Delta^2, \Delta \phi) dv \\ &= \frac{8}{n^2} \int_M |h|^4 dv + \left[\frac{8(n+1)}{n^2} - 4\lambda_1\right] \int_M |h|^2 dv \\ &+ \left[\frac{8(n+1)^3}{n} - 4n(n+1)^2\lambda_1\right] vol(M). \end{split}$$

By a similar argument as we have used in the proof Theorem 1, we obtain that

$$\Omega_4^* - (\lambda_2 + \lambda_3 + \lambda_4)\Omega_3 + (\lambda_2\lambda_3 + \lambda_2\lambda_4 + \lambda_3\lambda_4)\Omega_2 - \lambda_2\lambda_3\lambda_4\Omega_1$$

$$\geq \Omega_4 - (\lambda_2 + \lambda_3 + \lambda_4)\Omega_3 + (\lambda_2\lambda_3 + \lambda_2\lambda_4 + \lambda_3\lambda_4)\Omega_2 - \lambda_2\lambda_3\lambda_4\Omega_1$$

$$= \sum_{t=5}^{\infty} (\lambda_t - \lambda_4)(\lambda_t - \lambda_3)(\lambda_t - \lambda_2)(\lambda_t - \lambda_1)a_t \geq 0.$$

Combine Lemma 1 and Lemma 2, by a long but direct computation, the theorem follows. Q.E.D.

Remark. The corollary gives a pinch theorem of Simons type ([9]) in terms of the spectrum of M^n , this shows a relation between the study of $Spec(M^n)$ and pinch condition on $|h|^2$.

3. Some Restrictions

In section 2, we always assume that M^n is full-immersed into $S^{n+p}(1)$, for such minimal submanifolds we have the following result.

Theorem 4. If M^n is a full-immersed compact connected minimal submanifold of $S^{n+p}(1)$. Then M^n can not be immersed into any hypersphere of SM(n+p+1) as a minimal submanifold via the standard immersion of $S^{n+p}(1)$.

Proof. It is equivalent to show that M^n can not be 1-type submanifold of SM(n+p+1) under the isometric immersion ϕ (defined in section 1). Suppose

 M^n is of 1-type under ϕ with order k, then the Lemma 1 produces the following equalites:

$$a_{k} = \frac{n+p}{2(n+p+1)} \cdot vol(M);$$

$$\lambda_{k}a_{k} = n \cdot vol(M);$$

$$\lambda_{k}^{2}a_{k} = 2n(n+1) \cdot vol(M);$$

$$\lambda_{k}^{3}a_{k} = 4n(n+1)^{2} \cdot vol(M) + 4 \int_{M} |h|^{2} dv.$$

It implies that p = 0 and $|h|^2 = 0$.

After the first version of this paper was written, Prof. Dimitric kindly informed me that a much more general result 1-type submanifolds of SM(n + p + 1) was proved in his paper [6], and he also pointed out that a necessary condition for theorem 5 was missed in the original manuscript of this paper, I would like to express my thanks to him.

When $S^n \to S^{n+p}$ as a totally geodesic submanifold, it is known that S^n will be of 1-type in SM(n + p + 1) via the second standard immersion of s^{n+p} ([6]). However, S^n could be isometrically immersed into S^{n+p} as a minimal submanifold many different ways. Suggested by the classical Bernstein conjecture, S. S. Chern proposed the following "spherical Bernstein conjecture" in the international congress of mathematics at Nice: "If $S^{n-1}(1)$ is imbedded as a minimal hypersurface of $S^n(1)$, then it is an equator." The spherical Bernstein conjecture was disproved by W. Y, Hsiang in the dimension n = 4, 5, 6, 7, 8, 10, 12 and 14, he constructed infinitely many counterexamples in each of the above dimensions ([7]), later Tomtier gave counterexamples in even dimensions ([11]). For those full immersed hypersphers of sphers, according to theorem 4 they can not be of 1-type via the second immersion of the sphers. In addition, we also have the following general restrictions:

Theorem 5. If $S^n(1)$ isometrically full immersed into $S^{n+1}(1)$ as a mass symmetric submanifold, then it can not be of finite-type in SM(n+2) with order $[p,q] (p \ge 2)$ via the second standard immersion of $S^{n+1}(1)$.

Q.E.D.

XIN-MIN ZHANG

Proof. Let $f: S^{n+1}(1) \to SM(n+2)$ be the second standard immersion of $S^{n+1}(1)$, and $S^N(r)$ be the hypersphere of SM(n+2) in which $f(S^{n+1}(1))$ is minimal, then by Takahashi ([10])

$$r^2 = \frac{n+1}{\lambda_2(S^{n+1}(1))} = \frac{n+1}{2(n+2)}.$$

Suppose $\psi: S^n(1) \to S^{n+1}(1)$ is an isometric full immersion such that

$$\phi = f \circ \psi : S^n(1) \to S^N(r) \subset SM(n+2)$$

is of finite type with order [p,q], then $\dot{\phi}(S^n(1))$ is mass symmetric in $S^N(r)$, by a well known result in [4],

$$\lambda_2 S^n(1)) \leq \frac{n}{r^2};$$

That is

$$2(n+1) \leq \frac{2n(n+2)}{n+2};$$

(n+2)(n+1) \le n(n+2);
n+1 \le n.

Q.E.D.

This is a contradication.

By a similar argument, we have

Corollary 2. If $S^n(1)$ isometrically full immersed into $S^m(1)$ (m > n) as a mass symmetric submanifold, then it can not be of finite type with order [p,q] $(p \ge k \ge 2)$ in the k^{th} eigenspace of $S^m(1)$ via the k^{th} standard immersion of $S^m(1)$.

Proof. Observe that $\lambda_k(S^n(1)) = k(k+n-1)$, and $S^m(1)$ is a minimal submanifold of some hypersphere $S^N(r)$ in \mathbb{R}^{N+1} by its k^{th} standard immersion into \mathbb{R}^{N+1} , rest of the argument identical with that of THeorem 5. Q.E.D.

Remark. Asimilar version of Theorem 5 for \mathbb{RP}^n can be found in [4].

Let $\phi : \overline{M}^m \to \mathbb{R}^{N+1}$ be an isometric immersion of a compact connected Riemannian manifold of 1-type, and $S^N(r)$ be the hypersphere of \mathbb{R}^{N+1} in which

156

 \overline{M}^m is minimal. Suppose $\Delta \phi = \lambda_i \phi$, where Δ is the Laplace-Beltrami operator on $C^{\infty}(\overline{M})$ and λ_i is the *i*th eigenvalue of Δ , then

$$r^2 = \lambda_i(\overline{M})$$

and $\phi(\overline{M}^m)$ is mass symmetric in $S^N(r)$, up to a congruence we may assume that $S^N(r)$ is centered at the origin of \mathbb{R}^{N+1} . Denote such 1-type submanifold by $(\overline{M}^m, \lambda_i)$.

By Wallach [12], if $\overline{M} = \frac{G}{H}$ is a homogeneous Riemannian manifold with a *G*-invariant metric where *G* is a compact connected Lie group and the isotropy representation of the closed subgoup *H* is irreducible, then \overline{M} is a such submanifold of 1-type. For instance, (S^m, m) , $(S^m, 2(m + 1))$, $(RP^m, 2(m + 1))$, $(CP^m, 2(m + 2))$, etc..

Let M^n be a submanifold of $(\overline{M}^m, \lambda_i)$ then M^n is mass symmetric in \overline{M}^m if and only if it is mass symmetric in $S^N(r)$. It is known that all the minimal submanifolds of $(S^m(1), 2(m + 1))$, and all the Kaehler submanifolds of $(CP^m, 2(m + 2))$ are mass symmetric submanifolds. Theorem 5 inspires the following general result

Theorem 6. Let M^n be an n-dimensional submanifold of $(\overline{M}^m, \lambda_i)$, it satisfies

$$Ric(M^n) \ge (n-1)kg$$

 $k \ge \frac{1}{m}\lambda_i(\overline{M})$

where g is the Riemannian metric on M^n , k > 0 is a constanr.

Then M^n can not be isometrically immersed into \overline{M}^m as a mass symmetric submanifold unless $M^n = S^n(\frac{1}{\sqrt{k}}), \lambda_i(\overline{M}^m) = mk$. In particular, if $\overline{M}^m = S^m(\frac{1}{\sqrt{k}}), S^n(\frac{1}{\sqrt{k}})$ is the only mass symmetric submanifold (up to a congruence) of \overline{M}^m with $\operatorname{Ric}(M^n) \ge (n-1)kg$.

Proof. If M^n is a mass symmetric submanifold of $(\overline{M}^m, \lambda_i)$ and $S^N(r)$ is the sphere in which \overline{M}^m is minimal, then by B. Y. Chen [4]

$$\lambda_1(M^n) \leq \frac{n}{r^2}$$

where $r^2 = \frac{m}{\lambda_i(\overline{M}^m)}$ (Takahashi [8]) that is

$$\lambda_1(M) \leq \frac{n\lambda_i(\overline{M}^m)}{m}$$

But from a result of Lichnerowicz (see [3])

$$\lambda_1(M^n) \geq nk$$

$$\frac{n}{m}\lambda_i(\overline{M}^m) \ge nk$$
$$k \le \frac{1}{m}\lambda_i(\overline{M}^m)$$

By the hypothese, the this is possible only if $mk = \lambda_i(\overline{M}^m)$ and $\lambda_1(M) = nk$. Therefore M^n must be $S^n(\frac{1}{\sqrt{k}})$ by obata [3]. Q.E.D.

References

- Barros, M. and Ghen, B. Y., "Spherical submanifolds which are of 2-type via the second standard immersion of the sphere," Nagoya Math. J. Vol. 108 (1987), 77-91.
- [2] Barros, M. and Urbano, F., "Spectral geometry Of Minimal Surface In THe Sphere," Tôhoku Math. Journ. 39 (1987), 575-588.
- [3] Chavel, I., "Eigenvalues in Riemannian Geometry," Academic Press. 1984.
- [4] Chen, B. Y., "Total Mean Curvature and Submanifolds of Finite Type," World Scientific 1984.
- [5] Chern, S. S., Do Carmo, M. and Kobayashi, S., "Minimal submanifolds of a sphere with second fundamental form of constant length," Fundamental analysis and related field. Springer-Verlag, 1970.
- [6] Dimitric, I., "Quadric representation of a submanifols," Proc. AMS., Vol. 114, No. 1 (1992) 201-215
- [7] Hsiang, W. H., "Minimal cones and the spherical Bernstein problem I," Ann. of Math., 118 (1983), 61-73. II, Invent. Math. 74 (1983), 351-369.
- [8] Ros, A., "Eigenvalue inequalities for minimal submanifolds and P-manifolds," Math. Z. 187 (1984) 393-404.
- [9] Simons, J., "Miniaml varieties in the Riemannian manifolds," Ann. of Math. 88 (1968) 62-105.
- [10] Takahashi, T., "Homogeneous Kaehler submanifolds in complex projective spaces," Japan J. Math. 4 (1978) 171-219.

- [11] Tomtier, P., "The spherical Bernstein problem in even dimensions," Bull. AMS., 11 (1984) 183-185.
- [12] Wallach, N. R., "Minimal immersions of symmetric space into sphere, in symmetric spaces," Dekker, 1972, pp. 1-40.

Department of Mathematics and Statistics, University of South Alabama, Mobile, Al 36688, U.S.A.