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ISOMETRIC IMMERSION OF MINIMAL SPHERICAL
SUBMANIFOLD VIA THE SECOND STANDARD
IMMERSION OF THE SPHERE*

XIN-MIN ZHANG

Abstract. Let M™ be a n-dimensional compact connected minimal sub-
manifold of the unit sphere S®+?(1). In this paper we study the isometric
immersion of M™ into SM(n +p-+1) via the second standard immersion
of S"*?(1). We obtain some integral inequalities in terms of the spec-
trum of the Laplace operator of M™, and find some restrictions on such
immersions.

1. Introduction and Preliminaries

Let ¢ : M™ — R™ be an isometric immersion of a compact connected n-
dimensional Riemannian manifold M™ into a Euclidean m-space. Denote the
spectrum of the Laplace-Beltrami operator A acting on differentiable functions
in C*(M) by

Spec(M) = {0=X <A < <A<+ T o0}

If we extend triangle to R™-valued functions on M™ in a natural fashion,

then we have the following spectral decomposition of ¢ (in L?-sense)

¢ = do+ ) ¢t
i=1
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Apy = Aidy; ¢ : M" — R™,

where ¢ is the center of mass of Min R™. If there are exactly k-nonzero ¢;s(t >
0) in the decomposition of ¢, then we say that M™ is a k-type submanifold of
R™. Moreover, if ¢; = 0for allt > ¢, and t < p, (1 < p < ¢) then M™ is called
a k-type submanifold of R™ with order [p, ¢], and the corresponding eigenvalues
are called the k-type eigenvalues of M™. If p = ¢, we simply say that M™ has
order p. In this case, by a result of Takahashi [10], M™ is a minimal submanifold
of a hypersphere $™~1(r) in R™ with r? = . For more detail concerning
submanifolds of finite type, see [4]. |

Let S™(1) be the unit sphere in R™*! with canonical inner product <, >.
If we take each z in S™(1) as an 1 X (m + 1) row matrix, the second standard

immersion f of §™(1) is givén by

f:8™1)—> SM(m+1)
f(z) = =tz Yz e S™(1)

where z° is the transpose of z, and SM(m+ 1) is the set of all (m+ 1) x (m +1)
symmetric matrices over real numbers with a Riemannian metric g which is given
by

o(P,Q) = %tr(P .Q) VP,Q e SM(m+1).

The second fundamental form o of f satisfies the following condition:

9(0(X,Y),0(V,W)) =2< X,)Y ><V,W>+ < X,V ><Y,W >
+ <X, W><Y,V >,

If ¢ : M™ — §7*tP(1) is a monimal immersion and f : §"t?(1) — SM(n +
p+ 1) is the second standard immersion of $"tP(1), then ¢ = f o 1 gives an
isometric immersion of M™ into SM(n + p+ 1). Suppose that the immersion
is full, i.e., (M™) is not contained in any great hypersphere of §7*?(1). A. Ros
[8] has proved that ¢ is of 2-type if and only if M™ is Einstein and T = k <, >,
where T is a tenson field restricted on the normal bundle of % and <,> is
the canonical inner product on S$™*?(1). It is known that ([8]) f(S™*P(1)) is
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contained in a hypersphere SN(r) of SM(n + p + 1) with center e +II and
radius r = [-2-(—,-;—%1—)] Z as a minimal submanifold, and ¢(M™) is mass symmetric
in SN(7), i.e., ¢ = n+p+1I where I is the (n + p+ 1) X (n + p + 1) identity
matrix. In this paper, we shall study some geometric inequalities involving these
k — type eigenvalues of M™, |h|?, and the scalar curvature of M", and find some
restrictions on the manifold M ™, in order to have the isometric immersion of M™
into SM(n+p+1).

2. Eigenvalue Inequalities

Let M™ be a n-dimensional compact connected minimal submanifold of the
unit sphere §**?(1), and f,%,¢,g,h and o be defined as in the introduction.

Lemma 1. (Ros [8])

(1) 9(¢ — 0,6 — $0) = ey

(2) 9(¢p, &9) =

(3) 9(A¢,A¢) = 2n(n +1);

(4) 9(A%¢,A¢) = 4n(n+ 1)? + 4|hJ2.

Lemma 2. Let M™ be a full-immersed minimal submanifold of S™*?(1)
with second fundamental form h, H be the mean curvature vector field of M™ in

SM(n+ p+ 1) via the second standard immersion of S™*?(1). Then,
(1) [HP = =

n 5
N 3
and (2) |AH|? < 3L 8(fl) p2 8 p14

with equality holds iff at most two of (h{;) are nonzero which can be transformed

simultaneously by an orthogonal matriz into a scalsr multiples of A and B re-

spectively, where

B 11 B 10
A=(1 | 0); B:(O 1 O).
0 0 0 0

Proof. (1) can be obtained from Lemma 1 (3).
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To prove (2), let us recall that (c.f.[8])

A'¢=2n+1)A¢+2 Y hEhfa(ta,&)—2 Y hEGhSGo(E;, Er)

i,J,0,0 i,J, k0
where E;, E;, Ey,...,; are tangent vectors to M™, and €ar€p,Egamma,. . . ,; are
normal vectors to M™"; ¢,5,k = 1,2,...,n; and o,8,y = n+1,...,n + p. Let

Hy = (hf;). By a direct computation we have
— 1
I AH |2 = Eg(A2¢’ A2¢),

and
9D, A%8) =g(A%¢,2(n + 1)A¢+2 Y h&hEo(£arEp)
iij’“?ﬁ

=2 ) h§h$o(E;, Ej))

i’j’k’a,
=9(A%¢,2(n +1)A¢) + 9(A%¢,2 > hehf0(€a,Ep))
i,J,0,0
- g(A2¢’2 Z h?jh?ka(Ej’Ek))

i,4,k,c

=2(n+1)g(A%,A8) +2 3 K& g(D2,0(€arés)

I i!j’a)ﬁ

> §

=,

II
~2 ) h&h%g(A’$,0(E;, Ex)).

t,5,k,0

-

=~

IIr

Here _
I=2(n+1)4n(n+1)*+4|h|’] by Lemma 1 (4),

II=2 ) h§h{g(2n+1)A¢+2 Y RLAL0(E,Er)

i,5,a,0 $,8,7,T
-2 Z thhzua(Etv E‘u), U(Eou‘fﬁ))
syt u,y
=4(n+1) ) hhe(= Y o(E;, E:),0(Ea,ép))
t,5,0,0 t

+4 D hGhERLRLg(0(Ey €0)r 0(6xrEp))

ivjvsytva’ﬁ,'h'r
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-4 ) hGRERLAY,9(0(Er, Ey),0(Ea, €8))

4,5,8,t,u,a,8,7

=4(n+1) Y hh(—2n88)

$,3,0,8

+4 ) RGRLRLAT(26765 + 6287 + 6268)
iajys:t:avﬁy’Y’T

il Z hehL;hT,hY, (26185)
i)j!")tiu!aiﬁi‘y

=—8n(n+1)|h|* +8 | h|* +4 Z hhE.h2h2,

i,5,8,t,a,0
+4 ) hEhERAHE -8R |
i7j!3,t’a1ﬁ
=—8n(n+1)|h|*+8 D  hEELALAE,

i’jis’t7a'ﬁ

By a similar calculation we also have

III = 8a(n+1) |h|* +8 > h&h%ACA®

83 sk
i,5,k,s,0,8
Therefore,

9(D2¢, A2¢) =I + II + IIT
=2(n+ 1)[dn(n+1)2 +4 | b |*]

+8[ D RGRGRSAE+ D hghghERS,

1,7,8,t,a,0 t,7,k,s,a,0
=2(n+1)[4n(n+1)*+ 4| h |}
+ 8> Tr(HyHp)* + > Tr(HoHpHyH,)]
a,B a,B
=2(n+ 1)[4n(n+1)> + 4 | b |?]
+8[) Tr(HoHp)* + Y  Tr(HLHZ)]
a,B o,
<8n(n+1°+8(n+1) | h|* +8 TrH,rH}
a,f
" =8n(n+1)°+8(n+1)|h|*+8|h|*

149
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the inequality above and rest of the proof are due to the following lemma 3 which

is a slight modification of a lemma in [5].
QED.

Lemma 3. Let A and B be symmetric (n X n)-matrices. Then
Tr(AB + BA)? < 2TrA?.TrB?

and the equality holds for nonzero matrices A and B if oﬁly if A and B can be
transformed simulianeously by an orthogonal matriz into scalar multiples of A

and B respectively, where

1 1 1 0
A = (1 1 0) N B = (O 1 0) &
0 0 0 0
Moreover, if Ay, Aa, and A3z are (n X n)-symmetric matrices and satisfy
Tr(AqAp + AgAa)? = 2TrAf,A% 125, L3,
then at least one of the Al s must be zero.

Proof. We may assume that B is diagonal and denote the diagonal entries

in B by by,b2,...,b,. Then we have

Tr(AB + BA)® = ) ali(bi+b;)* < 2 ) af(b? +0?)

1,j=1 i,j=1

n n
<2 E a?]- Ebf7 = 2TrA'TrB. (%)
k=1

i,j=1

Now, suppose that A and B are nonzero matrices and the equality holds.

Then all equalities hold in (*). From the second equality in (%), it followss that
b;:bj if a,-j;éO, lgi,jgn.

Without loss of generality, we may assume that a;; # 0, then b; = by. From
the third equality, we obtain that b3 = by = ... = b, = 0. Since B # 0, it
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implies that b; = by # 0, and it is easy to see that a;; = a12 = as; = az; # 0
and a;; = 0 otherwise. If A;, A3, A3 are three (n X n)-symmetric matrices
satisfy the equality in (%), the argument above tell us that one of the them can
be transformed to a scalar multiple of A as well as to a scalar multiple od E,

but A and B are not orthogonally equivalent, that one be zero. Q.E.D.

Theorem 1. Let M™ be a full-immersed compact connected monomal sub-
manifold of S"*?(1). Then

4/ pdv _<_{4n(n <+ 1)2 + n(A;lAg + A2 A3 + A1A3)
M

/\1 Ag )\3

—2n(n +1)(A1 + A2 + A3) - 2(n + pN1)

+ 4n(n — 1) }vil(M),
with equality holds if and only if either
(1) M™ is 2-type in SM(n + p + 1) with order [1,2], or [1,3], or [2,3],
(2) M™ is 3-type in SM(n + p+ 1) with order [1,3],

where A1, Az, A3 are the first three nonzero eignvalues in Spec(M), and p is

the scalar curvature of M™.

Proof. Let

Q = / g At i = Ju / P
M M

Q, = / oA, Ad)dv — Ny / oAb, $)dv;
M M

0 = [ o8, 09)d0-x | s28,89)a
M M

a; = / g(qﬁ,-,gb,-)dv i=1,2,...,.
M

By the orthogonality of the decomposition of ¢, we know that

9(¢is¢5) =0 if i # .



152 XIN-MIN ZHANG

Therefore -
Q = Z(r\t-)\l)at;
t=2
co
Q= ) (A — M)ag
t=2
Qs = ) A(A:— M)a.
t=2 '
Hence,

o0
Qs — (A2 + As)Q2 4+ XAay = ) T, (A= X)) > 0.
t=4

The theorem follows from Lemma 1 and the relation p = n(n — 1) — |A|? for

spherical minimal submanifold. Q.E.D.

Remark. (1) A similar inequality involving only A;, A; was given by Ros
([8])- WHen n = 2, it was proved in [2].

(2) M™ can not be 1-type in SM(n+ p+ 1) via ¢, we shall give the proof
in next section.

In the case of 3-type, we have the following.

Theorem 2. If M™ is a full-immersed compact connected minimal sub-
manifol_d of S™*?(1), and has only three nonzero eigenvalues Apis Ap, and Ap,
(1 < p1 £ p2 < p3) in Spec(M). Then

(1) 4/M pdv = {4n(n ¢ 1)2 ¥ n(’\Pl’\Pz 3 A1’2A1’:‘. <y APaApl)

A1’1 ’\Pz )‘Ps
2n+p+1)

— 2n(n + 1)0‘?1 + Ap, + ’\Pa) -
+ 4n(n — 1)}vol(M),

and
@) Apy App(n+1)
Aps A 1 s o+ Ay = PRl
()‘Pl & ’\Ps) - 2:;’1(1::_(71 ::__ 1§ 2 2(n 'y 1) Z ma'x{ ( " ¥ ” )2«:1(;+;(,:-}-)1) }
g (Aes +Aps) = FormdprD) -
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Proof. Only need to explain (2), that is a direct result by solving a;, s
¢ =1,2,3. From the proof of Theorem 1, it can obtained

_ ’UOI(M) APzApa(n T p) n — ng,
Gp, —(/\m - Apz)(Ap, — }\pa){ 2(n+p+1) TR+ -0 + el
. ‘UOI(M) )‘px ’\ps (n & P) n - n¢s
ap, —(Ap2 — Apl)(Apz _ ’\pa){ 2(17. +p+ 1) "|" [2( + 1) ()‘Pl + /\Ps)] }1
: vol(M) Apdea (R P) 1o 4 1) — (A, + Apa )l

P27 (Aps = Apy)(Aps — ’\Pz){ 2(n+p+1)
Allal s> 0,i=1,2,3. Q.E.D.

Theorem 3. Let M™ be a full-immersed compact connected minimal sub-
manifold of §"7?(1) with second fundamental form h. Then
8 - 8(n+1)
[1RP G AP -l A - 252 > Tesolan)

i=1

where

4
F =n Z A_,‘Aj/\k + 4n(n + 1)2 ZA, - 2n(n + 1) E /\,'/\J'

1<i<j<k<4 =1 1<i<i<4
__mn+p 4, _ 8(n+1)(2n®+2n+1)
2(n+p+1) =17 n? )

Corollary 1. IfT > 0, then

2 4
(B = %—ZA;—(n+1)implies |R|=0
=1
i.e., M™ is totally geodesic in S™*7(1).

Proof. Let Q;, Q2, {23 be the same as in the proof of Theorem 1. Let

Q = / o(A?g, A2 )dv — Ny / (D%, A)dv
M M
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and
3
Q; :_85/ |h|4dv+§(”—‘;1—)/ 1R dvt 2D oan
n M n M n
—-,\1/ g(Az,Ad))d'v
M

=i2/ |h|4dv+[-8(n—-:—1-)—4)\1]/ |k |? do
n M n M

8(n +1)3
n

+ — 4n(n + 1)® 1 ]vol(M).

By a similar argument as we have used in the proof Theorem 1, we obtain that

Q3 = (A2 + A3+ A)Q3 + (A2Az + A2 dg + A3X) Q2 — A2 Az Ay
2 Qg — (A2 + A3 + A4)Q3 + (A2A3 + A2 g + A3A4) Q2 — A2 A3 Ay
o0
= Z(At == /\4)(At = A3)(/\t === /\2)(At - /\1)at 2 0.

t=5

Combine Lemma 1 and Lemma 2, by a long but direct computation, the theorem
follows. Q.E.D.

Remark. The corollary gives a pinch theorem of Simons type ([9]) in terms
of the spectrum of M™, this shows a relation between the study of S pec(M™)

and pinch condition on |A|2.

3. Some Restrictions

In section 2, we always assume that M™ is full-immersed into S n+?(1), for

such minimal submanifolds we have the following result.

Theorem 4. If M™ is a full-immersed compact connected minimal sub-
manifold of S™"*P(1). Then M™ can not be immersed into any hypersphere of
SM(n+p+1) as a minimal submanifold via the standard immersion of S n+P(1).

Proof. It is equivalent to show that M™ can not be 1-type submanifold of
SM(n+p+ 1) under the isometric immersion ¢ (defined in section 1). Suppose
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M™ is of 1-type under ¢ with order k, then the Lemma 1 produces the following

equalites:
n+p
= C I(M);
% = St ptn) Y
Akar = n-vol(M);
Ma, =2n(n+1)-vol(M);
Mar = 4n(n+1)? - vol(M) + 4 /M | b |? dv.
It implies that p = 0 and |h|* = 0. Q.E.D.

After the first version of this paper was written, Prof. Dimitric kindly
informed me that a much more general result 1-type submanifolds of SM(n +
p + 1) was proved in his paper [6], and he also pointed out that a necessary
condition for theorem 5 was missed in the original manuscript of this paper, I
would like to express my thanks to him.

When §™ — S™*P as a totally geodesic submanifold, it is known that S™
will be of 1-type in SM(n + p + 1) via the second standard immersion of s™*?
([6]). However, S™ could be isometrically immersed into $™*? as a minimal sub-
manifold many different ways. Suggested by the classical Bernstein conjecture,
S. S. Chern proposed the following “spherical Bernstein conjecture” in the inter-
national congress of mathematics at Nice: “If $”~1(1) is imbedded as a minimal
hypersurface of S™(1), then it is an equator.” The spherical Bernstein conjecture
was disproved by W. Y, Hsiang in the dimension n = 4,5,6,7,8,10,12 and 14,
he constructed infinitely many counterexamples in each of the above dimensions
([7]), later Tomtier gave counterexamples in even dimensions ([11]). For those
full immersed hypersphers of sphers, according to theorem 4 they can not be of
1-type via the second immersion of the sphers. In addition, we also have the

following general restrictions:

Theorem 5. If §™(1) isometrically full immersed into S™*1(1) as a mass
symmetric submanifold, then it can not be of finite-type in SM(n+2) with order
[p,q] (p > 2) via the second standard immersion of S™*1(1).
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Proof. Let f : §"t1(1) - SM(n + 2) be the second standard immersion
of §7*1(1), and S™(r) be the hypersphere of SM(n +2) in which f(S™+1(1))is
minimal, then by Takahashi ([10])

2 _ n+1 _ n+1
T X(Sm1(1)  2(n+2)

.
Suppose % : §*(1) — S™*1(1) is an isometric full immersion such that
¢ = foy:5"(1)— SN(r) C SM(n+2)

is of finite type with order [p,q], then $(S™(1)) is mass symmetric in SV (r), by

a well known result in [4],

X28M(1) <
That is N on(n+2).
S T2
(n+2)(n+1) <n(n+2)
n+1 < n. |
This is a contradication. Q.E.D.

By a similar argument, we have

Corollary 2. If §™(1) isometrically full immersed into S™(1) (m > n) as
a mass symmetric submanifold, then it can not be of finite type with order [p, q]
(p 2 k > 2) in the k** eigenspace of S™(1) via the k** standard immersion of
§7(1),

Proof. Observe that A\x(5™(1)) = k(k + n — 1), and $™(1) is a minimal
submanifold of some hypersphere S™V(r) in RN*! by its k** standard immersion
into RM*1, rest of the argument identical with that of THeorem 5. Q.E.D.

Remark. Asimilar version of Theorem 5 for RP™ can be found in [4].

Let ¢ : M= — RN*! be an isometric immersion of a compact connected
Riemannian manifold of 1-type, and S™V(r) be the hypersphere of R¥*! in which
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M is minimal. Suppose A¢ = \;¢, where A is the Laplace-Beltrami operator
on C®(M) and ); is the i** eigenvalue of A, then

1‘2 = A,(H)

and ¢(—M—m) is mass symmetric in SN (r), up to a congruence we may assume
that SY(r) is centered at the origin of R¥*!. Denote such 1-type submanifold
by (M, A).

By Wallach [12], if M = §€ is a homogeneous Riemannian manifold with a
G-invariant metric where G is a compact connected Lie group and the isotropy
representation of the closed subgoup H is irreducible, then M is a such sub-
manifold of 1-type. For instance, (S™,m), (§™,2(m + 1)), (RP™,2(m + 1)),
(CP™,2(m + 2)), etc..

Let M™ be a submanifold of (M, ;) then M™ is mass symmetric in M
if and only if it is mass symmetric in S¥(r). It is known that all the min-
imal submanifolds of (§™(1),2(m + 1)), and all the Kaehler submanifolds of
(CP™,2(m + 2)) are mass symmetric submanifolds. Theorem § inspires the

following general result

Theorem 6. Let M™ be an n-dimensional submanifold of (Hm,)\,-), it
satisfies
Ric(M™) > (n—1)kg
1. —
> )
k2> mA,(M)

where g is the Riemannian metric on M™, k > 0 is a constanr.

Then M™ can not be isometrically immersed into M™ as a mass symmetric
submanifold unless M™ = § "(—lﬁ), M(M™) = mk. In particular, if M= =
Sm(ﬁ), S "(ﬁ) is the only mass symmetric submanifold (up to a congruence)
of M with Ric(M™) > (n — 1)kg.

Proof. If M™ is a mass symmetric submanifold of (M, };) and SV(r) is
the sphere in which M is minimal, then by B. Y. Chen [4]
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n
r2

A(M™) <

2 s

= ﬁm_ﬁT) (Takahashi [8]) that is

where r

But from a result of Lichnerowicz (see [3])
/\1(M n) __>__ nk

it follows that R
—M(MT) 2> nk

1, —m
k < ;/\i(M )

By the hypothese, the this is possible only if mk = A,-(_M-m) and A\ (M) = nk.
Therefore M™ must be S"(Vl;;) by obata [3]. Q.E.D.
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