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ON THE CONVERGENCE OF NEWTON-LIKE METHODS

IOANNIS K. ARGYROS AND FERENC SZIDAROVSZKY

Abstract. This paper examines conditions for the convergence of gen
eralized Newton-like methods, and estimates the speed of convergence.

1. Introduction

In·this paper we are concerned with the problem of finding conditions for

the convergence of generalized Newton-like methods to a common fixed point x*

of mappings fk(k 2 O) defined on a subset of a Banach s~ace B. Such a problem
is clearly important in numerical analysis since many applied problems reduce to

locating fixed points x* of such mappings. For example, iterations of the above

type are extremely important in solving optimization problems as well as linear

and nonlinear equations. A very important field of such applications can also be

found in solving optimization problems in econo:rp.y and solving nonlinear input
output systems (see ex. Fujimoto, [3], La Salle, [5], Okuguchi, [6], Okuguchi &
Szidarovszky, [7], Ortega & Rheinboldt, [8], Polak, [9], Tishyadihigama, et al,

[11]).
In particular, set U(O, R) = {x E B/Uxll~R}, consider the Newton-like

iterates

Xk+l = Xk - Ak(Xk尸(!這Xk) + hk伍 ）） (1)
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for approximating a common fixed point x* = 0 of equations

!k(x) = flk(x) + hk(x) (k~0). (2)

Here, fk, flk, J坏 are mappings defined on U(O, R) with values in B, A託）
denote linear mappings which approximate the Frechet-derivative f{k(x) of ilk
at x E U(O, R). The assumption x* = 0, involves no loss of generality, since any

solution x* can be transformed into Oby introducing the transformed mapping

qk(x) = fk(x + x*) - x*(k~0).

2. Convergence Analysis

We assume that for all k, k~0, and each fixed r E [O, R)

(A) Ak(o)-1 exists and for all x, y E U(O, r)~U(O, R),

IIAk(o)-1(A上 ）- Ak(O))II :::; wo(llxll) + b, (3)

IIAk(o)-1(J~k(tx) - 乩(x))II~w(tllxll) + c, t E [O, 1] . (4)

and

IIAk(O) 一1(hk(x) - hk(Y))II~e(r)llx - YII, (5)

where wo, w and e are nondecreasing nonnegative functions and constants b, c

satisfy b~0, c~0 and b + c < l. Note that the differentiability of hk is not
assumed.

The above conditions are more general than the ones considered by Argyros,

[1], Dennis, 圍 ，Kantorovich & Akilov, [4], Ortega & Rheinboldt, [8], Yamamoto

& Chen, [12], Zabrejko & Nguen, [13] who treated the above problem when

fk = f, k~0. They provided sufficient conditions for the convergence of

Newton-like iterates (1) to O in this special case. We will proceed in a similar
manner but for the more general case described above. Our results can be easily

reduced to the ones obtained by the above authors when fk = f, k~0. However,
we will leave that to the motivated reader.
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Define now the functions
r r

x*(r) = 1 w(s)ds+ 1 e(r)ds+(b+c-l+wo(r))r, (6)

and

g(r) = 1 - b - w0(r) for all r E [O,R). (7)

Introduce the difference equation

Pk+l = Pk 十 x*伍 ）g(pk尸(k~0), p。=R. (8)

We can now formulate the main r~sult:

Theorem. Under Condition (A), assume there exist x。E B, R > 0 such
that O is the unique zero of function x*(r) given by (6) in [O,R). Moreover,

suppose llxoll~a~R and x*(R)~0.
Then iterates generated by (1) are well defined for all k~0, belong to

U(O, R) and converge to O with

llxkll~Pk (k 2: 0), (9)

where sequence Pk which is monotonically decreasing and coverges to O is given

by (8).

Proof. We will first show that the sequence generated by (8) is monotoni

cally decreasing and converges to 0. Since O is the unique zero of function x*(r)

in [O, R) and x*(R)~0,

x * (r) < 0 for all r E (0, R). (10)

By using (6) we get

r
0 :<; lo w(s)ds + for e(r)ds < (1- b - c 一 wo(r))r

which implies that
g(r) > 0 for all r E (0, R). (11)
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Using relations (8), (10), (11) and finite induction, it is routine to show that

sequence Pk is monotonic詛y decreasing. Furthermore, iteration (8) can also be

written as

Pk+1 = [「(w)(s)ds + e(pk)Pk + cpk]9(Pk)-1~0 for all k 2:: 0
。

which imply that

(12)

0~Pk+1~Pk (k~0).

Hence, there exists a p 事 E (0, R) with Pk --+ p 拿 as k --+ oo. Note that from (8)

and the uniqueness of Oas a zero of x*(r) in (0, R) we conclude that p* = 0.
By induction on k we will show that (9) holds~For k = 0, (9) becomes

llxoll :s; Po = R, which is true since a :s; R by hypothesis. Assume (9) holds for
k. From (3) and (11) we get

IIAk(O)一1(Ak伍 ）- Ak(O))II :s; wo(Pk) + b < l.

By the Banach lemma on invertible mappings Ak(xk) is invertible. By using
identity

Ak伍 ）= Ak(O)[I + Ak(o)-1(Ak伍 ）- Ak(O))],

we see that

IIAk(xk) 一 lAk(O)II~g(pk尸 (k~0). {13)

From (1) and the fact that O is a fixed point of equation (2) we obtain in
turn

X科1 =xk - A(xk尸!k伍 ）

= - Ak(Xk尸 [fk(xk) - Ak(xk)xk]

= - Ak(Xk尸 [flk(xk) + !zk伍 ）－乩伍 ）Xk - (印(0) + !zk(O))]

= - Ak(Xk尸 [(Ilk伍 ）- flk(O) - Ak伍 ）Xk)+(/zk伍 ）- !zk(O))]

＝－乩 (xk尸1/ ! {. (回 這 －糾 互）Xk + (/2k伍 ）- fa(O))]
。 1

=-[A凸)-1 Ak(O)] {J Ak(O)可((fik(txk) - Ak伍 ））Xkdt
。

+ (!zk伍 ）- !zk(O))] }.
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By taking norms in the above approximation and using the triangle inequal

ity and (13) we obtain

llxk+1 II = JI [Ak伍 ）-1 Ak(O)]{J'Ak(O)可(U!k匝 ）－丛伍 ））Xk)dt
。+ (hk(xk) - hk(O))]}II

1

~II乩伍 ）-lAk(O)II { II丨Ak(o)-1((f{k匝 ）-Ak伍 ）汩 ）dtll
。

+ IIAk(O)一1(hk伍 ）- hk(O))II}

~(j[w(tllxkll) + c + e(llxkll)] llxklldt)g(p『
Pie Pie

~(/. w(s)ds + 1 e(pk)ds + cpk)Y(Pk尸 = Pk+1, (14)

since

xk E U(O, llxkll)~U(O,pk)

and

1

II j A.(o尸 （（几 (tx•) - A•伍 ））Xkdtll :,; [cw(tll這 ）十c)佢•lldt,
。

IIAk(O) 一 1(hk伍- hk(O))II~e(llxkll)llxkll,

by (4) and (5) respectively.

Hence (9) holds for k + l. From relation (14) we conclude that xk+I E

U(O, R). Finally, by letting k -+ oo in (14) we get Xk -+ 0, which completes the

proof.

In practical cases we can select Ak(xk) to be either f{k伍 ）or f乜(xo) or

fh(O) or Sk(xk-I,xk) (secant mappings) or any other linear mapping satisfying

relations (3)-(5).
Results for the above special methods can now easily follow.
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