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NON-PARALLEL PLANE RAYLEIGH BENARD
CONVECTION IN CYLINDRICAL GEOMETRY

A. GOLBABAI (SHAYGAN)

Summary. This paper considers the effect of a perturbed wall in regard
to the classical Benard convection problem in which the lower rigid sur-
face is of the form z = €2¢(s), s = er, in axisymmetric cylindrical polar
coordinates, (r, ¢, z). The boundary conditions at s = 0 for the linear
amplitude equation is found and it is shown that these conditions are
different from those which apply to the nonlinear problem investigated
by Stewartson (1978) [2], representing a distribution of convection cells
near the centre.

1. Introduction

The theoretical foundation of the on set of thermal instability in an infinite
horizontal layer of fluid heated uniformly from below, was laid by Rayleigh (1916)
[9], who proved the validity of the principle of the exchange of stabilities. For the
case of two free boundaries, several papers recently have appeared in which the
effect of certain perturbations of the classical Benard problem are studied. For
example, Daniels (1978) [3], has studied the effect of including distant conducting
side-walls at z = O(L), when the Rayleigh number, R, exceeds the classical
critical R by O(L~?), where L is large. Stewartson (1978) [2] has considered a

similar problem but with distant cylindrical conducting boundary. And again
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Daniels (1980) [4] has studied the effect of centrifugal force in a shallow rotating
cylinder or annulus. These studies all result in certain changes in the amplitude
equation, which results from the balance of terms in the governing equation at
O(e?). |

The changes from the classical problem are essentially extra terms in the
amplitude equation or changes in its boundary conditions. It is hoped that
experimental results will be more easily compared with these modified problems.

In this paper we are interested in the Benard convection problem associated
with the lower surface being of the form z = ¢2 9(8), in cylindrical geometry with
axisymmetric. We refer to this new problem as the non parallel plane problem
in contrast to the parallel plane problem, Golbabai (1986) [5], where the lower
plane is given by z = 0. The upper boundary is z = 1. It is assumed that g(s) is
bounded so that for ¢ sufficiently small the surfaces do not intersect. We choose
9(0) = 0 and g positive for r = oo, the excess of the Rayleigh number above
R, (critical Rayleigh number) is assumed O(e?), and the deviation of the lower
surface from the planer case is O(¢2?). We consider fluid confined between two
rigid boundaries z = 1 and z = ¢2g(s) where z, r are dimensionaless cylindrical
coordinates and ¢ is a small parameter. Gravity acts in the negative direction and
the flow field extends to r = 0 and 7 = 0o. For definiteness the space coordinates
are made non-dimensional with respect to the fluid depth, d, the lower surface
z = €%g(s) is kept at constant temperature 65 and the upper surface z = 1 at a

constant temperature 7. The velocity component v is taken to be zero.

2. The governing equations of motion

The full set of equations in the Oberbeck-Boussinesq approximation for

viscous, incompressible, axisymmetric flow can be expressed as follows:

0 (2.1)
Uup — a(VZu - i) +pr = —(uu, + wu,) (2.2)
wy — U(Vzw +6) +p, = —(vw, + ww,) (2.3)
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6: — V0 — Rw = —(ub, + wd,) (2.4)
% 10 02
2 _ 2 4 -7 oy 2
v = 6r2+r6r+322
where
_ 0w _ O
=3 "7 52
and
3 ¢ n* * v
R = gaod (60—01)/KV, = ";,

is the Rayleigh number and Prandtl number respectively.
We define the slow variable, s, by s = er, where ¢ is a small parameter. The

boundary conditions are

u=w=0=0 a z =1, &g(s). (2.5)

3. Analysis of the base flow and-steady state solution

For steady flow in the parallel piane problem, which is given by £ = 0, there

is a solution of the form:
u=0, w=20

0 = 0, p = constant,

for ¢ # 0 we denote the velocity component of the steady case flow by u,, w,
and pressure, temperature by p,, 0, respectively. The boundary conditions for

the base flow are

%, =4, = 0, = 0 af =1
0

u; =wy = 0, 6, = Re’g(s) at 2z =e2g(s). (3.1)

We also add the condition that

ugs—0 and w;—0 as s — oo. (3.2)
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For small ¢ we expand the perturbations Us, Ws, 05 and p, in powers of ¢ and

write:

6u1+£2u2+...

Uy =
ws = ewy + 2wy ...
0, =0y +€%0, +... (3.3)
Ps =ep1+Epy +...

The functions u;, w;, 6;, p;, for i = 1,2,.

variables z and s.

.. are considered to depend on the two

Substituting the form of expansions (3.1)-(3.3) into (2.1)-(2.4), replacing 2

by 5-(%, and equating powers of ¢, we obtain a set of partial differential equations

as follows:
From (2.1), we find that,

Bu,-

Bwl

Owiqy

0 = 0 u,—-{-s(as + 3. ) =0, i=1,2,3 (3.4)
from (2.2) and (2.3),
B%*uy uip1  Op;
522 0, 2 B = 0, i=12 (3.5)
op1 Op; 0% w;
5—091‘0, bz (9i+822)=0,2=2,3 (3.6)
Finally from (2.4),
026;
6 = 0, (—az—z-i-Rwi = 0, =23 (3.7)
1892 3294 a02
53s T o tRUM-wmG =0, 4:5)

Now we define the boundary conditions on ui, 0;, w;,1=1,2,... From (3.1),

0 at

z=1,i=1,2,3,.... (3.9)
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The boundary conditions on z = €2g, for u;, w;, 6; (1 =1,2,...), are given by
expansion of us, ws, 0, about z = 0, and the details of this work are given for

us only; we have

us(s,ezg) = eu(s,0)+ g2 us(s,0) + 53(gulz + u3)2=0

+ &*(guaz + ua)z=o0 + ... (3.10)
Therefore, since u,(s,e2g) = 0,
vy = uy = 0, gui,+us = gus;+ug = 0 on 2=0
where
T %’: (i = 1,2,4).

Similar arguments provide boundary conditions for w; and 6; on z = 0.
The solutions of the equations (3.4)-(3.8) subject to the boundary condtions

are listed below.

u1=u2=0, w1=w2=w3=0, 01=03=p1=0(3.11)

6, = R(1- 2)g, (3.12)
2

P = oR(z—2) + B(s) (3.13)
4

- a # & 4_2 -17,2 _ aB

us = R(z = S)ds +o071(2% - 2) = /2 (3.14)
d’9 1dg i d?B 1dB

we = RA@) oo +=—=)+o il oz +57-) (3.15)

z5 022 24
=t
2’2 23

In obtaining these solution, p, was first found in the form (3:13), where B(s) is

an unknown function at this stage.
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In order that uz — 0 as s — oo, we see from (3.14) that

Z—g -0 as s— o0, (3.17)
and
il —0 as s— oo, (3.18)
ds
From the condition ws = 0 on z = 1, and (3.17) we find that
e (toR/20)2 = o, (3.19)
and thus |
= (=T70R/20)g(s) + const. (3.20)

Substituting (3.20) into (3.13)-(3.15), provides the explicit form of P2, U3, w;.
Summarizing, the expansions for the base flow, pressure and temperature can be
written as follows:

z \ dg

4 3 22
u,_e3R(1—-—+E-— E“Lzo)d +.o. (3.21)
W = — Bt TR - )( =5+ . dg )R/120 +. (3.22)
Py =£*R(1—2)g +... (3.23)

_50(2_2_2_1) +s (3.24)
o 2~ 2077 '

It is noted that as s — oo, we have zero fluid velocity and just a linear temper-

ature variation.

4. The disturbance equations in matrix form

We continue with the case where the equation of the lower boundary is

z = e2g(s), where s = ¢r. In equations (2.1)-(2.4) we set

u = ug + i(r, 2,1),

g
I

= w, + W(r, 2,1), (4.1)
= 05 + O(r, 2,1),

S
!

b = ps —ﬁ(r,z,t),



NON-PARALLEL PLANE RAYLEIGH BENARD CONVECTION 177

(where the minus sign with perturbed pressure is merely for convenience) to
obtain the equations for small disturbances i, b, é, D, these are assumed to
be sufficiently small for nonlinear products of these terms to be neglected in
the governing equations. The functions u,, w,, 8,, p, are the steady solutions
of (2.1)-(2.4) which are given in (3.21)-(3.24). Upon substitution of (4.1) into
(2.1)-(2.4) we then obtain the linear system

du 4 0w

E+;+5;=0, (4.2)
) ot Ou, _Ou, o " 9. U
5 +u35+uar +w8z +w’8—z = pr+o(V —T2) (4.3)
oW ow _Ows; 0w, Bu')___ A 9. &
§+u367‘+u3r +waz w36z .-pz+a(Vw+0) (4.4)

oé 80 06, a0, 96

i o D — G = D v2é 4.
3t+u38r+u3r+w0z +waz b (4.5)
and :
U = us + 4(r,t)
@=0=1%=0 at z =1, eg(s). (4.6)
We now introduce the notation
. 0u . 00
u = az, U = 5;, (47)
and in equation (4.3) we write,
o4 104 oOu
2‘ —; — — — —
Vi = or?  rdr  0z° (15

The (4.3) expresses g—g in terms of 4, 4, W, p and their derivatives with respect
to r and ¢. We next note that the derivative with respect to z of (4.2) may be
written as s P

—8—22_ = _(;+E) (4.9)
In our analysis we shall ignor powers of €™ for n > 3. With this assumption and
(3.21)-(3.24) we observe that

us = 0, w, =0, 6, = e?Rg(1-2). (4.10)
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Now we introduce the extended flow vector

_ 9p 89 _ dw 9fytr
["’ ar ar’" or E]
where ¢r denotes the transpose and 4, § are given in (4.7). Substituting (4.10)
in (4.3)-(4.5), we find that

U = (4.11)

00 L0 0
632 = Li+o T 2

0*p . 0w, 00 O*b

820r "(L(“+a_)+5 @rat)’

0% _Ra_w_L((?O) 0%0 +6'cb . 00,

dz0r or ordt = or = 9z’ (4.12)
82:37‘ - —fu,

0% a0

-0rdz ~ Or’

where L is a linear operator: L = 36:2 + 12 _ L This formulation enables us

rar

to write the equation (4.12) in matrix form:

ou oU
— = A B—, 4.13
0z i ot’ (el
where A and B are matrices of order (6,6).
01 0 -L 0 O
L 00 0 L 1
1000 0 X -L _ 2
A = 100 0 0 0 and X = (1+¢°g)R,
0 00 -L 0 o0
0 01 0 0 O
o7l 0 0
0 0 o1 0
2= 0 0 1
0 0

where 0 is the zero matrix of order (3,3), we can write matrix A in the form
A= A; — LAs 4+ R(1 + €%g) A3, where A, As, A3 are constant matrix of order
(6,6). From (4.6)

£
|
[l
|
Il

o oy D &t =1 (4.14)
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On z = £°g, we have, for example, 32 = 0, so that

0w _ 0uw(r,0) 5 d*w(r,0)
or or TEY 0z0r
oW

and so the order of approximation considered here, =2 =0at z=0. The

complete set of boundary conditions can be conveniently labeled as follows:

(4.15)

v: The last three components of U are zero at z = 0 and z = 1 or alterna-
tively:
F:CU =0 at 2=0,2=1 (4.16)

0 0

where C = (Q 7

), and I3 is a unit matrix of order (3.3).

5. Expansion procedure and derivation of amplitude equation

If g(s) = 0 (or ¢ = 0) then we have the standard linear parallel plane
problem, so that we may expect that the critical disturbance of plane problem
will have a corresponding perturbed solution in the non parallel case. We assume
9(s) remains O(1) for r = O(¢~!), and look for a steady solution of (4.13) in this

region of the form
U= ¢e*Vzs8)+c-c, (5.1)

with R = R, + €2, where ¢ is fixed by the size of the depression in the lower
surface (z = €?g), and B is an arbitrary parameter which represent an O(e?)
variation in R about R., and the symbol ¢ - ¢ denotes the complex conjugate.

Now we expand the complex functions V in power or ¢:
V=ch+eEB+FR+... (5.2)

where F; is a function of s and z. On substituting (5.1)-(5.2) into (4.13) and

equating powers of €™, we obtain a set of equations as follows:
LoF; =0, ¥ (5.3)
L0E2 = iacAZLl-El’ 7> (54)
LyFy = (Reg + f)AsF; —iaAy InFy — Ay Ly F, (5.5)
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with
C(E3—gE1):0 at Z=0, CE3=0 at z=1
where
0 2
Ly =a—(z41+a As + R A3)
0 1
Ly —'5;4'%
02 10 1
L =32%353 & (8

and A;, As, As are constant matrices of order (6,6), also matrix C and v are
given in (4.16) and a, R, are critical wave and Rayleigh number respectively.

A general solution (5.3) can be written as

B o= A(s)f,(2) (5.7)

where
Lofl(z) = 0, 7Y

and f (z) is the critical eigenfunction of the standard parallel plane problem,
5. Chandrasekhar 1961 [1]. The solution given in (5.7) contains an amplitude
function, A(s), which is determined by solvability condition obtained at higher
order O(&®). Using (5.7), equation (5.4) becomes

LyF, = —iaAngfi(s)fl sy (5.8)

and has a solution for F,, if the adjoint condition:

1 |
el la) /0 f2)(Aaf,)dz = 0

is satisfied, the adjoint condition here is similar to that of Eagles 1980 [6], where
f(z) is adjoint function.

From the boundary conditions on F,, (5.4), and the right-hand side F, may

be expressed as

L, dA A -
F = —*(3 + g)fz + A1(s)f, (5.9)
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where A;(s) is unknown function at this stage, and

Lof, = 204z 7.

A solution for F; exists if the adjoint condition is satisfied, which results the
amplitude equation
A 1dA A .
oA L .. - = 0. .10
a(Sz+55; ~ 1) TA{G—cR)g+b6} = 0 (5.10)
Here

@ = —av/(;lz(z)(Agfz)dz,
b = / " f2)(Aaf )i,

d
C=kaf1k at z2=0

where fi(z) is the k-th component of the adjoint function f(z), and fy4(2) is the
k-th component of eigenfunction f;(2) and Az, A3 are given in (5.6). Now let
Ao(s) = As/? from (5.10), we see that

d2A0
N + (861 4+ 629)40 = 0, (5.11)

where §; = —‘Q y 0y = ";R i

The equation (5.11) is similar to that obtained by Eagles (1980) [6] in the
two dimensional case where the boundary conditions are defined at s = +00. In
our case, we have no information about the boundary condition at the center,

s =0, and we shall investigate this condition by using a matching procedure.

6. The inner solution and investigating of the amplitude equation

In the neighborhood of r = 0 the function g(s) tends to zero and we look
for a linearized solution of (2.1)-(2.4), in which R = R, and the components of
the disturbance are given in terms of Bessel functions. An equivalent solution

has been found in the stress-free case by Stewartson (1978) [2]. One solution is
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6 = h(z)do(ar), v = f(2)Ji(ar), w = g(2)Jo(ar)

and a second solution can be found by writing

u = f(2)Jg(ar) + rf(2)Jg (ar)
w = g(2)Jo(ar) + rg(z)Jo(ar)
0 = h(z)Jo(ar) + rh(z)J4(ar) (6.1)

where the numerical solutions of f, g, k, f, g, & can be found.

The general solution for 6 in the inner zone may now be written as
6r = Ado(ar)h + p{Jo(ar)h + rJj(ar)h} (6.2)

01 denotes the inner solution and we use 6o to denote the solution already found.
In order to match (6.2) with the outer solution (5.1), we need the behavior of

the amplitude function Ag(s) as s — 0, which is found to the
Ap~a+bs+... (s—0) (6.3)
where @, b are arbitrary constant and s = er.

From (5.1), (5.7), (5.11) in the outer region where g(s) # 0, 8o is given by

iar
- {hAo — isa—A—Ql—z+...} +c-c. (6.4)

0~ ~
- 0s

Y

Now the asymptotic expansion of (6.2) for large r is:

O ~ (%”)1/2{0‘_ S—Z)hcosf‘-l-/ﬂzcosf'—prhsinf} (6.5)

where 7 = ar — §. Substituting (6.3) into (6.4) we obtain

tar

32

o ~ {ah + ebrh — ibeh} + ¢ - ¢ (6.6)
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and comparing (6.5) with (6.6), we see that a match of the terms in A and rh is

secured if, respectively

5= (52)P (- E)eminn

2Ta 8a
e/2p — (’Ié‘—‘)-l’?efr/‘* = 0. (6.7)

Therefore, from matching conditions (6.7) we can list the boundary conditions

for the amplitude equation as:
Ao(O) = blewml4
A(0) = byein/4 (6.8)

where b; and b, are real constants. Note that these condtions are quite differ-
ent from those which apply to the non-linear problem studied by Brown and
Stewartson (1978) [2].

Now suppose that g(s) # 0, and define, ¢;(s) = —829(s), so that the ampli-
tude equation is given by, Ag + (61 — g1(s)) Ao = 0, where g,(s) > 0, in view of
the conditions (6.8), we set

Ay = e (A (s) + idy(s)) (6.9)
where A;(s) and A(s) are assumed real functions, then

A1(0) =b;,  Ay(0) = 0,
Aj(0) =0, A}0) = B, (6.10)

Let A= A; +id; and A = R(s)ei¥(®), then R and 4 satisfy the equations:
R"+(é1 - g1)R - (¥)°R = 0
2¢'R'+9"R = 0 (6.11)
with boundary conditions
R(0) = by, ¥(0) = 0
RO) =0, v(0)=2 (6.12)
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from (6.11), ¢' = (—1—2")3 where ¢ is an arbitrary constant, and the boundary

conditions at s = 0 imply that, ¢ = b;b,. Hence

ds
(R)*
Now if we impose the condition that R — 0 (s = o), then we choose ¢ = 0, so
that

¥ = biby (6.13)

R" + (8 -g1)R =0
R'(0) =0 (6.14)
R—0 (s— )

This system is the same as the linear form considered by Eagles (1980), [6],
where the function 91(s) is taken to be g1(s) = (tanh —\;3-)2 and for 6, = 1/2
there is a solution R = b, sec h%, in which R — 0 as s — 00, representing a

distribution of convection cells concentrated near the center.

Discussion

It is well known that the base flow in the parallel plane problem (g(s) =
0, or ¢ = 0), is unstable for R > R, and that for B > R, a pattern of convection
cells or rolls is set up. In the non-parallel plan case we see that the local Rayleigh
number is larger near s = 0 than at s = 00, so that the convection cells occur
In the center more readily than away from the center and the positive value of
9(s) for s > 0, causes an effective increase in the critical Rayleigh number over
that for the plane case where g(s) = 0. Finally, it should be pointed out that the
boundary conditions at s = 0 for the linear amplitude equation differs from those

which apply to the non-linear problem investigated by Brown and Stewarson [2].
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